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Summary: We have developed a method to use fast

Fourier transformation (FFT) and inverse fast Fourier
transformation (IFFT) to investigate hidden periodic

structures on SEM images. We focused on samples of

natural, play-of-color opals that diffract visible light and
hence are periodically structured. Conventional sample

preparation by hydrofluoric acid etch was not used;

untreated, freshly broken surfaces were examined at low
magnification relative to the expected period of the

structural features, and, the SEM was adjusted to get a

very high number of pixels in the images. These SEM
images were treated by software to calculate autocorre-

lation, FFT, and IFFT. We present how we adjusted

SEM acquisition parameters for best results. We first
applied our procedure on an SEM image on which the

structure was obvious. Then, we applied the same

procedure on a sample that must contain a periodic
structure because it diffracts visible light, but on which

no structure was visible on the SEM image. In both

cases, we obtained clearly periodic patterns that allowed
measurements of structural parameters. We also

investigated how the irregularly broken surface inter-

fered with the periodic structure to produce additional
periodicity. We tested the limits of our methodology

with the help of simulated images. SCANNING 36:487–

499, 2014. © 2014 Wiley Periodicals, Inc.

Key words: SEM, scanning microscope, FFT, IFFT,

autocorrelation, opal, photonic crystal, silica particles,
close-packed arrangements

Introduction

We present a procedure to reveal periodicity on

scanning electron microscope (SEM) images where a

periodic pattern is expected, but is not observed. To our
knowledge, this has never been done on SEM images.

We finalized this method to explore the structure of

natural precious opals. They must have periodic
structure since they diffract visible light; the patches

of pure colors that move around the stone as the stone is

turned are visible to the naked eye. Visible light is
diffracted by opals because they are made of a regular

network of silica spheres or lepispheres 150–400 nm in

diameter (Sanders, ’75; Gaillou et al., 2008). However,
when observing a fresh break of a precious opal, the

periodic pattern is not visible because the silica spheres

are most often cemented by hydrous silica (Fritsch
et al., 2006). Until now, for those opals, observing the

periodic pattern using an SEM requires a previous

chemical etching of the surface. Ideally, an hydrofluoric
acid etching preferentially dissolves the cement and

reveals the spheres but this operation does not always

discriminate well between cement and spheres because
their chemical composition is too similar (the efficiency

of the method depends strongly on relative densities of

the cement and spheres). That is why, even when the
acid etching is correctly applied, the opals investigated

here do not display periodic structure, but a more or less

damaged surface. Therefore, we developed a procedure
of image analysis using FFT to extract any periodic

distribution of smooth discontinuities at the surface of

the sample. This procedure can therefore avoid possible
alteration of the true periodic pattern of the sample by

the previously required acid etching treatment.
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First, we improved empirically the quality of the
FFT obtained from an SEM image by optimizing the

parameters of image acquisition. This resulted in FFT

resolution sufficient for IFFT calculation that resulted
in visualization of the regular stacking of silica

spheres. Finally, FFT and IFFT images allowed us to

measure average size of the spheres and to visualize
both the surface steps due to surface breakage and the

alternation of successive, different layers making up

the samples.
Fourier transformation was applied few times to

SEM images for observation of photonics crystals

(Shklover et al., 2006; Chiappini et al., 2009; Rusen
et al., 2011) or opals (Viti and Gemmi, 2009) but only

to confirm periodicity of a structure already observed on

an image and with rather poor resolution. We attempted
to find optimum conditions of SEM image acquisition to

get fine resolution of an FFT image. This quality is

essential to calculate a usable IFFT image. This criterion
was probably never reached before this work and can

explain why IFFT is never used with SEM images.

State of the Art

FFT

Many scientific publications use the mathematical
function known as Fourier transformation.

Fourier transform allows conversion of SEM images

into phase space. The signal is split onto elementary
sinusoidal signals and shown as a new type of image

where the center is the place of low frequencies and

borders are places of high frequencies of the signal. This
new image reveals periodic features as bright spots on

the Fourier space pattern.

With appropriate software, the observed spots that
correspond to periodic elements can be selected and

separated from the continuous background that comes

from random events at the sample surface through the
use of a masking tool. When an inverse Fourier

transformation is applied through this mask, only the

selected periodicities contribute to the reconstructed
image. In particular, the randomly distributed features

are eliminated.

