36 research outputs found

    Integrity of normal-appearing white matter: influence of age, visible lesion burden and hypertension in patients with small vessel disease

    Get PDF
    White matter hyperintensities accumulate with age and occur in patients with stroke, but their pathogenesis is poorly understood. We measured multiple magnetic resonance imaging biomarkers of tissue integrity in normal-appearing white matter and white matter hyperintensities in patients with mild stroke, to improve understanding of white matter hyperintensities origins. We classified white matter into white matter hyperintensities and normal-appearing white matter and measured fractional anisotropy, mean diffusivity, water content (T1-relaxation time) and blood–brain barrier leakage (signal enhancement slope from dynamic contrast-enhanced magnetic resonance imaging). We studied the effects of age, white matter hyperintensities burden (Fazekas score) and vascular risk factors on each biomarker, in normal-appearing white matter and white matter hyperintensities, and performed receiver-operator characteristic curve analysis. Amongst 204 patients (34.3–90.9 years), all biomarkers differed between normal-appearing white matter and white matter hyperintensities (P < 0.001). In normal-appearing white matter and white matter hyperintensities, mean diffusivity and T1 increased with age (P < 0.001), all biomarkers varied with white matter hyperintensities burden (P < 0.001; P = 0.02 signal enhancement slope), but only signal enhancement slope increased with hypertension (P = 0.028). Fractional anisotropy showed complex age-white matter hyperintensities-tissue interactions; enhancement slope showed white matter hyperintensities-tissue interactions. Mean diffusivity distinguished white matter hyperintensities from normal-appearing white matter best at all ages. Blood–brain barrier leakage increases with hypertension and white matter hyperintensities burden at all ages in normal-appearing white matter and white matter hyperintensities, whereas water mobility and content increase as tissue damage accrues, suggesting that blood–brain barrier leakage mediates small vessel disease-related brain damage

    The Brain Health Index: Towards a combined measure of neurovascular and neurodegenerative structural brain injury

    Get PDF
    Background: A structural magnetic resonance imaging measure of combined neurovascular and neurodegenerative burden may be useful as these features often coexist in older people, stroke and dementia. Aim: We aimed to develop a new automated approach for quantifying visible brain injury from small vessel disease and brain atrophy in a single measure, the brain health index. Materials and methods: We computed brain health index in N = 288 participants using voxel-based Gaussian mixture model cluster analysis of T1, T2, T2*, and FLAIR magnetic resonance imaging. We tested brain health index against a validated total small vessel disease visual score and white matter hyperintensity volumes in two patient groups (minor stroke, N = 157; lupus, N = 51) and against measures of brain atrophy in healthy participants (N = 80) using multiple regression. We evaluated associations with Addenbrooke’s Cognitive Exam Revised in patients and with reaction time in healthy participants. Results: The brain health index (standard beta = 0.20–0.59, P &#60; 0.05) was significantly and more strongly associated with Addenbrooke’s Cognitive Exam Revised, including at one year follow-up, than white matter hyperintensity volume (standard beta = 0.04–0.08, P &#62; 0.05) and small vessel disease score (standard beta = 0.02–0.27, P &#62; 0.05) alone in both patient groups. Further, the brain health index (standard beta = 0.57–0.59, P &#60; 0.05) was more strongly associated with reaction time than measures of brain atrophy alone (standard beta = 0.04–0.13, P &#62; 0.05) in healthy participants. Conclusions: The brain health index is a new image analysis approach that may usefully capture combined visible brain damage in large-scale studies of ageing, neurovascular and neurodegenerative disease

    Development of a UK core dataset for geriatric medicine research: : a position statement and results from a Delphi consensus process

    Get PDF
    Funding AS and MW are funded by the Newcastle National Institute for Health (NIHR) Biomedical Research Centre, which also funded the initial meeting of academic clinicians in geriatric medicine during the Delphi process. The views expressed in this article are those of the authors and not necessarily those of the NIHR, the NHS, or the Department of Health. Acknowledgements The authors acknowledge the contributions of members of the UK Geriatric Medicine Core Dataset Extended Working Group.Peer reviewedPublisher PD

    The relation between total cerebral small vessel disease burden and gait impairment in patients with minor stroke

