38 research outputs found

    Nuclear distribution and chromatin association of DNA polymerase α-primase is affected by TEV protease cleavage of Cdc23 (Mcm10) in fission yeast

    Get PDF
    BACKGROUND: Cdc23/Mcm10 is required for the initiation and elongation steps of DNA replication but its biochemical function is unclear. Here, we probe its function using a novel approach in fission yeast, involving Cdc23 cleavage by the TEV protease. RESULTS: Insertion of a TEV protease cleavage site into Cdc23 allows in vivo removal of the C-terminal 170 aa of the protein by TEV protease induction, resulting in an S phase arrest. This C-terminal fragment of Cdc23 is not retained in the nucleus after cleavage, showing that it lacks a nuclear localization signal and ability to bind to chromatin. Using an in situ chromatin binding procedure we have determined how the S phase chromatin association of DNA polymerase α-primase and the GINS (Sld5-Psf1-Psf2-Psf3) complex is affected by Cdc23 inactivation. The chromatin binding and sub-nuclear distribution of DNA primase catalytic subunit (Spp1) is affected by Cdc23 cleavage and also by inactivation of Cdc23 using a degron allele, implying that DNA polymerase α-primase function is dependent on Cdc23. In contrast to the effect on Spp1, the chromatin association of the Psf2 subunit of the GINS complex is not affected by Cdc23 inactivation. CONCLUSION: An important function of Cdc23 in the elongation step of DNA replication may be to assist in the docking of DNA polymerase α-primase to chromatin

    Real-time imaging of DNA damage in yeast cells using ultra-short near-infrared pulsed laser irradiation

    Get PDF
    Analysis of accumulation of repair and checkpoint proteins at repair sites in yeast nuclei has conventionally used chemical agents, ionizing radiation or induction of endonucleases to inflict localized damage. In addition to these methods, similar studies in mammalian cells have used laser irradiation, which has the advantage that damage is inflicted at a specific nuclear region and at a precise time, and this allows accurate kinetic analysis of protein accumulation at DNA damage sites. We show here that it is feasible to use short pulses of near-infrared laser irradiation to inflict DNA damage in subnuclear regions of yeast nuclei by multiphoton absorption. In conjunction with use of fluorescently-tagged proteins, this allows quantitative analysis of protein accumulation at damage sites within seconds of damage induction. PCNA accumulated at damage sites rapidly, such that maximum accumulation was seen approximately 50 s after damage, then levels declined linearly over 200-1000 s after irradiation. RPA accumulated with slower kinetics such that hardly any accumulation was detected within 60 s of irradiation, and levels subsequently increased linearly over the next 900 s, after which levels were approximately constant (up to ca. 2700 s) at the damage site. This approach complements existing methodologies to allow analysis of key damage sensors and chromatin modification changes occurring within seconds of damage inception

    Monitoring DNA replication in fission yeast by incorporation of 5-ethynyl-2′-deoxyuridine

    Get PDF
    We report procedures to allow incorporation and detection of 5-ethynyl-2′-deoxyuridine (EdU) in fission yeast, a thymidine analogue which has some technical advantages over use of bromodeoxyuridine. Low concentrations of EdU (1 µM) are sufficient to allow detection of incorporation in cells expressing thymidine kinase and human equilibrative nucleoside transporter 1 (hENT1). However EdU is toxic and activates the rad3-dependent checkpoint, resulting in cell cycle arrest, potentially limiting its applications for procedures which require labelling over more than one cell cycle. Limited DNA synthesis, when elongation is largely blocked by hydroxyurea, can be readily detected by EdU incorporation using fluorescence microscopy. Thus EdU should be useful for detecting early stages of S phase, or DNA synthesis associated with DNA repair and recombination

    Cdt1 proteolysis is promoted by dual PIP degrons and is modulated by PCNA ubiquitylation

    Get PDF
    Cdt1 plays a critical role in DNA replication regulation by controlling licensing. In Metazoa, Cdt1 is regulated by CRL4Cdt2-mediated ubiquitylation, which is triggered by DNA binding of proliferating cell nuclear antigen (PCNA). We show here that fission yeast Cdt1 interacts with PCNA in vivo and that DNA loading of PCNA is needed for Cdt1 proteolysis after DNA damage and in S phase. Activation of this pathway by ultraviolet (UV)-induced DNA damage requires upstream involvement of nucleotide excision repair or UVDE repair enzymes. Unexpectedly, two non-canonical PCNA-interacting peptide (PIP) motifs, which both have basic residues downstream, function redundantly in Cdt1 proteolysis. Finally, we show that poly-ubiquitylation of PCNA, which occurs after DNA damage, reduces Cdt1 proteolysis. This provides a mechanism for fine-tuning the activity of the CRL4Cdt2 pathway towards Cdt1, allowing Cdt1 proteolysis to be more efficient in S phase than after DNA damage

    The cell cycle and DNA damage-dependent regulation of Cdt1 in schizosaccharomyces pombe