When applied to discrete signal, like an SEM image,
Fourier transformation is more accurately called

discrete Fourier transformation (DFT). An SEM image

file is an integer array of m lines and n columns. Thus,
the discrete Fourier transform of the image is given by

(Aubert and Lecomte, 2007):

F h; kð Þ ¼
XN�1

n¼0

XN�1

m¼0

I n;mð Þe2piðh�nþk�nÞ
N ð1Þ

And inverse discrete Fourier transform (IDFT) is

given by:

I n;mð Þ ¼ 1

N 2

XðN=2Þ�1

h¼N=2

XðN=2Þ�1

k¼N=2

F h; kð Þe2piðh�nþk�nÞ
N ð2Þ

IFFT images do not represent reality as original SEM
images do, but are only representations of combined

periodic signals.

The size of one pixel is the shortest measurable
distance in such digital SEM images and the maximum

measurable distance is the image size itself. This range

of distances becomes a range of periodicities in phase
space where the highest detectable frequency will be

imposed by the size of the pixel of the SEM image. In

other words:

FFTHFL ¼ 1

PS
ð3Þ

where FFTHFL is the FFT highest frequency limit and
PS is the SEM image pixel size.

On the other hand, the lowest detectable frequency

will be imposed by the size of the SEM image as this
gives the longest measurable distance on the image.

In practice, an algorithm, called fast Fourier

transform (FFT) is used to calculate DFT. It was
proposed by Cooley and Tukey (’65) to decrease

computing time by reducing the number of multi-

plications during calculation (Duhamel and
Vetterli, ’90).

Autocorrelation

Autocorrelation function compares a signal with

itself after a time delay (t):

RðtÞ ¼
Zþ1

�1
f ðtÞf ðt þ tÞdt ð4Þ

The result is a new image where periodic components

are reinforced and noise is reduced. Digital Micrograph
software calculates this function in this way: first, the

FFT of an SEM image is calculated then multiplied by

its complex conjugate. Finally, IFFT is calculated from
this result and normalized to 1 (Wanner et al., 2008).

Close Packing in the Opal Structure

The opal structure is based on the close-packing of

spheres model that was the subject of the Kepler
conjecture (Hales, 2005). According to this model,

congruent spheres are distributed on successive layers

with a regular hexagonal arrangement within each layer.
Depending on the stacking of successive layers, two

possible structures are observed: the ABAB stack results

in hexagonal close-packing (hcp) whereas ABCABC

488 SCANNING VOL. 36, 5 (2014)



stacking is cubic close-packing (ccp). The hexagonal
close-packing model contains two families of layers

shifted relative to one another. We shall call them odd

and even families as they lie alternatively on the
material (Fig. 1). Cubic close-packing model contains

three families of layers. For both models all layers of a

same family are aligned together. Themagnitude of shift
between layers of two consecutive families is 0.577 of a

sphere radius (Fig. 1). SEM images of materials with

either structure should reveal hexagonal symmetry
when FFT is applied.

Materials and Methods

Materials

Sample A is a natural play-of-color opal from

Australia. Secondary electron SEM images on a fresh

break reveal a very clear network of silica spheres. It
serves as a reference sample to test our method and its

results (Fig. 2(A)).

Sample B is a play-of-color opal from Wollo,
Ethiopia. The presence of play-of-color in the whole

Fig 1. Visualization of two characteristic properties of close-packed structures: 1: There is a shift between two consecutive layers as
highlighted by the two hexagons on the left. 2: Along each of the three directions of the hexagon, the misalignment value between two
superimposed rows of spheres is 0.577 of a sphere radius.

Fig 2. Our image treatment method applied to sample A. (A) Original SEM image that clearly displays a very regular network of silica
spheres about 200 nm in diameter; (B) enlarged view; (C) autocorrelation of the SEM image; (D) FFT of the autocorrelation; (E) mask from
the FFT; (F) IFFT from the mask.
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sample indicates that it is made of a regular packing of
silica spheres in the range 150–300 nm (Sanders, ’75)

extending over the entire sample. SEM images show an

apparently flat surface with no visible regular network
(Fig. 3(A)). However the consistent play-of-color let us

consider that the structure we examine by SEM is

regular over the whole image.

Adjustment of SEM Parameters

Before image acquisition, several parameters must be

adjusted to optimize the detection of regular patterns by

the FFT. The FFT highest frequency limit should be in
the right range otherwise the spot corresponding to the

expected pattern will not be highlighted on the FFT.