    Get PDF
    Acknowledgements We thank the patients and their families, and the staff of the Brain Research Imaging Centre, Edinburgh, where MRI scanning was performed. Funding The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The Mild Stroke Study-2 follow up study at three years was funded by Chest Heart Stroke Scotland. The original MSS-2 study was funded by the Wellcome Trust (ref. 088134/Z/09/A) and Row Fogo Charitable Trust. The imaging was performed at the Brain Research Imaging Centre Edinburgh, which is supported by the SINAPSE collaboration and the Chief Scientist Office of the Scottish Government (http://www.bric.ed.ac.uk/). The work was supported by European Union Horizon 2020 (EU H2020), PHC03-15, project No 666881, ’SVDs@Target’, and the Fondation Leducq Transatlantic Network of Excellence for Study of Perivascular Spaces in Small Vessel Disease, ref no. 16 CVD 05. The work reflects the views of the authors and not of the funders. CMJL was supported by the Dutch Alzheimer Foundation and VC holds a NHS Research Scotland Fellowship. The work was performed in the Edinburgh Dementia Research Centre in the UK DementiaResearch InitiativePeer reviewedPublisher PD

    Sample size considerations for trials using cerebral white matter hyperintensity progression as an intermediate outcome at 1 year after mild stroke: Results of a prospective cohort study

    Get PDF
    Background: White matter hyperintensities (WMHs) are commonly seen on in brain imaging and are associated with stroke and cognitive decline. Therefore, they may provide a relevant intermediate outcome in clinical trials. WMH can be measured as a volume or visually on the Fazekas scale. We investigated predictors of WMH progression and design of efficient studies using WMH volume and Fazekas score as an intermediate outcome. Methods: We prospectively recruited 264 patients with mild ischaemic stroke and measured WMH volume, Fazekas score, age and cardiovascular risk factors at baseline and 1 year. We modelled predictors of WMH burden at 1 year and used the results in sample size calculations for hypothetical randomised controlled trials with different analysis plans and lengths of follow-up. Results: Follow-up WMH volume was predicted by baseline WMH: a 0.73-ml (95% CI 0.65-0.80, p < 0.0001) increase per 1-ml baseline volume increment, and a 2.93-ml increase (95% CI 1.76-4.10, p < 0.0001) per point on the Fazekas scale. Using a mean difference of 1 ml in WMH volume between treatment groups, 80% power and 5% alpha, adjusting for all predictors and 2-year follow-up produced the smallest sample size (n = 642). Other study designs produced samples sizes from 2054 to 21,270. Sample size calculations using Fazekas score as an outcome with the same power and alpha, as well as an OR corresponding to a 1-ml difference, were sensitive to assumptions and ranged from 2504 to 18,886. Conclusions: Baseline WMH volume and Fazekas score predicted follow-up WMH volume. Study size was smallest using volumes and longer-term follow-up, but this must be balanced against resources required to measure volumes versus Fazekas scores, bias due to dropout and scanner drift. Samples sizes based on Fazekas scores may be best estimated with simulation studies

    Clinical associations and prognostic value of MRI-visible perivascular spaces in patients with ischemic stroke or TIA: a pooled analysis

    Get PDF
    BACKGROUND AND OBJECTIVES: Visible perivascular spaces are an MRI marker of cerebral small vessel disease and might predict future stroke. However, results from existing studies vary. We aimed to clarify this through a large collaborative multicenter analysis. METHODS: We pooled individual patient data from a consortium of prospective cohort studies. Participants had recent ischemic stroke or transient ischemic attack (TIA), underwent baseline MRI, and were followed up for ischemic stroke and symptomatic intracranial hemorrhage (ICH). Perivascular spaces in the basal ganglia (BGPVS) and perivascular spaces in the centrum semiovale (CSOPVS) were rated locally using a validated visual scale. We investigated clinical and radiologic associations cross-sectionally using multinomial logistic regression and prospective associations with ischemic stroke and ICH using Cox regression. RESULTS: We included 7,778 participants (mean age 70.6 years; 42.7% female) from 16 studies, followed up for a median of 1.44 years. Eighty ICH and 424 ischemic strokes occurred. BGPVS were associated with increasing age, hypertension, previous ischemic stroke, previous ICH, lacunes, cerebral microbleeds, and white matter hyperintensities. CSOPVS showed consistently weaker associations. Prospectively, after adjusting for potential confounders including cerebral microbleeds, increasing BGPVS burden was independently associated with future ischemic stroke (versus 0-10 BGPVS, 11-20 BGPVS: HR 1.19, 95% CI 0.93-1.53; 21+ BGPVS: HR 1.50, 95% CI 1.10-2.06; = 0.040). Higher BGPVS burden was associated with increased ICH risk in univariable analysis, but not in adjusted analyses. CSOPVS were not significantly associated with either outcome. DISCUSSION: In patients with ischemic stroke or TIA, increasing BGPVS burden is associated with more severe cerebral small vessel disease and higher ischemic stroke risk. Neither BGPVS nor CSOPVS were independently associated with future ICH

    Antibiotic-induced disturbances of the gut microbiota result in accelerated breast tumor growth

