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Abstract 

White matter hyperintensities (WMH) accumulate with age and occur in patients with stroke, but their 

pathogenesis is poorly understood. We measured multiple MRI biomarkers of tissue integrity in 

normal-appearing white matter (NAWM) and WMH in patients with mild stroke, to improve 

understanding of WMH origins.   

We classified white matter into WMH and NAWM and measured fractional anisotropy (FA), mean 

diffusivity (MD), water content (T1-relaxation time) and blood-brain barrier (BBB) leakage (signal 

enhancement slope from dynamic contrast-enhanced MRI). We studied the effects of age, WMH 

burden (Fazekas score) and vascular risk factors on each biomarker, in NAWM and WMH, and 

performed receiver-operator characteristic curve analysis. 

Amongst 204 patients (34.3-90.9 years), all biomarkers differed between NAWM and WMH (P<0.001). 

In NAWM and WMH, MD and T1 increased with age (P<0.001), all biomarkers varied with WMH 

burden (P<0.001; P=0.02 signal enhancement slope), but only signal enhancement slope increased 

with hypertension (P=0.028). FA showed complex age-WMH-tissue interactions; enhancement slope 

showed WMH-tissue interactions. MD distinguished WMH from NAWM best at all ages. 

BBB leakage increases with hypertension and WMH burden at all ages in NAWM and WMH, whereas 

water mobility and content increase as tissue damage accrues, suggesting that BBB leakage 

mediates SVD-related brain damage. 

Keywords 

MRI; cerebrovascular disease; diffusion tensor imaging; blood-brain barrier; ageing 
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Introduction  

White matter hyperintensities (WMH) of presumed vascular origin are commonly seen on CT or MRI 

brain images of patients presenting with stroke, even at young age. They predict increased risk of 

stroke and dementia.1 They are also commonly found in otherwise healthy older people,2 although are 

more severe in correspondingly-aged patients with stroke,3 are associated with cognitive decline,4 gait 

and balance problems.5 

While increasing age is an important risk factor for WMH,1 they are also related to vascular risk 

factors, particularly hypertension,6 although common vascular risk factors together only explain a small 

proportion of variance in WMH.7 WMH have been linked to cerebral hypoperfusion,8 or compromised 

blood-brain barrier (BBB) integrity,9-11 but their underlying aetiology remains unclear.12 More 

information on the sequence of tissue alterations leading to WMH is crucial for understanding WMH 

pathogenesis and for targeting therapeutic interventions. 

MRI parameters such as diffusion fractional anisotropy (FA) and mean diffusivity (MD),13 or 

longitudinal relaxation time (T1),14 can demonstrate in-vivo alterations in axonal microstructure or 

interstitial fluid in WMH and in the surrounding normal appearing white matter (NAWM).8;15-18 In a 

previous study of healthy older individuals all aged about 73, the level of deterioration of NAWM was 

strongly associated with WMH  severity, with MD and T1 increasing and FA and the magnetisation 

transfer ratio (MRI marker of myelination) decreasing in NAWM as WMH burden increased.18 Thus the 

white matter damage spreads beyond the area of visible WMH suggesting that the same pathogenic 

steps are responsible for both the lesions and the subtle ‘pre-visible’ alterations in the surrounding 

NAWM.  

The neuropathology of WMH has focused on neuronal loss, demyelination, axonal loss and gliosis19;20 

but pathological studies mainly (and inevitably) describe late-stage disease. Some imaging studies 

focus on alterations in FA consistent with axonal loss,21 but this contrasts with our finding of altered 

water mobility (MD) in NAWM in vivo, even in subjects with few WMH, without alterations in other 

parameters15;18 and independent of age, suggesting that MD was more sensitive to WMH-related 

tissue microstructure pathology than other biomarkers22 and that increased interstitial fluid may be an 

early feature of white matter vascular pathology. BBB leakage could in part explain the increase in 

MD, with the changes in other parameters occurring as perivascular oedema-related damage 

accrues,23 consistent with the hypothesis that chronically and subtly compromised BBB, as occurs with 

advancing age,9 could initiate the alterations observed in the imaging biomarkers.12 However, more 

imaging studies of WMH at different stages and severities of disease are required to resolve 

discrepancies about whether FA or MD are sensitive disease markers.  