Hence, one must define a range of expected pattern
dimensions before acquiring the image. Therefore, all

parameters affecting the image’s pixel size (PS) have to

be chosen carefully. These include the magnification
(M), the number of pixels (NP) in the width of the image,

the real distance along image width (image size, IS), and

the physical width of the picture on the screen (screen
size, SS). The relationship between these parameters is

the following:

PS ¼ IS

NP
ð5Þ

IS ¼ SS

M
ð6Þ

From (5) and (6), it results that

PS ¼ SS

M� NP
ð7Þ

From (7) and (3), comes

FFTHFL ¼ M� NP

SS
ð8Þ

The screen width (SS) is a constant belonging to the
microscope. The magnification (M) and the image

resolution (NP) are both adjustable by the operator.
Their ratio should be carefully chosen before image

acquisition according to the pattern periodicity expected

in the sample. Insufficiently optimized parameters may
lead to a black FFT were no spots can be seen except a

central spot. This means also that only a small window

on the magnification scale is valid for the approach to
work.

To prevent this problem we established several

curves (Fig. 4) indicating the optimum magnification
(M) and number of pixels (NP) in the image width

according to a size of pattern in the sample. A higher NP

value gives better results. These curves are valid for our
JEOL7600F SEM and can be calculated for any other

microscope by entering the correct screen size (SS) in

Equation (8).

Experimental Procedure

Opal samples were imaged using an SEM JEOL JSM

7600F equipped with a thermal field emission gun.

Samples were freshly broken fragments coated with

Fig 3. Our image treatment method applied to sample B. (A) Original SEM image; (B) enlarged view; (C) autocorrelation of the SEM
image; (D) FFT of the autocorrelation; (E) mask from the FFT; (F) IFFT from the mask.
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15A
�
of platinum to ensure electrical conductivity at the

sample surface. They were placed on the SEM stage as

horizontally as possible. According to the consider-
ations given above and to get acceptable resolution of

FFT and IFFT pictures, we selected the highest image

resolution of our SEM (5,120 pixels) and slowest scan
speed in photo mode when possible. The magnification

was determined using Figure 4. All images were taken

using the secondary electron detector.

Each image was treated using Digital Micrograph
(Gatan, Inc., Pleasanton, CA). After distance calibra-

tion, we first calculated an autocorrelation image of the

SEM image to strengthen information about periodicity
in the SEM image. The FFT was then calculated from

the autocorrelation image. This result is also called PSD

for Power Spectral Density (Prandoni and Vetterli,
2008). When we observed bright spots on the FFT (that

represent periodicities), we selected them using a mask

and then launched the IFFT based on these spots only.
We obtained a filtered image highlighting the periodic

information only. This final image must be understood

as a graphic representation of all periodic matters inside
the initial SEM image, but not as an SEM image where

only the non-periodic features were removed. We also

created masks selecting only targeted spots on the FFT
to determine which components of the whole sample

pattern gave rise to the final IFFT image.

In the resulting IFFT images, all periodic patterns
extend over the whole surface of the image although

they can originate from different regions in the original

SEM image. In order to highlight this phenomenon, we
constructed an artificial image with a clearly periodic

structure on which we added a heterogeneity in the

middle—we chose a mushroom (Fig. 5). Then, we
launched our procedure (bottom row of images) and the

same procedure but without the auto-correlation step

(top row). In both final IFFT images, a pattern is present

Fig 4. Curves for optimized adjustment of magnification and
the number of pixels (NP) in the image width, according to
Equation (8), for a range of pattern sizes. These curves allow a
rapid choice of SEM image acquisition parameters if the size
range of the pattern is known. These curves are established for a
JEOL 7600F SEM.

Fig 5. An artificial image (top left) treated with our method (bottom row: autocorrelation, FFT, mask, IFFT) and without the
autocorrelation step (top row). In both resulting IFFT images, a periodic pattern is observed in the middle of the image when there was not
one in the original image. Our method reveals periodic patterns, but not heterogeneities or singularities. The periodicity is perfectly clear
only when autocorrelation is included.
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in the center of the IFFT image, although this does not
correspond to reality. This shows that the method we

developed reveals periodic patterns, but not inhomoge-

neities or singularities.
We measured distances on the FFT images using the

profile tool of Digital Micrograph (Gatan, Inc.).