    Get PDF
    The gut microbiota's function in regulating health has seen it linked to disease progression in several cancers. However, there is limited research detailing its influence in breast cancer (BrCa). This study found that antibiotic-induced perturbation of the gut microbiota significantly increases tumor progression in multiple BrCa mouse models. Metagenomics highlights the common loss of several bacterial species following antibiotic administration. One such bacteria, Faecalibaculum rodentium, rescued this increased tumor growth. Single-cell transcriptomics identified an increased number of cells with a stromal signature in tumors, and subsequent histology revealed an increased abundance of mast cells in the tumor stromal regions. We show that administration of a mast cell stabilizer, cromolyn, rescues increased tumor growth in antibiotic treated animals but has no influence on tumors from control cohorts. These findings highlight that BrCa-microbiota interactions are different from other cancers studied to date and suggest new research avenues for therapy development

    Impact of Cerebral Microbleeds in Stroke Patients with Atrial Fibrillation

    Get PDF
    OBJECTIVES: Cerebral microbleeds are associated with the risks of ischemic stroke and intracranial hemorrhage, causing clinical dilemmas for antithrombotic treatment decisions. We aimed to evaluate the risks of intracranial hemorrhage and ischemic stroke associated with microbleeds in patients with atrial fibrillation treated with Vitamin K antagonists, direct oral anticoagulants, antiplatelets, and combination therapy (i.e. concurrent oral anticoagulant and antiplatelet) METHODS: We included patients with documented atrial fibrillation from the pooled individual patient data analysis by the Microbleeds International Collaborative Network. Risks of subsequent intracranial hemorrhage and ischemic stroke were compared between patients with and without microbleeds, stratified by antithrombotic use. RESULTS: A total of 7,839 patients were included. The presence of microbleeds was associated with an increased relative risk of intracranial hemorrhage (aHR 2.74, 95% confidence interval 1.76 - 4.26) and ischemic stroke (aHR 1.29, 95% confidence interval 1.04 - 1.59). For the entire cohort, the absolute incidence of ischemic stroke was higher than intracranial hemorrhage regardless of microbleeds burden. However, for the subgroup of patients taking combination of anticoagulant and antiplatelet therapy, the absolute risk of intracranial hemorrhage exceeded that of ischemic stroke in those with 2-4 microbleeds (25 vs 12 per 1,000 patient-years) and ≥11 microbleeds (94 vs 48 per 1,000 patient-years). INTERPRETATION: Patients with atrial fibrillation and high burden of microbleeds receiving combination therapy have a tendency of higher rate of intracranial hemorrhage than ischemic stroke, with potential for net harm. Further studies are needed to help optimize stroke preventive strategies in this high-risk group. This article is protected by copyright. All rights reserved

    Bottom trawl fishing footprints on the world’s continental shelves

    Get PDF
    Publication history: Accepted - 23 August 2018; Published online - 8 October 2018.Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from <10% of seabed area in Australian and New Zealand waters, the Aleutian Islands, East Bering Sea, South Chile, and Gulf of Alaska to >50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when highresolution spatial data are unavailable. If SAR was ≤0.1, as in 8 of 24 regions, therewas >95% probability that >90%of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≤0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing.Funding for meetings of the study group and salary support for R.O.A. were provided by the following: David and Lucile Packard Foundation; the Walton Family Foundation; the Alaska Seafood Cooperative; American Seafoods Group US; Blumar Seafoods Denmark; Clearwater Seafoods Inc.; Espersen Group; Glacier Fish Company LLC US; Gortons Seafood; Independent Fisheries Limited N.Z.; Nippon Suisan (USA), Inc.; Pesca Chile S.A.; Pacific Andes International Holdings, Ltd.; San Arawa, S.A.; Sanford Ltd. N.Z.; Sealord Group Ltd. N.Z.; South African Trawling Association; Trident Seafoods; and the Food and Agriculture Organisation of the United Nations. Additional funding to individual authors was provided by European Union Project BENTHIS EU-FP7 312088 (to A.D.R., O.R.E., F.B., N.T.H., L.B.-M., R.C., H.O.F., H.G., J.G.H., P.J., S.K., M.L., G.G.-M., N.P., P.E.P., T.R., A.S., B.V., and M.J.K.); the Instituto Português do Mar e da Atmosfera, Portugal (C.S.); the International Council for the Exploration of the Sea Science Fund (R.O.A. and K.M.H.); the Commonwealth Scientific and Industrial Research Organisation (C.R.P. and T.M.); the National Oceanic and Atmospheric Administration (R.A.M.); New Zealand Ministry for Primary Industries Projects BEN2012/01 and DAE2010/ 04D (to S.J.B. and R.F.); the Institute for Marine and Antarctic Studies, University of Tasmania and the Department of Primary Industries, Parks, Water and Environment, Tasmania, Australia (J.M.S.); and UK Department of Environment, Food and Rural Affairs Project MF1225 (to S.J.)
    corecore