In the current study, we assessed alterations in-vivo in MRI biomarkers of integrity in WMH and 

NAWM in relation to WMH burden, age, and vascular risk factors to differentiate the effects of WMH 

disease from those related to ageing and improve understanding of the processes behind the genesis 

of WMH.  Since WMH are more commonly seen in patients with stroke, we studied patients with 
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recent mild (ie likely to be non-disabling) stroke, to include a wide age range of participants with overt 

cerebrovascular disease.  We used a combination of MRI quantitative parameters and, particularly, we 

used dynamic contrast-enhanced (DCE-) MRI, where a series of T1-weighted images are acquired 

dynamically after injection of a gadolinium contrast agent, enabling measurement of potential markers 

of BBB integrity.24-26 The aim of the current study is to expand previous research on the causation of 

WMH, by assessing together simultaneously the effects of age, WMH burden and vascular risk factors 

on NAWM in vivo with multiple MRI biomarkers, including a marker of BBB leakage. We hypothesise 

that BBB leakage could be a major contributor to brain tissue damage underlying WMH formation, 

while demyelination and axonal loss are likely to occur later and secondary to damage from interstitial 

fluid shifts following subtle, presumably chronic, BBB disruption, and therefore are more apparent in 

severe disease. 

 

Materials and Methods 

Participants 

We prospectively recruited consecutive patients with first clinically evident mild (ie likely to be non-

disabling) lacunar or cortical ischaemic stroke, including those with diabetes, hypertension and other 

vascular risk factors. We excluded patients with unstable hypertension or diabetes requiring urgent 

medical management, other neurological disorders and major medical conditions. We excluded 

patients unable to give consent, with contraindications to MRI or intravenous gadolinium contrast 

agents, who had haemorrhagic stroke or those whose symptoms resolved within 24 hours (i.e. 

transient ischaemic attack). The study was approved by the local research ethics committee and all 

individual patients gave written informed consent. 

Clinical measurements 

On presentation, an experienced stroke physician obtained the clinical details of the patient and 

neurological deficit, assigned the clinical stroke syndrome,27 and recorded age, demographic details, 

medical history of hypertension, previous stroke, previous transient ischaemic attack, ischaemic heart 

disease, peripheral vascular disease, diabetes mellitus, atrial fibrillation, hypercholesterolaemia, heart 

failure, smoking and alcohol use, and measured systolic and diastolic blood pressure (SBP and DBP, 

respectively) from the brachial artery. We defined hypertension as blood pressure of 140/90 mmHg or 

greater, consistently, on presentation, or a previous diagnosis; smokers were defined as currently 

smoking or having given up within the previous 12 months and non-smokers as having never smoked 

or having given up more than 12 months previously; pulse pressure was calculated as SBP-DBP. 

Magnetic resonance imaging 

Magnetic resonance imaging was performed at presentation with a 1.5 Tesla MRI scanner (Signa 

HDxt, General Electric, Milwaukee, WI) using an 8-channel phased-array head coil. Diagnostic MRI at 
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presentation included axial T2-weighted (T2W; TR/TE=6000/90 ms, 24×24 cm field of view (FoV), 

384×384 propeller acquisition, 1.5 averages, 28 × 5 mm slices, 1 mm slice gap), axial fluid-attenuated 

inversion recovery  (FLAIR; TR/TE/TI=9000/153/2200, 24×24 cm FoV, 384 (anterior-posterior)×224 

acquisition matrix, 28 × 5 mm slices, 1 mm slice gap), gradient echo (GRE; TR/TE=800/15 ms, 20° flip 

angle, 24 (anterior-posterior)×18 cm FoV, 384×168 acquisition matrix, 2 averages, 28 × 5 mm slices, 1 

mm slice gap), sagittal 3D T1-weighted  (T1W; inversion recovery-prepared fast spoiled gradient echo 

(FSPGR) TR/TE/TI=7.3/2.9/500 ms, 8° flip angle, 330 (superior-inferior)×214.5 cm FoV, 256×146 

acquisition matrix, 100 × 1.8 mm slices) and diffusion tensor (DT-) MRI (single-shot echo-planar 

imaging with 30 diffusion directions (b=1000 s/mm2) and two b=0 acquisitions, TR/TE=7700/82 ms, 

24×24 cm FoV, 128×128 acquisition matrix, 28 × 5 mm slices, 1 mm slice gap).  

DCE-MRI was performed between one and up to three months after stroke, the delay being to avoid 

acute effects of the index stroke on local BBB leakage. It consisted of 20 consecutive 3D T1W FSPGR 

acquisitions (TR/TE=8.2/3.1ms, 12° flip angle, 24×24 cm FoV, 256 (anterior-posterior)×192 acquisition 

matrix, 42×4 mm slices, 73s acquisition time) with a total acquisition time of approximately 24 minutes, 

initiated simultaneously with an intravenous bolus injection of 0.1 mmol/kg gadoterate meglumine (Gd-

DOTA, Dotarem, Guerbet, France). Two additional FSPGR acquisitions were obtained prior to 

contrast administration with flip angles of 2° and 12° respectively to calculate the pre-contrast 

longitudinal relaxation time T1. 