Results

Tests on a Previously Known Periodic Structure
(Sample A) and a Glass Shard

Regular close-packed layers in sample A are already

clearly visible on the SEM image even at low

magnification (Fig. 2(A) and (B)). The FFT of the
autocorrelated image (Fig. 2(C) and (D)) shows spots

due to this periodic pattern. By selection of those spots

with the masking tool of Digital Micrograph we
obtained a filtered FFT pattern from which we

calculated the IFFT (Fig. 2(E) and (F)). Despite a slight

distortion due to the sample tilt at the time of acquisition,
the FFT also shows a hexagonal symmetry (Fig. 2(D)).

The average sphere diameter can be deduced from the

distances between adjacent rows, evaluated from the
spot positions on the FFT. Three values were collected

along the three directions, and then averaged (Fig. 6).

Then we divided this result by
p
3/2 to get the diameter

of the spheres. This calculated mean value is consistent

with themean value obtained from themeasurement of a

row of ten spheres directly on the SEM image (Table I).
The directions and sizes of the patterns are perfectly

consistent between the SEM image and the IFFT

(Fig. 7). This demonstrates that our calculation method
does correctly represent reality, does not add periodic

patterns artificially, nor does it loose information.

We also acquired, under the same conditions, an
SEM picture of a glass shard that has no periodic

structure. Then we launched the image treatment

procedure. The FFT image did not reveal any periodic
structure in the glass (Fig. 7(B)). This again demon-

strates that our procedure does not reveal a periodic

structure where there is none in reality.

Observation of Materials With Hidden Periodic
Structure (Sample B)

When sample B was fractured, the shock wave
produced successive stairs revealing many layers

across the SEM image; this phenomenon is perceptible

on the enlarged view of the SEM image (Fig. 8, left
inset) and highlighted (Fig. 8, right inset) by the

measure obtained with the profile tool of Digital
Micrograph. This measure was made with the image
used to calculate the FFT and the IFFT. Otherwise, the

surface appears nearly flat. Nevertheless the FFT of the

autocorrelated image clearly reveals a hexagonal
pattern (Fig. 3(D)).

This global pattern is obviously due to the tridimen-

sional arrangement of silica spheres. However, unlike
the previous sample, additional spots are observed. The

fracture, realized randomly through the opal rough,

appears to develop along a vicinal plane, near a dense
basal plane. This section crosses the stack of layers,

giving rise to successive and almost periodic bands or

steps, like stairs. The two additional spots near the center
of the FFT give the average distance between these stairs

(1.14mm; Fig. 9). This value is consistent with the steps

observed on the initial SEM image (Fig. 8).
The period due to the stairs also combines with the

sixfold pattern, as shown in Figure 9(E). Among the six

groups of spots, two show three spots aligned along the
stair direction, and the four others show four spots in the

stair direction. Hence, among each group, some spots

arise from the network of silica spheres, and others arise
from the stairs. However it is quite difficult to

discriminate between these origins.

We first considered that the most regular hexagonal
pattern was due to the silica sphere network (Fig. 10).

We used these three pairs of spots to calculate the

diameter of the spheres by measuring the distance
between spots and the center along the three resulting

directions on the FFT (Fig. 10). As before, we divided

this result by
p
3/2 to get the sphere diameter (Table II).

Despite the presence of siliceous cement, the IFFT

(Fig. 3(F)) reveals a very regular sixfold symmetry

analogous to that of sample A. However, the nearly
horizontal bands about 1mm in size are clear effects of

the stairs. Subsequently, we will refer to this IFFT as

“global IFFT.” In order to avoid this effect, we decided
to calculate a new IFFT based on six spots only, one per

group, using a new mask. This last image may be

Fig 6. Distance measurement of the periodic pattern. Three
values, one from each direction of symmetry, allow the calculation
of the average size of the spheres.
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understood as the result of a filter that selects only the

periodic pattern due to the arrangement of the spheres in
any single close-packed layer family A, B, or C. We

chose the spots that gave the most regular hexagonal

pattern on the FFT. Empirically working on FFT with
Digital Micrograph we found that only four combina-

tions of spots are valid patterns. The aspect of each IFFT

result and symmetry of hexagonal pattern on FFT

lead us to select only one combination (Fig. 11). This
was the only image where no effect of the stair

arrangement can be seen on IFFT. We call further this

IFTT “spheres IFFT.”
To determine where exactly the borders of the stairs

on the global IFFT are, we drew an image that is a

TABLE I Calculation of sphere diameter from the FFT periodic pattern compared to direct measurement of a row of ten spheres on the SEM
image

