65 research outputs found
Sample size considerations for trials using cerebral white matter hyperintensity progression as an intermediate outcome at 1 year after mild stroke: Results of a prospective cohort study
Background: White matter hyperintensities (WMHs) are commonly seen on in brain imaging and are associated with stroke and cognitive decline. Therefore, they may provide a relevant intermediate outcome in clinical trials. WMH can be measured as a volume or visually on the Fazekas scale. We investigated predictors of WMH progression and design of efficient studies using WMH volume and Fazekas score as an intermediate outcome. Methods: We prospectively recruited 264 patients with mild ischaemic stroke and measured WMH volume, Fazekas score, age and cardiovascular risk factors at baseline and 1 year. We modelled predictors of WMH burden at 1 year and used the results in sample size calculations for hypothetical randomised controlled trials with different analysis plans and lengths of follow-up. Results: Follow-up WMH volume was predicted by baseline WMH: a 0.73-ml (95% CI 0.65-0.80, p < 0.0001) increase per 1-ml baseline volume increment, and a 2.93-ml increase (95% CI 1.76-4.10, p < 0.0001) per point on the Fazekas scale. Using a mean difference of 1 ml in WMH volume between treatment groups, 80% power and 5% alpha, adjusting for all predictors and 2-year follow-up produced the smallest sample size (n = 642). Other study designs produced samples sizes from 2054 to 21,270. Sample size calculations using Fazekas score as an outcome with the same power and alpha, as well as an OR corresponding to a 1-ml difference, were sensitive to assumptions and ranged from 2504 to 18,886. Conclusions: Baseline WMH volume and Fazekas score predicted follow-up WMH volume. Study size was smallest using volumes and longer-term follow-up, but this must be balanced against resources required to measure volumes versus Fazekas scores, bias due to dropout and scanner drift. Samples sizes based on Fazekas scores may be best estimated with simulation studies
Integrity of normal-appearing white matter: influence of age, visible lesion burden and hypertension in patients with small vessel disease
White matter hyperintensities accumulate with age and occur in patients with stroke, but their pathogenesis is poorly understood. We measured multiple magnetic resonance imaging biomarkers of tissue integrity in normal-appearing white matter and white matter hyperintensities in patients with mild stroke, to improve understanding of white matter hyperintensities origins. We classified white matter into white matter hyperintensities and normal-appearing white matter and measured fractional anisotropy, mean diffusivity, water content (T1-relaxation time) and blood–brain barrier leakage (signal enhancement slope from dynamic contrast-enhanced magnetic resonance imaging). We studied the effects of age, white matter hyperintensities burden (Fazekas score) and vascular risk factors on each biomarker, in normal-appearing white matter and white matter hyperintensities, and performed receiver-operator characteristic curve analysis. Amongst 204 patients (34.3–90.9 years), all biomarkers differed between normal-appearing white matter and white matter hyperintensities (P < 0.001). In normal-appearing white matter and white matter hyperintensities, mean diffusivity and T1 increased with age (P < 0.001), all biomarkers varied with white matter hyperintensities burden (P < 0.001; P = 0.02 signal enhancement slope), but only signal enhancement slope increased with hypertension (P = 0.028). Fractional anisotropy showed complex age-white matter hyperintensities-tissue interactions; enhancement slope showed white matter hyperintensities-tissue interactions. Mean diffusivity distinguished white matter hyperintensities from normal-appearing white matter best at all ages. Blood–brain barrier leakage increases with hypertension and white matter hyperintensities burden at all ages in normal-appearing white matter and white matter hyperintensities, whereas water mobility and content increase as tissue damage accrues, suggesting that blood–brain barrier leakage mediates small vessel disease-related brain damage
The Brain Health Index: Towards a combined measure of neurovascular and neurodegenerative structural brain injury
Background:
A structural magnetic resonance imaging measure of combined neurovascular and neurodegenerative burden may be useful as these features often coexist in older people, stroke and dementia.
Aim:
We aimed to develop a new automated approach for quantifying visible brain injury from small vessel disease and brain atrophy in a single measure, the brain health index.
Materials and methods:
We computed brain health index in N = 288 participants using voxel-based Gaussian mixture model cluster analysis of T1, T2, T2*, and FLAIR magnetic resonance imaging. We tested brain health index against a validated total small vessel disease visual score and white matter hyperintensity volumes in two patient groups (minor stroke, N = 157; lupus, N = 51) and against measures of brain atrophy in healthy participants (N = 80) using multiple regression. We evaluated associations with Addenbrooke’s Cognitive Exam Revised in patients and with reaction time in healthy participants.