Image Processing  

MR images were converted from DICOM to Analyze 7.5 format. Structural and DCE-MRI images were 

aligned to the pre-contrast T1W image using rigid-body registration (FSL FLIRT; 

fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/).28 

DT-MRI images were processed using in-house software, which removed bulk motion and eddy 

current induced distortions using FSL FLIRT and generated a directionally averaged diffusion 

weighted image, MD and FA parametric images using standard methods based on multivariate linear 

regression. For each dataset non-linear registration tools from the TractoR software package 

(www.tractor-mri.org.uk/diffusion-processing)29;30 were used to obtain the transformation between the 

brain extracted structural T2W image and the b0 diffusion volume. 

T1 parametric maps were calculated using the signal intensities in the two pre-contrast images with 

flip angles 2° and 12°as previously described.31 

Signal enhancement maps (Et) were calculated voxel-by-voxel at each time point t from the co-

registered DCE-MRI data using the formula Et=(St–S0)/S0, where S0 represents the FSPGR 12 

signal.25 A marker of BBB leakage was obtained by calculating the slope of the signal enhancement 

uptake curve using linear regression on all data points between time points 4 and 20 inclusive. The 

first three points were omitted as they represent mainly blood pool, not slow tissue leak.32  
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Tissue segmentation and parameter measurements 

FLAIR and GRE images were processed using in-house software (“MCMxxxVI”)33 to generate binary 

masks of the WMH; index and any prior stroke lesions were identified by a neuroradiologist and 

excluded from the tissue masks manually by a trained image analyst, blind to all other information, 

using Analyze 11.0 (AnalyzeDirect, KS). Similarly NAWM and CSF masks were generated with 

MCMxxxVI using T1W and T2W images as previously described.33 An example of MR images and 

segmentation masks is shown in Figure 1. 

The binary tissue masks were used to extract the median T1 and signal enhancement slope in each 

tissue for each patient. The masks were then aligned to the FA and MD parametric maps using the 

non-linear transformation between the T2W and b0 volumes. To avoid partial volume averaging with 

CSF due to registration inaccuracies, the CSF mask was dilated by one voxel in each direction and 

then subtracted from the NAWM and WMH masks in the diffusion space. Masks were then 

thresholded, binarised and multiplied by the parametric diffusion maps to extract median MD and FA 

for NAWM and WMH in each patient. 

Visual scoring of white matter hyperintensities 

A qualitative assessment of WMH load was performed by an expert Neuroradiologist, who scored 

hyperintensities in the FLAIR and T2W volumes using the Fazekas scale, blind to all other 

information.34 A total score ranging from 0 to 6 was obtained by summing the periventricular and deep 

WMH Fazekas scores. WMH were rated with the Fazekas scale as it is one of the most widely used 

visual rating scales and has been in use for over two decades. Fazekas scores are also closely 

correlated with quantitative measures of WMH volumes.35 

Statistical analysis 

We used paired t-tests and Cohen’s d to assess the overall differences between the parameters 

measured in WMH and NAWM for the whole group of patients and their effect size. 

The patient population was then divided in groups by total Fazekas scores as follows: “Low”, including 

patients with a total Fazekas score of 0, 1 and 2; “Medium”, patients with a total Fazekas of 3 and 4; 

and “High”, patients with a total Fazekas of 5 and 6. 

Similarly, to enable visualisation of trends on Fazekas scores in relation to age, we divided the groups 

by approximate age quartiles as follows (age in years): “Group 1”: 30 < age ≤55; “Group 2”: 55 < age ≤ 

65; “Group 3”: 65 < age ≤ 75; and “Group 4”: 75 < age ≤ 100. 

As each patient contributed to the analysis with measures from each of two tissue types (NAWM and 

WMH), we assessed changes in MD, FA, T1 and signal enhancement slope using linear mixed 

models. A model was used for each MRI parameter (outcome value), with tissue type as a fixed effect 

and patient as a random effect. All estimates were adjusted for age (as a continuous variable), 
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Fazekas group and vascular risk factors (hypertension, smoking status and pulse pressure). Age and 

pulse pressure were standardised to avoid computational problems that can occur when the scale of 

the predictor variables are of different orders of magnitude. We assumed non-constant variance for a 

better fit of the models. This analysis was performed in SAS 9.3 (www.sas.com). 

To assess which parameter independently discriminated best between WMH and surrounding NAWM, 

and the strength of its prediction value, in each age group, we performed receiver-operator 

characteristic (ROC) curve analysis, using the manually corrected masks obtained with the 

semiautomatic method as ground truth. We assume that better discrimination between tissue types of 

a particular MRI parameter indicates a predominance of the associated microscopic process 

underlying WMH pathology. This analysis was performed using the R software environment for 

statistical computing (v. 3.1.0, R Development Core Team, 2014;36, along with the “pROC” package.  