First direction Second direction Third direction FFT (average)
SEM image (average
of 10 measurements)

223 nm 215 nm 240 nm 226 nm 225 nm

Fig 7. (A) Detail of the IFFT is superimposed onto the corresponding area of the SEM image for comparison. The position of the spheres
and the orientation of the pattern are the same. (B) SEM image of a glass shard and resulting FFT by our method. No evidence of periodicity
can be seen in this amorphous material.
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simulation of hexagonal close-packed sample crossed

by vertical stairs and we treated it by our method
(Fig. 12). This shows that each band, either dark or

bright, is representative of one stair.

To simulate the duplication of a given periodic

pattern by stairs, we built two artificial images that could
resemble the case of sample B: the first shows a

hexagonal close-packed pattern and the second is a

Fig 8. The SEM image of sample B used for FFT calculation. Left inset is highmagnification image of the surface. The profile on the right
inset highlights existence of stairs. An average size was calculated for 10 steps.

Fig 9. On sample B, the stair distribution is regular enough to
induce two spots near the center of the FFT. We calculated an
average size of the stairs of 1.14mm.

Fig 10. The distance between the spots and the center indicate
the width of the rows of spheres. The structure clearly has
hexagonal symmetry.
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cubic close-packed pattern; both contain stairs (Fig. 13,

left column). Then we applied our procedure (autocor-

relation, FFT, mask, IFFT). The FFT (middle column)
clearly shows the sixfold symmetry of the hexagonal

pattern, and shows that both periods (stairs and spheres)

combine and give rise to additional spots. The two IFFT
images (right column) are very similar. Hence discrimi-

nation between the two structures is not obvious nor is

determination of the structure of Sample B (compare
with Fig. 3(F)).

To check the validity of the information visible on the

IFFT image we used our simulations to compare
autocorrelation images with IFFT images (Fig. 14).

Even for our artificial images which are nevertheless

simple cases (compared with the real samples) there is a
loss of information about layer families as the procedure

progresses from the autocorrelation to the IFFT.

Discussion

Play-of-Color Opal Without Siliceous Cement
(Hexagonal Close-Packed Sample A)

Our sample was broken oblique to the packing

direction providing a terraced configuration that shows

several layers of alternating even and odd families of
spheres. The shift between them can be observed on the

SEM image (Fig. 15); a line drawn across several layers

through themiddle of spheres of one kind of layer family
(odd or even) passes nearly between two lines of spheres

of the next layer (Fig. 15). Theoretically this shift is

0.577 of a sphere radius but very precise measurement
cannot be done here because of the sample tilt conditions

and relative packing orientation: the calculation is

perturbed by the perspective effect.
The FFT shows hexagonal symmetry, as expected

(Fig. 2(D)) but, because the two patterns are equal in

direction and parameters, the image cannot discriminate
between odd and even layers.

On the other hand, IFFT clearly reveals both families,

odd and even (Fig. 16). They are distinguished by the
two interlaced hexagonal patterns. As previously stated,

the IFFT repeats over the whole image all periodic

patterns although they are spatially separated on the
initial SEM image.

Applied to more complex structures, interpretation of

IFFT will be more difficult if respective layer positions
are too close together and/or the sample structure

contains more layers.

TABLE II Calculation of the average sphere diameter in sample B
from the most regular hexagonal pattern of the FFT

First direction Second direction Third direction Average

249.4 nm 242.5 nm 244.8 nm 245.6 nm

Fig 11. Structure of one layer of spheres (spheres IFFT, see text)
without the stairs effect due to breaking.

Fig 12. Top: Detail of our simulation highlighting regular
vertical. Center: IFFT image calculated for an adjacent ROI
(region of interest) and for the nearest spots from FFT center that
arise from the stairs. Bottom: IFFT image calculated for the next
adjacent ROI when all FFT spots are selected except both spots
near the center. One stair of the top image is consistent with the
assembly of one bright line and one dark line of center image.
Each line of the bottom image, dark or bright, is also
representative of a stair.
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FFT is useful to provide a distance measurement of

thousands of spheres contained on the lowmagnification

image, and hence an average size. This value cannot be
calculated as easily over a so large number of spheres on

the SEM image because a higher magnification is

required. In spite of imperfections on the surface of our

sample, we calculated a value consistent with that
measured on the initial image.

