297 research outputs found
On the ultrathin gold film used as buffer layer at the transparent conductive anode/organic electron donor interface
Previously, we have shown that a gold thin film of only 0.5 nm introduced at the interface between the indium tin oxide or ZnO anode and the organic electron donor in organic photovoltaic cells induces a strong improvement of the cell efficiency. Of course a thickness of 0.5 nm corresponds only to an averaged thickness, the films being too thin to be continuous. For a clear understanding of the physical mechanisms that are responsible for this improved behaviour, it is important to know the fractional coverage and the island height of this thin Au film. In the present work, we have used two different techniques, such as treated scanning electron microscope images and analysis of the inelastic part of peaks of X-ray photoelectron spectroscopy spectra, to estimate the gold coverage and island height of the transparent conductive anode. There is an excellent agreement between the results achieved by both methods. Only 15% of the anode is covered, which proves the high efficiency of gold as an anode buffer layer in organic photovoltaic devices
Study of CuI thin films properties for application as anode buffer layer in organic solar cells
After chemico-physical characterization of CuI thin films, the structures indium tin oxide (ITO) /CuI are systematically studied. We show that the morphology of the 3 nm thick CuI film depends on its deposition rate. To obtain smooth homogeneous CuI film, it is necessary to depose it at 0.005 nm/s. After optimization of the deposition conditions of CuI, it is shown that it behaves like a template for the organic layer. For instance, when the organic film is copper-phthalocyanine, the molecules which are usually perpendicular to the plane of the substrate lie parallel to it when deposited onto CuI. In a same way, when the electron donor is a prophyrin derivative, CuI allows to double the power conversion efficiency of the cells based on the heterojunction porphyrin/C-60. When CuI is used as anode buffer layer, it increases systematically the short circuit current, the open circuit voltage, thus the efficiency of the organic solar cell. These effects are related, not only to the improvement of the band matching between the ITO and the electron donor, but also to the templating effect of the CuI. Moreover, we show that the beneficial effect of CuI. is effective, not only with ITO, but also with fluorine doped tin oxide
Effect of the deposition conditions of NiO anode buffer layers inorganic solar cells, on the properties of these cells
tNiO thin films deposited by DC reactive sputtering were used as anode buffer layer in organic photovoltaiccells (OPVs) based on CuPc/C60planar heterojunctions. Firstly we show that the properties of the NiOfilms depend on the O2 partial pressure during deposition. The films are first conductive between 0 and2% partial oxygen pressure, then they are semiconductor and p-type between 2 and 6% partial oxygenpressure, between 6 and 9% partial oxygen pressure the conduction is very low and the films seem to be n-type and finally, for a partial oxygen pressure higher than 9%, the conduction is p-type. The morphology ofthese films depends also on the O2 partial pressure. When the NiO films is thick of 4 nm, its peak to valleyroughness is 6 nm, when it is sputtered with a gas containing 7.4% of oxygen, while it is more than double,13.5 nm, when the partial pressure of oxygen is 16.67%. This roughness implies that a forming process,i.e. a decrease of the leakage current, is necessary for the OPVs. The forming process is not necessary ifthe NiO ABL is thick of 20 nm. In that case it is shown that optimum conversion efficiency is achievedwith NiO ABL annealed 10 min at 400◦C
Terrestrial exposure of a fresh Martian meteorite causes rapid changes in hydrogen isotopes and water concentrations
Determining the hydrogen isotopic compositions and H2O contents of meteorites and their components is important for addressing key cosmochemical questions about the abundance and source(s) of water in planetary bodies. However, deconvolving the effects of terrestrial contamination from the indigenous hydrogen isotopic compositions of these extraterrestrial materials is not trivial, because chondrites and some achondrites show only small deviations from terrestrial values such that even minor contamination can mask the indigenous values. Here we assess the effects of terrestrial weathering and contamination on the hydrogen isotope ratios and H2O contents of meteoritic minerals through monitored terrestrial weathering of Tissint, a recent Martian fall. Our findings reveal the rapidity with which this weathering affects nominally anhydrous phases in extraterrestrial materials, which illustrates the necessity of sampling the interiors of even relatively fresh meteorite falls and underlines the importance of sample return missions
