47 research outputs found
An Analysis of Mature Consumers\u27 Reactions to Unsatisfactory Complaint Handling by Service Provider
In this nationwide survey, consumers over the age of 65 reported their reactions to a recalled unsatisfactory complaint experience that involved a service rendered. The study focused on the possible link between attributions of complainants for failure to obtain desired outcomes and subsequent behaviors. Inferences about causes and some demographic characteristics were found useful for explaining variation in anger reactions, negative word-of-mouth communications, repurchase behaviors, and estimations of the likelihood of future complaint actions among sampled seniors. Implications of results in terms of effective complaint handling by service organizations are discussed
Angular Diameters of the Hyades Giants Measured with the CHARA Array
We present angular diameters of the Hyades giants, gamma, delta^1, epsilon,
and theta^1 Tau from interferometric measurements with the CHARA Array. Our
errors in the limb-darkened angular diameters for these stars are all less than
2%, and in combination with additional observable quantities, we determine the
effective temperatures, linear radii and absolute luminosities for each of
these stars. Additionally, stellar masses are inferred from model isochrones to
determine the surface gravities. These data show that a new calibration of
effective temperatures with errors well under 100K is now possible from
interferometric angular diameters of stars.Comment: Accepted for publication in The Astrophysical Journa
Advancing an interdisciplinary framework to study seed dispersal ecology
Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant’s life history and environmental variability that ultimately influences a population’s ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity
A delay equation model for oviposition habitat selection by mosquitoes
We propose a patch type model for mosquitoes that have aquatic larvae inhabiting ponds. Partial differential equations (PDEs) model the larvae on each of several disconnected patches representing the ponds, with conditions varying in each patch, coupled via the adults in the air. From the PDEs a scalar delay differential equation, with multiple delays, for the total adult mosquito population is derived. The various delays represent the larval development times in the patches. The coefficients contain all the relevant information about the sizes and geometry of the individual patches inhabited by the larvae, the boundary conditions applicable to those patches and the diffusivity of the larvae in each patch. For patches of general shapes and sizes, and without the need to specify the criteria by which an adult mosquito selects an oviposition patch, the modern theory of monotone dynamical systems and persistence theory enables a complete determination of the conditions for the mosquito population to go extinct or to persist. More detailed biological insights are obtained for the case when the patches are squares of various sizes, which allows a detailed discussion of the effects of scale, and for two particular criteria by which mosquitoes might select patches for oviposition, being (i) selection based solely on patch area, and (ii) selection based both on area and expected larval survival probability for each patch. In some parameter regimes, counterintuitive phenomena are predicted
Agricultural Research Service Weed Science Research: Past, Present, and Future
The U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed-crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America\u27s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency\u27s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being