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The brain health index: Towards a
combined measure of neurovascular and
neurodegenerative structural brain injury

David Alexander Dickie1,2,3 , Maria del C Valdés Hernández2,3,4,
Stephen D Makin1,3, Julie Staals5, Stewart J Wiseman2,3,4 ,
Mark E Bastin2,3 and Joanna M Wardlaw2,3,4

Abstract

Background: A structural magnetic resonance imaging measure of combined neurovascular and neurodegenerative

burden may be useful as these features often coexist in older people, stroke and dementia.

Aim: We aimed to develop a new automated approach for quantifying visible brain injury from small vessel disease and

brain atrophy in a single measure, the brain health index.

Materials and methods: We computed brain health index in N¼ 288 participants using voxel-based Gaussian mixture

model cluster analysis of T1, T2, T2*, and FLAIR magnetic resonance imaging. We tested brain health index against a

validated total small vessel disease visual score and white matter hyperintensity volumes in two patient groups (minor

stroke, N¼ 157; lupus, N¼ 51) and against measures of brain atrophy in healthy participants (N¼ 80) using multiple

regression. We evaluated associations with Addenbrooke’s Cognitive Exam Revised in patients and with reaction time in

healthy participants.

Results: The brain health index (standard beta¼ 0.20–0.59, P< 0.05) was significantly and more strongly associated with

Addenbrooke’s Cognitive Exam Revised, including at one year follow-up, than white matter hyperintensity volume

(standard beta¼ 0.04–0.08, P> 0.05) and small vessel disease score (standard beta¼ 0.02–0.27, P> 0.05) alone in both

patient groups. Further, the brain health index (standard beta¼ 0.57–0.59, P< 0.05) was more strongly associated with

reaction time than measures of brain atrophy alone (standard beta¼ 0.04–0.13, P> 0.05) in healthy participants.

Conclusions: The brain health index is a new image analysis approach that may usefully capture combined visible brain

damage in large-scale studies of ageing, neurovascular and neurodegenerative disease.
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Introduction

Cerebral small vessel disease (SVD) features and brain
tissue atrophy both increase with age, are often present
together, and are risk factors for stroke and demen-
tia.1–3 The importance of vascular disease on accelerat-
ing neurodegenerative pathologies and cognitive
decline has recently been recognized,3,4 emphasizing
the need for an inclusive approach to assessing
common brain disorders of ageing.

A clinical total SVD score has recently been pro-
posed and correlated with vascular risk factors and cog-
nition in mild stroke and community-dwelling older
adults >70 years.5,6 This score has a maximum level
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of four and does not include tissue atrophy, as atrophy
did not improve the score’s performance in some stu-
dies.5,6 Yet brain atrophy is a major risk factor for, and
correlate of, functional and cognitive decline.2,7

Many automated tissue quantification tools have
been developed to assess differences and changes in
brain volumes across age and disease, e.g. FMRIB
software library (FSL), statistical parametric mapping
(SPM), and atropos.8–10 However, these tools often
misclassify ischaemic stroke lesions as normal appear-
ing grey matter (GM), white matter hyperintensities
(WMH), or cerebrospinal fluid (CSF).11 This means
that existing tissue quantification tools may not be
suitable for older participants or stroke patients
who may have ischaemic stroke lesions, or require
manual editing to correct GM, WMH, and CSF
volumes.12,13

Aims and hypothesis

In the present work, we aimed to extend the promise
shown by a holistic clinical measure of vascular brain
damage5 and develop a holistic image processing meas-
ure of atrophy and SVD that can be applied without
manual identification of ischaemic lesions. We thus
describe the development of an automated composite
measure of whole brain tissue atrophy, ischaemia, and
SVD burden: the ‘‘Brain Health Index’’ (BHI). We
hypothesize that BHI will perform well compared
with existing clinical and quantitative measures of atro-
phy and SVD.

Material and methods

Approvals and patient consents

The contributing studies were approved by Lothian
Research Ethics (09/81101/54 and 05/S1104/45) and
South-East Scotland Research Ethics (14/SS/0003)
and were conducted according to the Declaration of
Helsinki. All participants provided written informed
consent.

Mild stroke patients

One hundred and fifty-seven patients were recruited
consecutively as part of a wider study of N¼ 264
patients who presented to hospital with mild
(National Institutes of Neurological Disorders and
Stroke (NIHSS) scale <7) or non-disabling lacunar/
cortical ischemic stroke as diagnosed by an expert
stroke physician.11 This subset of N¼ 157 patients
was used because it provided full brain MRI, vascular
risk factors, and cognitive test data at baseline and one
year, i.e. those who returned for follow-up.

