367 research outputs found

    Flux Lattice Melting and Lowest Landau Level Fluctuations

    Full text link
    We discuss the influence of lowest Landau level (LLL) fluctuations near H_{c2}(T) on flux lattice melting in YBa2_2Cu3_3O7δ_{7-\delta} (YBCO). We show that the specific heat step of the flux lattice melting transition in YBCO single crystals can be attributed largely to the degrees of freedom associated with LLL fluctuations. These degrees of freedom have already been shown to account for most of the latent heat. We also show that these results are a consequence of the correspondence between flux lattice melting and the onset of LLL fluctuations.Comment: 4 pages, 2 embedded figure

    3D Lowest Landau Level Theory Applied to YBCO Magnetization and Specific Heat Data: Implications for the Critical Behavior in the H-T Plane

    Full text link
    We study the applicability of magnetization and specific heat equations derived from a lowest-Landau-level (LLL) calculation, to the high-temperature superconducting (HTSC) materials of the YBa2_2Cu3_3O7δ_{7-\delta} (YBCO) family. We find that significant information about these materials can be obtained from this analysis, even though the three-dimensional LLL functions are not quite as successful in describing them as the corresponding two-dimensional functions are in describing data for the more anisotropic HTSC Bi- and Tl-based materials. The results discussed include scaling fits, an alternative explanation for data claimed as evidence for a second order flux lattice melting transition, and reasons why 3DXY scaling may have less significance than previously believed. We also demonstrate how 3DXY scaling does not describe the specific heat data of YBCO samples in the critical region. Throughout the paper, the importance of checking the actual scaling functions, not merely scaling behavior, is stressed.Comment: RevTeX; 10 double-columned pages with 7 figures embedded. (A total of 10 postscript files for the figures.) Submitted to Physical Review

    The Current-Temperature Phase Diagram of Layered Superconductors

    Full text link
    The behavior of clean layered superconductors in the presence of a finite electric current and in zero-magnetic field behavior is addressed. The structure of the current temperature phase diagram and the properties of each of the four regions will be explained. We will discuss the expected current voltage and resistance characteristics of each region as well as the effects of finite size and weak disorder on the phase diagram. In addition, the reason for which a weakly non-ohmic region exists above the transition temperature will be explained.Comment: 8 pages (RevTeX), 4 encapsulated postscript figure

    Scientific Objectives of Einstein Telescope

    Full text link
    The advanced interferometer network will herald a new era in observational astronomy. There is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz-10 kHz, with sensitivity a factor ten better in amplitude. Such detectors will be able to probe a range of topics in nuclear physics, astronomy, cosmology and fundamental physics, providing insights into many unsolved problems in these areas.Comment: 18 pages, 4 figures, Plenary talk given at Amaldi Meeting, July 201

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    Mortality following Stroke, the Weekend Effect and Related Factors: Record Linkage Study

    Get PDF
    Increased mortality following hospitalisation for stroke has been reported from many but not all studies that have investigated a 'weekend effect' for stroke. However, it is not known whether the weekend effect is affected by factors including hospital size, season and patient distance from hospital.To assess changes over time in mortality following hospitalisation for stroke and how any increased mortality for admissions on weekends is related to factors including the size of the hospital, seasonal factors and distance from hospital.A population study using person linked inpatient, mortality and primary care data for stroke from 2004 to 2012. The outcome measures were, firstly, mortality at seven days and secondly, mortality at 30 days and one year.Overall mortality for 37 888 people hospitalised following stroke was 11.6% at seven days, 21.4% at 30 days and 37.7% at one year. Mortality at seven and 30 days fell significantly by 1.7% and 3.1% per annum respectively from 2004 to 2012. When compared with week days, mortality at seven days was increased significantly by 19% for admissions on weekends, although the admission rate was 21% lower on weekends. Although not significant, there were indications of increased mortality at seven days for weekend admissions during winter months (31%), in community (81%) rather than large hospitals (8%) and for patients resident furthest from hospital (32% for distances of >20 kilometres). The weekend effect was significantly increased (by 39%) for strokes of 'unspecified' subtype.Mortality following stroke has fallen over time. Mortality was increased for admissions at weekends, when compared with normal week days, but may be influenced by a higher stroke severity threshold for admission on weekends. Other than for unspecified strokes, we found no significant variation in the weekend effect for hospital size, season and distance from hospital

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation
    corecore