Plots were created using R with the “ggplot2” and “epicalc” packages. In all box plots, the boxes 

represent the lower and upper quartiles and the median measurement (thick line) for each group. 

Whiskers indicate the sample minimum and maximum, whereas the represented outliers (dots) differ 

from the lower and upper quartiles by more than 1.5 times the interquartile range. 

 

Results 

Patients and demographics  

Two-hundred and sixty four patients were recruited from 10 May 2010 to 24 Dec 2012, of which 206 

returned for permeability imaging. The total number of patients with either DT-MRI or DCE-MRI data 

suitable for the current analysis was N=204; 81 Female, 123 Male; Mean Age (SD) = 66.0 (11.5), 

range (34.3-90.9) years, of whom 197 had both useable DCE-MRI and DT-MRI; two had unusable DT-

MRI due to excess patient movement, and five had unusable DCE-MRI due to various factors 

including excess patient movement, incomplete injection of contrast due to failure of the cannula, or 

patient stopping the scan before completion. 

About three quarters of patients had hypertension, a third were smokers and about half had a Fazekas 

score of 3 to 6 indicating moderate to severe confluent WMH (Table 1). 

Overall differences between NAWM and WMH 

Across the whole group of patients, MD, FA, T1 and the signal enhancement slope differed 

significantly between WMH and NAWM, before adjusting for any other variables (Table 2). The effect 

sizes were largest for MD, as confirmed in Figure 2, where we observe a larger separation between 

the values measured for the two tissues. Although there was overlap between the signal enhancement 

slope values obtained in WMH and NAWM (Figure 2), the difference was still statistically significant 

(P<0.0001).  
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Tissue type, age and Fazekas effects on MD, FA, T1 and signal enhancement slope 

To visualise the effects of age and WMH burden on MRI parameters in NAWM and WMH further, we 

divided the population into three WMH burden Fazekas score groups (0-2, 3-4, 5-6 for “low”, 

“medium”, and “high” WMH burden respectively) and the four age quartiles (30-55, 56-65, 66-75 and 

76-100), Figure 3.  For each parameter, each panel represents one age group with differently shaded 

box plots for each Fazekas group.  

MD and T1 increased in NAWM and in WMH with increasing WMH burden and age. However, the 

tissue-MR parameter associations were more complex for FA and enhancement slope, indicating 

interactions between age, WMH and tissue type. Figure 3B shows that FA in NAWM is generally 

higher in patients with lower Fazekas score and lower for those with higher Fazekas scores, at all 

ages, indicating loss of NAWM integrity with increasing WMH burden, with the differences between 

low and high Fazekas groups appearing to be larger at younger ages. However, the opposite effect is 

evident in WMH, where the FA is overall higher for higher Fazekas and lower for lower Fazekas 

scores—although the FA range is very wide particularly in the low Fazekas score groups—indicating 

an interaction between Fazekas group and tissue type for FA. Also worth noting is that the overall 

difference in FA observed between WMH and NAWM is driven by the younger groups and lower 

Fazekas scores.   

Based on these observations, we repeated the mixed models including interaction terms between 

tissue type, Fazekas group and age (as a continuous variable). To simplify interpretation and avoid 

over-fitting, only one interaction term was included per model. This analysis, using linear mixed 

models for MD, FA, T1 and signal enhancement slope as outcome variables (Table 3), confirms the 

significant difference between NAWM and WMH for all four imaging parameters after accounting for 

age, WMH burden and vascular risk factors (P<0.0001 for MD, FA, T1 and P=0.0034 for enhancement 

slope). The mixed models also show an effect of WMH burden on NAWM for the four imaging 

markers, with MD, T1 and signal enhancement slope increasing (P<0.0001, P=0.0001, P=0.0138 

respectively), and FA decreasing (P<0.0001) with higher Fazekas scores. Additionally, there was a 

significant effect of age on MD and T1, with both parameters increasing with age (both P<0.0001), 

Table 3. 

The interaction terms are most relevant for FA, where the interactions of tissue type with Fazekas 

scores and age were significant (P<0.0001), supporting the patterns in Figure 3B. There was also a 

significant interaction of tissue type with Fazekas group on the signal enhancement slope (P=0.042), 

suggesting that differences in BBB leakage between WMH and NAWM are influenced by the overall 

WMH burden in the patient’s brain, i.e. the more the WMH the greater the difference between NAWM 

and WMH. Indeed, Figure 3D shows that, for low WMH burdens, there is a trend to increasing signal 

enhancement slope with age. As the WMH burden increases, that trend remains in patients aged over 

55, but there is a striking increase in signal enhancement slope for younger patients with high WMH 
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burdens resulting in a ‘U-shaped’ relationship between age, WMH burden and signal enhancement 

slope. This ‘U-shaped’ pattern was not seen with the other MR parameters. 