Full recruitment and assessment procedures for these
subjects were described previously.11

Systemic lupus erythematosus patients

Fifty-one patients with SLE, representing a range of
disease severity and duration, were prospectively
recruited as consecutively as possible from regional spe-
cialist clinics between April 2014 and December 2014.
SLE was diagnosed by expert rheumatologists accord-
ing to the American College of Rheumatology 1997;
this diagnosis and full patient recruitment and assess-
ment procedures were described previously.14,15

Healthy participants

Eighty clinically normal, healthy working age (25–65
years) volunteers were recruited (without financial or
other incentive) from staff at The University of
Edinburgh, the Western General Hospital and Royal
Infirmary, Edinburgh, Scotland by advertisements.
Health status was assessed using medical questionnaires
and all structural MRI scans were reported by a con-
sultant neuroradiologist as described previously.16

Brain MRI acquisition

Brain MRI acquisition parameters were broadly the
same across all participant groups and have been
described in detail previously.11,14,16,17

The brain health index

The BHI is computed automatically in a relatively
simple manner using Gaussian mixture model clustering
of four co-registered, routinely collected structural brain
MRI sequences: T1, T2, T2*, and FLAIR. Affine 12
point registration was used to align within-subject
images to their native T2 space.18 Intracranial volume
(ICV) masks were estimated with T2* using the brain
extraction tool (BET).19 The contrast between CSF
(bright) and skull (dark) on T2* provides optimal BET
results13; however, this can leave a dark rim of skull
around the brain. We addressed this by converting the
T2* image to z-scores20 and thresholding at�1 standard
deviation (SD) to remove the skull rim. ICV masks were
visually inspected and manually edited if necessary.

BHI uses Gaussian mixture model cluster analysis to
group intracranial voxels into two classes based on their
intensities in each of the four sequences: (1) probably
normal brain tissue; and (2) probably abnormal tissue
or cerebrospinal fluid (Figure 1). The four sequences are
overlaid within each subject to give each point within the
intracranial space (voxel) four values (one from each
sequence) that contribute to the cluster analysis.
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BHI – using the expectation-maximization (EM) algo-
rithm – computes posterior probabilities of belonging to
a particular cluster (‘‘healthy’’ versus ‘‘abnormal’’/CSF)
based on the four intensities (one from each sequence)
present in each voxel. Using the initially calculated pos-
terior probabilities as weights, the algorithm estimates
the cluster means, covariance matrices, and mixing pro-
portions by applying maximum likelihood until conver-
gence. Convergence is reached when the distance
between each voxel and the multi-variate cluster mean
is minimized. For example, hyperintense (e.g. ventricles,
sulci, WMH, focal infarcts, lacunes, PVS) and hypoin-
tense (e.g. microbleed) voxels on T2- and T2*-based
sequences, and hypointense voxels on T1-based
sequences (e.g. ventricles, sulci, lacunes) are classed
into a single cluster of probable ‘‘pathological’’ or

cerebrospinal fluid voxels within each subject. The
remaining voxels constitute probable ‘‘healthy’’ brain
tissue within each subject, i.e. isointense voxels that
likely do not represent features of SVD or cerebrospinal
fluid (Figure 1).

The initial result of BHI is a 3D mask image of the
intracranial contents where each voxel contains a prob-
ability of containing ‘‘healthy’’ brain tissue; the final
BHI measure for each subject is the mean value of
these probabilities where values closest to one (100%)
are ‘‘healthiest.’’

SVD scores and brain tissue volumes

Brain MRI visual rating was performed in stroke by
trained neuroradiologists and by image analysts

Figure 1. Flow diagram of the brain health index (BHI) method. Blue areas in the ‘‘healthy’’ tissue masks (middle bottom panel)

indicate probable normal/ ‘‘healthy’’ appearing tissue, areas without overlay colour are more likely ‘‘pathological’’ tissue or

cerebrospinal fluid. BHI masks are from three separate subjects showing exclusion of cortical stroke (Cort Strk – left mask), white

matter hyperintensities (WMH) and atrophy (WMHþatr – middle mask), and a lacune/ WMH (Lac/WMH – right mask) from

‘‘healthy tissue’’. FLAIR/ FL: fluid attenuated inversion recovery; sbj: subject; V: voxel in BHI mask; n: number of voxels in BHI

mask; i: voxel at a given location x,y,z in BHI mask.
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supervised by a consultant neuroradiologist in SLE
patients according to previously published meth-
ods.7,21–25 Inter-rater differences were limited.11 We cal-
culated the total SVD score using a recently validated
and published method.5,6 WMH were quantified semi-
automatically and normalized by ICV in stroke and
SLE patients using a previously described and validated
method consistent with STRIVE guidelines.17,26

Normal appearing grey, white, and whole brain tissue
volumes were quantified in healthy participants using
an optimized automated segmentation method.27

Vascular risk factors

Vascular risk factors were assessed in stroke and
SLE patients, including hypertension, hyperlipid-
aemia, diabetes, smoking, and systolic and diastolic
blood pressure measured at the same time point as
brain MRI. Healthy participants did not have any
history of vascular disorders and did not provide
measurements.