Results:
The brain health index (standard beta = 0.20–0.59, P < 0.05) was significantly and more strongly associated with Addenbrooke’s Cognitive Exam Revised, including at one year follow-up, than white matter hyperintensity volume (standard beta = 0.04–0.08, P > 0.05) and small vessel disease score (standard beta = 0.02–0.27, P > 0.05) alone in both patient groups. Further, the brain health index (standard beta = 0.57–0.59, P < 0.05) was more strongly associated with reaction time than measures of brain atrophy alone (standard beta = 0.04–0.13, P > 0.05) in healthy participants.
Conclusions:
The brain health index is a new image analysis approach that may usefully capture combined visible brain damage in large-scale studies of ageing, neurovascular and neurodegenerative disease
Development of a UK core dataset for geriatric medicine research: : a position statement and results from a Delphi consensus process
Funding AS and MW are funded by the Newcastle National Institute for Health (NIHR) Biomedical Research Centre, which also funded the initial meeting of academic clinicians in geriatric medicine during the Delphi process. The views expressed in this article are those of the authors and not necessarily those of the NIHR, the NHS, or the Department of Health. Acknowledgements The authors acknowledge the contributions of members of the UK Geriatric Medicine Core Dataset Extended Working Group.Peer reviewedPublisher PD
The relation between total cerebral small vessel disease burden and gait impairment in patients with minor stroke
Acknowledgements We thank the patients and their families, and the staff of the Brain Research Imaging Centre, Edinburgh, where MRI scanning was performed. Funding The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The Mild Stroke Study-2 follow up study at three years was funded by Chest Heart Stroke Scotland. The original MSS-2 study was funded by the Wellcome Trust (ref. 088134/Z/09/A) and Row Fogo Charitable Trust. The imaging was performed at the Brain Research Imaging Centre Edinburgh, which is supported by the SINAPSE collaboration and the Chief Scientist Office of the Scottish Government (http://www.bric.ed.ac.uk/). The work was supported by European Union Horizon 2020 (EU H2020), PHC03-15, project No 666881, ’SVDs@Target’, and the Fondation Leducq Transatlantic Network of Excellence for Study of Perivascular Spaces in Small Vessel Disease, ref no. 16 CVD 05. The work reflects the views of the authors and not of the funders. CMJL was supported by the Dutch Alzheimer Foundation and VC holds a NHS Research Scotland Fellowship. The work was performed in the Edinburgh Dementia Research Centre in the UK DementiaResearch InitiativePeer reviewedPublisher PD
Clinical associations and prognostic value of MRI-visible perivascular spaces in patients with ischemic stroke or TIA: a pooled analysis
BACKGROUND AND OBJECTIVES: Visible perivascular spaces are an MRI marker of cerebral small vessel disease and might predict future stroke. However, results from existing studies vary. We aimed to clarify this through a large collaborative multicenter analysis. METHODS: We pooled individual patient data from a consortium of prospective cohort studies. Participants had recent ischemic stroke or transient ischemic attack (TIA), underwent baseline MRI, and were followed up for ischemic stroke and symptomatic intracranial hemorrhage (ICH). Perivascular spaces in the basal ganglia (BGPVS) and perivascular spaces in the centrum semiovale (CSOPVS) were rated locally using a validated visual scale. We investigated clinical and radiologic associations cross-sectionally using multinomial logistic regression and prospective associations with ischemic stroke and ICH using Cox regression. RESULTS: We included 7,778 participants (mean age 70.6 years; 42.7% female) from 16 studies, followed up for a median of 1.44 years. Eighty ICH and 424 ischemic strokes occurred. BGPVS were associated with increasing age, hypertension, previous ischemic stroke, previous ICH, lacunes, cerebral microbleeds, and white matter hyperintensities. CSOPVS showed consistently weaker associations. Prospectively, after adjusting for potential confounders including cerebral microbleeds, increasing BGPVS burden was independently associated with future ischemic stroke (versus 0-10 BGPVS, 11-20 BGPVS: HR 1.19, 95% CI 0.93-1.53; 21+ BGPVS: HR 1.50, 95% CI 1.10-2.06; = 0.040). Higher BGPVS burden was associated with increased ICH risk in univariable analysis, but not in adjusted analyses. CSOPVS were not significantly associated with either outcome. DISCUSSION: In patients with ischemic stroke or TIA, increasing BGPVS burden is associated with more severe cerebral small vessel disease and higher ischemic stroke risk. Neither BGPVS nor CSOPVS were independently associated with future ICH
Increased risk of recurrent stroke in patients with impaired kidney function: results of a pooled analysis of individual patient data from the MICON international collaboration