    No full text
    Cdt1 is a conserved and essential eukaryotic protein that is required for the licensing step of DNA replication. In order to control replication licensing and ensure a single round of DNA replication occurs per cell cycle, Cdt1 is subject to strict regulation. In Metazoa and S. pombe, Cdt1 is targeted for ubiquitylation and proteolysis in S phase and after DNA damage by the CRL4Cdt2 ubiquitin ligase. CRL4Cdt2 is activated in Metazoa by an unusual mechanism that requires an interaction between the substrate and chromatin-loaded proliferating cell nuclear antigen (PCNA). This study addressed the involvement of PCNA in S. pombe Cdt1 proteolysis. A mutational analysis was undertaken to establish whether the Cdt1-PCNA interaction is conserved in S. pombe and the extent to which it regulates CRL4Cdt2-dependent turnover of the protein. S. pombe Cdt1 was shown to interact with PCNA in vivo and two variant PCNA-interacting peptide (PIP) motifs were identified in the protein. The two motifs function near-redundantly to promote both the Cdt1-PCNA interaction and the CRL4Cdt2-dependent proteolysis of Cdt1 in S phase and after DNA damage. The mutational analysis also resulted in the characterisation of two in-frame AUG codons in the cdt1+ reading frame. The second in-frame AUG codon was shown to be the principal initiator codon and was required to maintain wildtype Cdt1 protein levels and cell viability. CRL4Cdt2 is emerging as an important regulator of proteins that are involved in the control of cell cycle progression and the maintenance of genome stability. However, there are a number of outstanding questions regarding the mechanism and regulation of CRL4Cdt2. In order to address these questions, a genomics approach was taken to identify novel genes involved in Cdt1 regulation. A screen of non-essential S. pombe genes identified 17 candidate genes that, when inactivated, caused up-regulation of Cdt1. Unexpectedly, deletion of genes involved in homologous recombination resulted in a Rad3-dependent up-regulation of Cdt1. Further work is required to establish the biological significance of this finding.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    DNA damage induces Cdt1 proteolysis in fission yeast through a pathway dependent

    No full text
    Cdt1 is an essential protein required for licensing of replication origins. Here, we show that in Schizosaccharomyces pombe, Cdt1 is proteolysed in M and G1 phases in response to DNA damage and that this mechanism seems to be conserved from yeast to Metazoa. This degradation does not require Rad3 and Cds1, indicating that it is independent of classic DNA damage and replication checkpoint pathways. Damage-induced degradation of Cdt1 is dependent on Cdt2 and Ddb1, which are components of a Cul4 ubiquitin ligase. We also show that Cdt2 and Ddb1 are needed for cell-cycle changes in Cdt1 levels in the absence of DNA damage. Cdt2 and Ddb1 have been shown to be involved in the degradation of the Spd1 inhibitor of ribonucleotide reductase after DNA damage, and we speculate that Cdt1 downregulation might contribute to genome stability by reducing demand on dNTP pools during DNA repair

    rar

    No full text

    DNA damage induces Cdt1 proteolysis in fission yeast through a pathway dependent on Cdt2 and Ddb1

    No full text
    Cdt1 is an essential protein required for licensing of replication origins. Here, we show that in Schizosaccharomyces pombe, Cdt1 is proteolysed in M and G1 phases in response to DNA damage and that this mechanism seems to be conserved from yeast to Metazoa. This degradation does not require Rad3 and Cds1, indicating that it is independent of classic DNA damage and replication checkpoint pathways. Damage-induced degradation of Cdt1 is dependent on Cdt2 and Ddb1, which are components of a Cul4 ubiquitin ligase. We also show that Cdt2 and Ddb1 are needed for cell-cycle changes in Cdt1 levels in the absence of DNA damage. Cdt2 and Ddb1 have been shown to be involved in the degradation of the Spd1 inhibitor of ribonucleotide reductase after DNA damage, and we speculate that Cdt1 downregulation might contribute to genome stability by reducing demand on dNTP pools during DNA repair

    Cellular regulation of ribonucleotide reductase in eukaryotes.

    No full text
    Synthesis of deoxynucleoside triphosphates (dNTPs) is essential for both DNA replication and repair and a key step in this process is catalyzed by ribonucleotide reductases (RNRs), which reduce ribonucleotides (rNDPs) to their deoxy forms. Tight regulation of RNR is crucial for maintaining the correct levels of all four dNTPs, which is important for minimizing the mutation rate and avoiding genome instability. Although allosteric control of RNR was the first discovered mechanism involved in regulation of the enzyme, other controls have emerged in recent years. These include regulation of expression of RNR genes, proteolysis of RNR subunits, control of the cellular localization of the small RNR subunit, and regulation of RNR activity by small protein inhibitors. This review will focus on these additional mechanisms of control responsible for providing a balanced supply of dNTPs.pre-print759 K

    MCM2-7 proteins are essential components of prereplicative complexes that accumulate cooperatively in the nucleus during G1-phase and are required to establish, but not maintain, the S-phase checkpoint

    No full text
    A prereplicative complex (pre-RC) of proteins is assembled at budding yeast origins of DNA replication during the G1-phase of the cell cycle, as shown by genomic footprinting. The proteins responsible for this prereplicative footprint have yet to be identified but are likely to be involved in the earliest stages of the initiation step of chromosome replication. Here we show that MCM2-7 proteins are essential for both the formation and maintenance of the pre-RC footprint at the origin ARS305. It is likely that pre-RCs contain heteromeric complexes of MCM2-7 proteins, since degradation of Mcm2, 3, 6, or 7 during G1-phase, after pre-RCx on unreplicated chromatin may generate a checkpoint signal that inhibits premature mitosis during S-phase. We show that, although mitosis does indeed occur in the absence of replication if MCM proteins are degraded during G1-phase, anaphase is prevented if MCMs are degraded during S-phase. Our data indicate that pre-RCs do not play a direct role in checkpoint control during chromosome replication
    corecore