Cognitive testing

We administered the Addenbrooke’s Cognitive
Examination Revised (ACER),28 a test of cognitive
impairment often used in stroke patients,29 at the
same time point as brain MRI in SLE patients and at
one month and one year post-stroke in stroke patients.
We measured four choice reaction time, a sensitive
measure of cognitive ageing,30 in healthy participants.

Statistical analyses

All statistical analyses were performed using Matrix
Laboratory (MATLAB) Statistics and Machine
Learning Toolbox R2014a (� 1994–2014 The
MathWorks, Inc.). We used multiple regression with
standardized beta (a commonly used technique where
data with varying units, i.e. clinical scores versus tissue
volumes, are converted to z-scores20) to determine the
imaging metric with the strongest association with cog-
nitive performance, identifying the metric with the lar-
gest standardized beta and the lowest P-value as having
the highest relative importance among competing
metrics.31

We specified ACER as the dependent variable and
included WMH volume, total SVD score, and BHI as
predictor variables in patient groups. We specified reac-
tion time as the dependent variable and included GM,
WM, and BHI as predictor variables in healthy partici-
pants. In a separate model, we again specified reaction
time as the dependent variable and included whole
brain volume (i.e. roughly grayþwhite matter
volume) and BHI as predictor variables in healthy

participants. Finally, we repeated all models while
adjusting for age.

Results

Participants

Full characteristics of all patients and healthy partici-
pants are provided in Table 1. BHI took approximately
2min to run per participant on a 2.60GHz Intel Core
i5-4310U CPU with 16 GB RAM. There were no total
failures albeit some subjects had slight tissue misclassi-
fication around the grey/CSF boundary on close
inspection (Figure 1).

Correlation between BHI and total SVD
clinical score

There was a moderate negative correlation between the
BHI and total SVD score (Spearman rho¼�0.38,
P< 0.001). A one unit increase in total SVD score
was associated with a �0.02 (2%) reduction in BHI.

BHI in mild stroke and SLE patients

The BHI was significantly and more strongly
associated with ACER than total SVD score and
WMH volume in mild stroke patients (at both one
month and one year post stroke) and in SLE patients
(Table 2).

BHI in healthy participants

The BHI was significantly and more strongly associated
with reaction time than was GM, WM, and whole brain
tissue volumes in healthy participants (Table 3).

Age adjusted analyses

Associations between BHI and ACER remained statis-
tically significant in stroke patients (beta¼ 0.27,
P¼ 0.003) but not in SLE patients (beta¼ 0.37,
P¼ 0.09) after adjusting for age. The statistically sig-
nificant association between reaction time and BHI
remained after adjusting for age in healthy participants
(beta¼�0.32, P¼ 0.04).

Discussion

The BHI is a new automated approach for determining
the combined effects of whole brain tissue atrophy and
vascular disease in a single measure. It mirrored a
recently validated combined SVD clinical rating score
but was more strongly correlated with cognitive per-
formance in three independent samples representative
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Table 1. Patient and healthy participant characteristics

Parameter Mild stroke (N¼ 157) SLE (N¼ 51) Healthy participants (N¼ 80)

Age 65� 11 years 49� 14 years 43� 11 years

Gender M¼ 93 F¼ 64 M¼ 4 F¼ 47 M¼ 40 F¼ 40

Hypertension N¼ 127 (73%) N¼ 11 (22%) –

Hyperlipidaemia N¼ 104 (60%) N¼ 3 (6%) –

Diabetes N¼ 18 (10%) N¼ 0 (0%) –

Current smoking N¼ 58 (34%) N¼ 6 (12%) –

Systolic BP 145� 25 mmHg 126� 20 mmHg –

Diastolic BP 82� 13 mmHg 77� 17 mmHg –

ACER 89� 8 90� 7 –

Reaction time – – 0.51� 0.06 s

Total SVD score 1, IQR¼ 2 1, IQR¼ 1 –

WMH volume 1.67� 1.70% ICV 0.28� 0.56% ICV –

Grey matter volume – – 39.5� 1.5% ICV

White matter volume – – 33.3� 0.9% ICV

Whole brain volume – – 0.73� 1.5% ICV

BHI 0.62� 0.07 0.72� 0.05 0.71� 0.03

Note: – data unavailable (subjects with medical conditions were excluded).

SLE: systemic lupus erythematosus; BP: blood pressure; ACER: Addenbrooke’s Cognitive Exam Revised; SVD: small vessel disease; IQR: interquartile

range; ICV: intracranial volume; WMH: white matter hyperintensity; BHI: brain health index.