Effect of vascular risk factors 

Of the vascular risk factors, only hypertension was associated with any of the MR parameters, and 

only with the slope of the post-contrast enhancement curve, which was steeper in hypertensive 

patients, suggesting more BBB leakage in patients with hypertension (P=0.023). 

Tissue discrimination of WMH from NAWM 

Figure 4 shows the ROC curves obtained for each age group, with the area under the curve (AUC) as 

indicative of the discrimination value of each parameter for distinguishing WMH from NAWM. MD was 

the best discriminator at all ages with near-perfect ROC curves, while the discrimination value of FA 

varied between age groups, confirming again the observations in Figure 3B, and the significant tissue-

age interaction effect. Also, the discriminating ability of FA and T1 decreased at older ages, but the 

signal enhancement slope increased with advancing age, suggesting a larger differential in BBB 

leakage between WMH and NAWM at older ages, perhaps reflecting a general increase in magnitude 

of signal enhancement slope in all tissues at older ages. 

 

Discussion 

The present study aimed to expand knowledge about the  alterations taking place in the brain’s white 

matter integrity that associate with WMH, with the aim of understanding whether BBB disruption could 

precipitate WMH formation. Better understanding of white matter damage is crucial to future efforts to 

preserve normal brain structure and function. We used parametric MRI to study these alterations in-

vivo in a wide age and WMH burden range patient cohort. We show significant effects of tissue type, 

and WMH burden in all four parameters, and effects of age in MD and T1 (Table 3). These results 

demonstrate that WMH have reduced integrity compared with NAWM, and that NAWM deteriorates 

with increasing WMH and age, confirming that NAWM in the presence of even a few WMH is not 

‘normal’. 18 Furthermore, a high WMH burden in younger people indicates advancing damage in 

NAWM and should sound alarm bells to identify remediable causes.  

We recruited stroke patients with a wide range of ages to permit the cross-sectional analysis of 

alterations in imaging parameters in the presence of WMH across ages. We demonstrate that MD is 

by far the best discriminator between WMH and NAWM at all ages (Figure 4), whereas the 

discriminating ability of FA declines with age to give unreliable ROC curve performance values in 

patients aged over 65. Other studies suggested that FA was more sensitive to age-related white 

matter degeneration, 37 and that it was a good marker to differentiate WMH from NAWM, but the 

results were derived mainly from younger patients.16;17;38;39 However, we demonstrate that FA is 

affected by both age and WMH burden, with its discrimination value varying largely with age (Figure 3; 
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Table 3). We show that the relationship between FA and WMH in younger people, or in those with few 

WMH, is different to the relationship between FA and WMH in older people, or with more WMH. Thus, 

while FA might help discriminate between NAWM and WMH in young people or with few WMH, it is 

less effective in older people or where WMH burden is high.  

In contrast to previous studies, we included DCE-MRI-derived signal enhancement slope data to 

estimate alterations in BBB leakage.  Absence of information on capillary density and hence 

permeability surface area was the main reason for using this semiquantitative approach, (see Heye et 

al., 2016 32), where these points are discussed in detail including the detrimental effect that 

assumptions used in permeability modelling about capillary density can have on apparent permeability 

values).  This parameter complements the other in-vivo MRI measurements of white matter integrity, 

and provides a more comprehensive account of the alterations occurring in brain during ageing and 

vascular disease. The signal enhancement slope increased in WMH compared with NAWM at all 

ages, and with WMH burden in both tissue types. This corroborates previous reports of elevated BBB 

permeability in various tissues in patients with small-vessel disease;10;40 however, the significant 

interaction between tissue type and Fazekas score has not been reported before. Our results indicate 

that differences in BBB leakage between WMH and NAWM depend on the overall WMH burden. This 

can be observed in Figure 3D, where the differences between NAWM and WMH signal enhancement 

slope are generally larger in the “high” Fazekas group and are particularly high for the youngest age 

group.  

Our findings are consistent with reports of BBB leakage increasing with WMH burden using 

biochemical techniques, e.g. CSF/serum albumin ratios, see Farrall and Wardlaw (2000)9 for a review; 

however, biochemical techniques do not detect regional brain differences in leakage and hence 

determine spatially whether the BBB leakage is secondary to tissue damage in WMH or a precipitating 

factor. It is still unknown whether BBB leakage precedes white matter damage,41 although our 

demonstration of increasing BBB leakage in NAWM with increasing WMH burden (Figure 3D) and 

hypertension suggests an influential role.  