BACKGROUND: Patients with chronic kidney disease are at increased risk of stroke and frequently have cerebral microbleeds. Whether such patients also encounter an increased risk of recurrent stroke has not been firmly established. We aimed to determine whether impaired kidney function is associated with the risk of recurrent stroke, and microbleed presence, distribution and severity. METHODS: We used pooled data from the Microbleeds International Collaborate Network to investigate associations of impaired kidney function, defined as estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2. Our primary outcome was a composite of recurrent ischaemic stroke (IS) and intracranial haemorrhage (ICrH). Secondary outcomes included: (1) individual components of the primary outcome; (2) modification of the primary outcome by microbleed presence or anticoagulant use and (3) microbleed presence, distribution and severity. RESULTS: 11 175 patients (mean age 70.7±12.6, 42% female) were included, of which 2815 (25.2%) had impaired kidney function. Compared with eGFR ≥60, eGFR <60 was associated with a higher risk of the primary outcome (adjusted HR, aHR 1.33 (95% CI 1.14 to 1.56), p<0.001) and higher rates of the recurrent IS (aHR 1.33 (95% CI 1.12 to 1.58)). Reduced eGFR was not associated with ICrH risk (aHR 1.07 (95% CI 0.70 to 1.60)). eGFR was also associated with microbleed presence (adjusted OR, aOR 1.14 (95% CI 1.03 to 1.26)) and severity (aOR 1.17 (95% CI 1.06 to 1.29)). Compared with having no microbleeds, eGFR was lower in those with strictly lobar microbleeds (adjusted mean difference (aMD) -2.10 mL/min/1.73 cm2 (95% CI -3.39 to -0.81)) and mixed microbleeds (aMD -2.42 (95% CI -3.70 to -1.15)), but not strictly deep microbleeds (aMD -0.67 (95% CI -1.85 to 0.51)). CONCLUSIONS: In patients with IS or transient ischaemic attack, impaired kidney function was associated with a higher risk of recurrent stroke and higher microbleeds burden, compared with those with normal kidney function. Further research is needed to investigate potential additional measures for secondary prevention in this high-risk group
Antibiotic-induced disturbances of the gut microbiota result in accelerated breast tumor growth
The gut microbiota's function in regulating health has seen it linked to disease progression in several cancers. However, there is limited research detailing its influence in breast cancer (BrCa). This study found that antibiotic-induced perturbation of the gut microbiota significantly increases tumor progression in multiple BrCa mouse models. Metagenomics highlights the common loss of several bacterial species following antibiotic administration. One such bacteria, Faecalibaculum rodentium, rescued this increased tumor growth. Single-cell transcriptomics identified an increased number of cells with a stromal signature in tumors, and subsequent histology revealed an increased abundance of mast cells in the tumor stromal regions. We show that administration of a mast cell stabilizer, cromolyn, rescues increased tumor growth in antibiotic treated animals but has no influence on tumors from control cohorts. These findings highlight that BrCa-microbiota interactions are different from other cancers studied to date and suggest new research avenues for therapy development
Impact of Cerebral Microbleeds in Stroke Patients with Atrial Fibrillation
OBJECTIVES: Cerebral microbleeds are associated with the risks of ischemic stroke and intracranial hemorrhage, causing clinical dilemmas for antithrombotic treatment decisions. We aimed to evaluate the risks of intracranial hemorrhage and ischemic stroke associated with microbleeds in patients with atrial fibrillation treated with Vitamin K antagonists, direct oral anticoagulants, antiplatelets, and combination therapy (i.e. concurrent oral anticoagulant and antiplatelet) METHODS: We included patients with documented atrial fibrillation from the pooled individual patient data analysis by the Microbleeds International Collaborative Network. Risks of subsequent intracranial hemorrhage and ischemic stroke were compared between patients with and without microbleeds, stratified by antithrombotic use. RESULTS: A total of 7,839 patients were included. The presence of microbleeds was associated with an increased relative risk of intracranial hemorrhage (aHR 2.74, 95% confidence interval 1.76 - 4.26) and ischemic stroke (aHR 1.29, 95% confidence interval 1.04 - 1.59). For the entire cohort, the absolute incidence of ischemic stroke was higher than intracranial hemorrhage regardless of microbleeds burden. However, for the subgroup of patients taking combination of anticoagulant and antiplatelet therapy, the absolute risk of intracranial hemorrhage exceeded that of ischemic stroke in those with 2-4 microbleeds (25 vs 12 per 1,000 patient-years) and ≥11 microbleeds (94 vs 48 per 1,000 patient-years). INTERPRETATION: Patients with atrial fibrillation and high burden of microbleeds receiving combination therapy have a tendency of higher rate of intracranial hemorrhage than ischemic stroke, with potential for net harm. Further studies are needed to help optimize stroke preventive strategies in this high-risk group. This article is protected by copyright. All rights reserved
- …