Table 2. Multiple regression models comparing BHI, SVD score, and WMH volume as independent variables with ACER as

dependent variable

Patient group Time pointa Imaging metric Standard beta SE P

Mild stroke patients One month BHI 0.272 0.094 0.005*

Total SVD score �0.020 0.093 0.830

WMH volume 0.064 0.088 0.466

Mild stroke patients One year BHI 0.200 0.092 0.030*

Total SVD score �0.075 0.091 0.411

WMH volume 0.080 0.084 0.344

SLE patients Same as MRI BHI 0.356 0.172 0.045*

Total SVD score 0.268 0.198 0.182

WMH volume �0.037 0.187 0.844

aTime point for mild stroke patients is time after stroke; *P< 0.05.

SE: standard error; BHI: brain health index; SVD: small vessel disease; WMH: white matter hyperintensities; SLE: systemic lupus erythematosus.
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of a wide range of brain damage and clinical
presentations.

The BHI compares favourably with existing qualita-
tive and quantitative image analysis methods because:
(1) it requires very limited labour time and manual
intervention compared to WMH volumes which can
take up to 1 h per subject11; (2) the BHI is on a continu-
ous scale versus clinical scales which often lack granu-
larity; (3) the BHI assesses whole brain rather than
tissue- or lesion-specific damage31; and (4) the BHI
was significantly and more strongly associated with cog-
nitive function compared with the commonly used ima-
ging metrics assessed here. The stronger associations
with cognition may reflect the inclusion of brain atro-
phy, a marker of tissue loss secondary to vascular dis-
ease and to neurodegeneration, as well as the vascular
lesions. For example, a participant with a large burden
of WMH but little atrophy would limit correlations in
atrophy only assessments, whereas a participant with
little WMH and much atrophy would limit correlations
in WMH only assessments. WMH and atrophy have
been shown to correlate with cognition individually,32

and combing them into a single measure may thus
strengthen associations with cognition. Given the
potential use of BHI, we will make the MATLAB exe-
cutable code publicly available via our website (https://
datashare.is.ed.ac.uk/) following wider compatibility
testing on other operating systems and hardware.

Despite these strengths, there are limitations in this
work. The BHI requires T1, T2, T2*, and FLAIR MRI
to capture the full range of SVD and atrophy features
and, in its current implementation, would likely provide
unstable results if any of these four sequences were
missing. However, all four of these sequences are com-
monly collected in SVD, ageing, and neurodegenerative
studies and indeed are considered as standard in
STRIVE guidelines.11,26,31,33 We used two Gaussians
to cluster voxels as these provided the most stable
results across subjects with a wide range of SVD

features. There were some misclassifications of normal
tissue as ‘‘unhealthy’’ at the grey/CSF boundary in BHI
(Figure 1). Further work is required to determine
dependency on image acquisition factors such as slice
thickness or gap, or whether additional clusters, e.g.
grades of isointense and hyperintense voxels, can be
stabilized to improve classifications at tissue bound-
aries. Although we had a rich diversity of acquired
data in three independent cohorts, the sample sizes
(total N¼ 288) are relatively small compared to
others.33,34 Stroke patients included here were those
who returned for one-year follow-up. These patients
are likely healthier than those who did not return and
this limits the generalization of our results to all ischae-
mic strokes. However, this is a common problem in
observational cohort studies35 and there are limited
solutions to address this problem. BHI was not signifi-
cantly associated with ACER in SLE patients when
adjusting for age; however, statistically significant asso-
ciations remained in stroke patients and healthy partici-
pants. The small sample size in SLE patients may explain
this attenuation (Pwas close to significance at 0.09). The
assessment of BHI was mainly cross-sectional and fur-
ther work is required in longitudinal imaging studies to
determine the predictive utility of BHI.

Notwithstanding these limitations, we present the
first results of a new, automated measure of whole
brain damage in cerebrovascular disease. The BHI cor-
related more strongly with cognitive deficits commonly
seen in stroke and SVD than a validated clinical scoring
method and validated tissue volume processing meth-
ods. The BHI may therefore be a useful marker of brain
damage in large-scale studies of cerebrovascular disease
and should be tested more widely.
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Table 3. Multiple regression models comparing BHI, grey matter, white matter, and whole brain volumes as independent variables

with reaction time as dependent variable

Model Imaging metric Standard beta SE P

Individual tissues versus BHI BHI �0.572 0.192 0.004*

Grey matter volume �0.041 0.166 0.805

White matter volume �0.126 0.143 0.380

Whole brain tissue versus BHI BHI �0.589 0.191 0.003*

Whole brain volume �0.062 0.166 0.711

*P< 0.05.

SE: standard error; BHI: brain health index.
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