The histopathology of WMH has been attributed to altered cerebral blood flow autoregulation and 

ischaemia;42 however prior tissue damage could likewise result in less need for blood and therefore 

reduced cerebral blood flow (CBF), leaving unclear the sequence of events in WMH development.43 

Indeed, there was no association between low CBF and WMH progression in a recent longitudinal 

study,44 where higher baseline WMH burden predicted decreasing CBF long-term, but lower baseline 

CBF did not predict worsening WMH. Thus a process other than falling CBF/ischaemia may cause the 

WMH, with subsequent accumulating tissue damage in turn reducing the CBF requirement. Our 

findings, and emerging pathological evidence of increased interstitial fluid in WMH45;46 and 

perivascular oedema-related lesions,23 suggest that BBB leakage is primary, while falling CBF and 

axonal damage occur later in sporadic WMH.  
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Biochemical studies also showed an association between increasing age and increasing BBB 

permeability,9 and a recent MRI study of regional BBB permeability in the brain observed significant 

BBB breakdown in the hippocampus and a linear increase with age,47 but only detected a non-

significant trend of BBB permeability increase in other brain regions, including white matter. This is 

consistent with our data; Figure 3D shows a trend of steeper signal enhancement slope with older age 

for the low Fazekas scores, although we observed a ‘U-shaped’ pattern for medium and high Fazekas 

scores. These results suggest that BBB change in white matter with age is subtle, perhaps reflecting 

multiple, as yet poorly understood, modifying factors.  

Another novel result of this study is the significant positive effect of hypertension on the signal 

enhancement slope. To our knowledge this has not been reported previously. Hypertension is the 

strongest vascular risk factors for WMH7 so the association of hypertension with signal enhancement 

slope seen here provides further support for the role of increasing BBB leakage in WMH formation. 

Hypertension did not have a significant effect in previous studies of BBB dysfunction in cerebral small-

vessel disease,10;40 but was associated with altered MD in healthy older22 and younger subjects38 

suggesting increased interstitial water. The fact that hypertension is associated with increased BBB 

leakage, makes this an obvious target for intervention to prevent accumulating white matter damage 

and suggests a mechanism by which even moderate blood pressure increases could exert some of 

their effects.  

While in NAWM we observed the expected changes in the imaging markers—MD, T1 and signal 

enhancement slope increasing and FA decreasing with both age and WMH load consistent with 

previous reports,9;10;17;18;40;48-50—both age and Fazekas score had the opposite effect on the FA 

measured in WMH, with FA increasing with increasing age and Fazekas, Figure 3B. This apparent 

altered direction of effect is partly driven by the wide range of WMH FA values when there are few 

WMH; as WMH burden increases, the FA is sampled from larger areas of tissue in more central deep 

white matter regions and that probably have more tissue destruction, yielding more uniform FA values. 

The increase of FA in WMH with Fazekas score could also be partly explained by the location of the 

WMH which generally appear in, or close to, areas of the brain with long association and commissural 

white matter tracts which have high FA values. As WMH extend, they could be recruiting these areas 

with higher initial FA, appearing in our measurements as higher median FA in the WMH of those with 

high Fazekas. The effect is also more obvious in the younger group (Figure 3B), where the FA 

heterogeneity is also larger. Alternatively, one study suggested that overt lesions do not fully account 

for the association of increasing age with decreasing tissue integrity,16 corroborated in the current 

report where we find significant main effects of age on MD and T1, even when the effect of WMH 

burden was taken into account. This indicates that some of the NAWM changes related to normal 

ageing occur independently of WMH and that some mechanisms underlying age-related changes in 

NAWM may be independent from those triggering the development of WMH. This could be reflected 

as the different pattern of FA changes with age we observe between NAWM and WMH. 
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Therefore, we should be cautious in interpreting the increase in FA with age and lesion severity in the 

WMH. Since FA is generally considered a marker for axonal integrity,51 these changes could be 

erroneously translated as an increase in integrity of the white matter in those areas. However, this is 

counter-intuitive and is not supported by neuropathologic examination19;20 or by the changes we 

detected in the other MRI parameters, therefore is much more likely to reflect brain location. The 

increase of FA in WMH with age and Fazekas was accompanied by increases in MD, T1 and signal 

enhancement slope. Both MD and FA are derived from measurements of axial and radial diffusivity,13 

and while MD reflects overall changes in water mobility, FA depends in the relative changes between 

the two components. The separate measurement of the axial and radial components of diffusion could 

provide more specific information about the magnitude and directionality of the water diffusion 

changes in WMH and potentially relate to alterations in myelination, axonal microstructure or interstitial 

fluid in future work.  