Improved performance of organic solar cells by growth optimization of MoO3/CuI double-anode buffer
We investigated the effect of a CuI anode buffer layer (ABL) on the molecular orientation of the copper phthalocyanine (CuPc) in organic photovoltaic cells (OPV cells), and we compare it to the effect of MoO3 buffer layer. While, in the presence of CuI, the CuPc molecules lie down parallel to the substrate, they stand up perpendicular in the case of MoO3. We show that the optical absorption, the morphology, and the JV characteristics of the OPV cells depends strongly on the orientation of the CuPc molecules. The improvement of the OPV cells performance is related to the property modifications induced by the change in molecule orientation. We show that the improvement of the OPV cell performance through the templating effect of CuI depends strongly on the deposition rate of the CuI, because the CuI thin-film morphology depends on this deposition rate. In this context, we show that the use of a double-ABL MoO3/CuI leads to a significant improvement of the cell performance. These results are discussed on the basis of the dual function of MoO3 and CuI. While both of them reduce the hole-injection barrier, CuI improves the CuPc film absorbance through specific molecular order and MoO3 prevents the OPV cells from leakage-path formation
Northwest Africa 8409: Hydrogen Abundance and Isotope Composition in the Mercury-Like Meteorite
Star formation triggered by non-head-on cloud-cloud collisions, and clouds with pre-collision sub-structure
In an earlier paper, we used smoothed particle hydrodynamics (SPH) simulations to explore star formation triggered by head-on collisions between uniform-density 500 M clouds, and showed that there is a critical collision velocity, vCRIT. At collision velocities below vCRIT, a hub-and-spoke mode operates and delivers a monolithic cluster with a broad mass function, including massive stars (M 10 M) formed by competitive accretion. At collision velocities above vCRIT, a spider’s-web mode operates and delivers a loose distribution of small sub-clusters with a relatively narrow mass function and no massive stars. Here we show that,if the head-on assumption is relaxed, vCRIT is reduced. However, if the uniform-density assumption is also relaxed, the collision velocity becomes somewhat less critical: a low collision velocity is still needed to produce a global hub-and-spoke system and a monolithic cluster, but, even at high velocities, large cores – capable of supporting competitive accretion and thereby producing massive stars – can be produced. We conclude that cloud–cloud collisions may be a viable mechanism for forming massive stars – and we show that this might even be the major channel for forming massive stars in the Galaxy
MINERALOGIC AND Δ17O-ε54Cr ISOTOPIC COMPOSITION OF BRACHINITE NORTHWEST AFRICA 13489: A NEW METACHONDRITE WITH ‘CX’ CHONDRITE AFFINITY?
Investigation of Hidden Periodic Structures on SEM Images of Opal-like Materials Using FFT and IFFT
We have developed a method to use fast Fourier transformation (FFT) and inverse fast Fourier transformation (IFFT) to investigate hidden periodic structures on SEM images. We focused on samples of natural, play-of-color opals that diffract visible light and hence are periodically structured. Conventional sample preparation by hydrofluoric acid etch was not used; untreated, freshly broken surfaces were examined at low magnification relative to the expected period of the structural features, and, the SEM was adjusted to get a very high number of pixels in the images. These SEM images were treated by software to calculate autocorrelation, FFT, and IFFT. We present how we adjusted SEM acquisition parameters for best results. We first applied our procedure on an SEM image on which the structure was obvious. Then, we applied the same procedure on a sample that must contain a periodic structure because it diffracts visible light, but on which no structure was visible on the SEM image. In both cases, we obtained clearly periodic patterns that allowed measurements of structural parameters. We also investigated how the irregularly broken surface interfered with the periodic structure to produce additional periodicity. We tested the limits of our methodology with the help of simulated image
- …