The strengths of this study include the use of imaging and analysis methods which conform to STRIVE 

standards,52 recruitment from a single centre which removes multicentre effects, careful blinded image 

analysis using validated methods and the use of non-linear registration between structural and 

diffusion spaces to minimize misclassification of tissue voxels in diffusion space. We assessed the 

changes in MRI parameters using mixed models including tissue as a predictor for the outcome 

variables (rather than studying each tissue independently) which allowed for the analysis of 

interactions of tissue with age or WMH burden. A weakness is the sample size, which although large 

for a MRI study of these characteristics (and the largest yet multi-parametric study of white matter 

integrity with MD, FA, T1 and DCE-MRI changes with age and WMH), was unable to detect some of 

the subtle changes in BBB permeability with age apparent in the graphs; also the skewness of the 

sample towards older ages, only 35 patients were <55 years old reflecting the stroke population, and 

low WMH burden, with nearly half of the sample falling within the “low” Fazekas category. Finally, it 

should be acknowledged that while signal enhancement slope is an assumption-free semi-quantitative 

measurement of BBB leakage, it may be influenced by variations in cerebral blood volume and other 

factors and provides relative, not absolute differences. 

In conclusion, we present evidence of overall changes of white matter integrity associated with age 

and WMH burden. The largest effects were observed in MD and this was the best discriminator 

between WMH and NAWM independent of age, suggesting that increased interstitial water is the 

predominant process underlying WMH pathology. Increases in MD were accompanied by increases in 

T1 and the signal enhancement slope from DCE-MRI suggesting that increased water mobility and 

content may be explained by subtle BBB leakage. These results support the hypothesis that BBB 

leakage, and not ischemia, precedes the development of WMH, and opens the possibility of 

developing therapeutic interventions at early disease stages, where interstitial fluid shifts may be 

reversible, and before demyelination and permanent damage occur. Caution should be taken when 

relying on FA as a sole measure of tissue state in WMH and NAWM as it changes both with age and 

WMH burden and its discrimination value varies largely with age. A combination of multiple 



13 

 

parameters, including potential MRI markers of BBB leakage, provides more comprehensive 

information about the microstructural changes underlying white matter ageing and the pathogenesis of 

WMH. Large longitudinal quantitative imaging studies of WMH, including markers of permeability in a 

less skewed population, are encouraged to confirm the current results.    
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Figure legends 

Figure 1 Example of images from a patient. FLAIR images showing white matter hyperintensities (A); 

Binary masks of normal appearing white matter in blue and white matter hyperintensities in red (B); 

MRI parametric maps: fractional anisotropy (C), mean diffusivity (D), T1 longitudinal relaxation time (E) 

and signal enhancement slope (F).  

Figure 2 Box plots of the imaging markers in white matter hyperintensities (WMH) and normal 

appearing white matter (NAWM) for all 204 patients, before adjusting for any other confounds. 

MD=mean diffusivity, FA=fractional anisotropy, T1=longitudinal relaxation time. 

Figure 3 Box plots of (A) mean diffusivity (MD), (B) fractional anisotropy (FA), (C) T1-relaxation time 

and (D) signal enhancement slope in white matter hyperintensities (WMH) and normal appearing white 

matter (NAWM).  Age groups are represented in panels: group 1: 30-55 years; group 2: 56-65 years; 

group 3: 66-75 years; and group 4: 76-100 years, Fazekas groups are represented with different 

shaded box plots, with dark colours for low Fazekas and light colours for high Fazekas. 

Figure 4 Receiver operating characteristic curves of the imaging parameters. Data was divided by age 

group with tissue type as outcome (WMH or NAWM). FA=fractional anisotropy; MD=mean diffusivity; 

T1=longitudinal relaxation time; eht slope=signal enhancement slope; AUC=area under the curve.  
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Tables 
 

Table 1 Number of patients in each age and Fazekas groups and incidence of vascular risk factors 

Age groups N 

Group 1: 30 < age <= 55 38 

Group 2: 55 < age <= 65 56 

Group 3: 65 < age <= 75 56 

Group 4: 75 < age <= 100 54 

Fazekas groups N 

Low: 0, 1, 2 98 

Medium: 3, 4 53 

High: 5, 6 53 

Vascular risk factors N (Yes/No) % (Yes/No) 

Smoking1 74/130 36.3/63.7 

Hypertension 151/53 74.0/26.0 

 Mean (SD) Range 

Pulse Pressure 63.3 (21.0) 20.0-140.0 
1Current and recent ex-smoker=Yes; never and long term ex-smoker = No.  
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Table 2 Results from paired t-test comparing unadjusted measurements of imaging markers in WMH 

and NAWM in all 204 patients.  

Mean  
(SD) 

WMH NAWM t 
Estimated 
difference 

95% CI P Cohen’s d 

MD ×10-9 mm2/s 
1.00 

(0.10) 
0.78 

(0.03) -35.3 -0.222 -0.233, -0.208 <0.0001 2.98 

FA 
0.23 

(0.04) 
0.26 

(0.02) 
8.3 0.029 0.022, 0.036 < 0.0001 -0.95 

T1 ms 
1089.0 
(151.6) 

984.9 
(126.0) 

-15.2 -103.7 -117.2, -90.2 < 0.0001 0.75 

Enhancement 
slope ×10-4min-1 

3.50 
(4.82) 

2.24 
(3.71) 

-6.0 -1.24 -1.65, -0.83 < 0.0001 0.29 

MD = mean diffusivity, FA = fractional anisotropy, T1 = longitudinal relaxation time, WMH = white 

matter hyperintensities, NAWM = normal appearing white matter. 
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Table 3 Results from the linear mixed models with MD, FA, T1 and signal enhancement slope as 

outcome.  

Effects in MD Estimate 95% CI P 

Tissue type    WMH 
NAWM 

0.2227 
0 

0.2093, 0.2361 
- 

< 0.0001 
 

Fazekas group 0.0109 0.0065, 0.0153 < 0.0001 

Age  0.0125 0.0085, 0.0165 < 0.0001 

Smoking 0.0025 -0.0048, 0.0097 0.5047 

Hypertension -0.0073 -0.0151, 0.0005 0.0668 

Pulse pressure 0.0014 -0.0020, 0.0049 0. 4140 

Tissue:Fazekas group 0.0021 -0.0140, 0.0183 0.7944 

Tissue:Age group -0.0065 -0.0199, 0.0069 0.3395 

Fazekasgroup:Age  0.0034 -0.0009, 0.0077 0.1219 

Effects in FA Estimate 95% CI P 

Tissue type     WMH 
NAWM 

-0.0300 
0 

-0.0372, -0.0228 
- 

< 0.0001 
 

Fazekas group -0.0072 -0.0106, -0.0038 < 0.0001 

Age  -0.0021 -0.0052, 0.0010 0. 1828 

Smoking -0.0016 -0.0073, 0.0041 0.5733 

Hypertension -0.0018 -0.0079, 0.0042 0.5514 

Pulse pressure -0.0012 -0.0039, 0.0015 0.3936 

Tissue:Fazekas group 0.0268 0.0187, 0.0348 < 0.0001 

Tissue:Age  0.0204 0.0136, 0.0271 < 0.0001 

Fazekasgroup:Age  0.0020 -0.0013, 0.0054 0.2348 

Effects in T1 Estimate 95% CI P 

Tissue type     WMH 
NAWM 

105.39 
0 

81.49, 129.30 
- 

< 0.0001 
 

Fazekas group 30.55 15.17, 45.93 0.0001 

Age  61.13 47.07, 75.18 < 0.0001 

Smoking 0.2117 -25.40, 25.83 0.9870 

Hypertension 7.827 -35.23, 19.58 0.5740 

Pulse pressure -5.664 -17.94, 6.616 0.3641 

Tissue:Fazekas group -10.76 -39.60, 18.06 0.4624 

Tissue:Age -13.32 -37.25, 10.61 0.2736 

Fazekasgroup:Age  7.446 -7.733, 22.63 0.3345 

Effects in signal  
enhancement slope 

Estimate×10-4 95% CI×10-4 P 

Tissue type     WMH 
NAWM 

1.25 
0 

0.42, 2.07 
- 

0.0034 
 

Fazekas group 0.70  0.10, 1.20  0.0138 

Age  0.18 -0.30, 0.68 0.4768 

Smoking -0.01 -0.10, 0.78 0.7902 

Hypertension 1.52 0.55, 2.49 0.0023 

Pulse pressure 0.17 -0.30, 0.61 0.4361 

Tissue:Fazekas group 1.00 0.04, 2.00 0.0418 

Tissue:Age 0.62 -0.20, 1.45 0.1405 

Fazekasgroup:Age -0.22 -0.76, 0.30 0.4202 

All estimates were adjusted for tissue type, age, Fazekas WMH group and vascular risk factors. For each sub-

table, the first six rows present the results of the model with the main effects only (tissue type, Fazekas group, 

age and vascular risk factors) and the last three rows (separated by dotted lines) correspond to the models 

including one interaction term. Significant effects (P < 0.05) are in bold italic. MD = mean diffusivity, FA = 

fractional anisotropy, T1 = longitudinal relaxation time, WMH = white matter hyperintensities, NAWM = normal 

appearing white matter. 