Play-of-Color Opal With Siliceous Cement (Sample B)

This sample has a similar layer structure to sample A

but the spheres are encapsulated in siliceous cement. As

Fig 13. First column: Simulations of stairs superimposed onto a regular close-packed network and resulting FFT (second column), mask
and IFFT (third column). The first row is a hexagonal close-packed arrangement and the second row is a cubic close-packed arrangement.

Fig 14. Autocorrelation (first column) and IFFT (second
column) from simulated images in the case of cubic close
packing (top row) and hexagonal close packing (bottom row).
Information showing the existence of layer families is visible on
the autocorrelation images but not on the IFFT images.

Fig 15. Detail of the SEM image of play-of-color opal sample
A. For the three directions, all rows in A-type layers are aligned
together and shifted from those in B-type layers.
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a result, no evidence of a regular structure can be seen on
the SEM image. An image made at higher magnification

(Fig. 3(B)) reveals details on whole surface but does not

allow characterization of the structure because of the
state of the surface (mainly because of the featureless

silica cement).

Nevertheless, the FFT of B (Fig. 3(D)) revealed a
hexagonal symmetry proving that our initial SEM

image contains hidden information about the sample

structure.
This means that Fourier transformation is able to

detect periodicity within the pixels of the SEM image.

This is possible mainly for two reasons: At first the
excellent resolution of the pixel size of the image that

was fixed by the acquisition parameters and also because

cement and spheres in the material are slightly different
in terms of density that causes contrast detectable by the

FFT calculation.

The siliceous cement and the stair structure
render this surface less regular than the one of the

previous sample. This interrupts the lattice-of-spheres

arrangement and explains the absence of higher-order
spots.

Two main patterns are superimposed on the global

IFFT, the first from the sphere arrangement and the
second from breaking conditions that resulted in stairs

on the sample surface. This may cause confusion for

interpretation of the IFFT because the sphere pattern
contrast is strongly modulated by the contrast of the stair

pattern signal.

IFFT cannot show a real view of the stair habit and
distribution in the studied area. A high-magnification

view of the surface (Fig. 8, left inset) shows stairs

irregular in direction and size, but our measurement is
made on a much larger surface and it highlights a large-

scale, average regularity. On the same image as that was

used for our calculations, a profile using Digital
Micrograph highlights a periodic change of contrast

on the surface. The measure over ten steps gives

12.9mm, hence 1.29mm per step, that is fairly
consistent with the one calculated by our method

(1.14mm). The difference may be explained by some

irregularity of the steps over the whole image. In this
case, FFT and IFFT together give quantitative

information that cannot be obtained with only the

SEM image.
The spheres IFFT (Fig. 11) clearly reveals the sphere

arrangement within one layer. This result is quite

surprising considering uniformity and lack of obvious
information on the original SEM image. However,

interpretation of what is seen on global IFFT and spheres

IFFT is not straightforward because preliminary
knowledge of the structure is missing and the uniformity

of the surface complicates interpretation of the results.

We cannot determine the sequence of the stacking in
terms of A, B, and C layers because discrimination

between layer families is not evident as it was in sample

A. We decided to build simulated images (Fig. 13) to
better understand what is really shown on the IFFT

image. On the FFT images of our simulations, we

observe both spots due to the stairs and superstructure
spots so the simulations mimic our observations.

Simulated images confirm the difficulty when an

additional strong periodic signal is present as the stairs.
Neither the IFFT of a simulated image for cubic close-

packed nor for hexagonal close-packed (Fig. 13) can

distinguish between A, B, or C families as it did for
sample A (Fig. 16). All the resulting spots of those

families are superimposed on the FFT and their

intensities can be strongly modified by an additive
signal from alternating bands (like the stairs) that can

obscure the fine information contained inside.

We wanted also to check if our procedure induces
artifacts on the final IFFT, including possible loss of

information on periods as a result of the multi-step

procedure. For that, the autocorrelation image calculat-
ed from a real SEM image where no evidence of

structure can be seen is not usable, but one calculated

from our simulated images is (Fig. 14). Autocorrelation
is a particular case of IFFT so we can compare directly

an IFFT obtained at the end of our method and the

corresponding autocorrelated image. This comparison
(Fig. 14) clearly demonstrates that information is lost

during the multi-step process. In the case of hexagonal

close-packed simulated image, coexistence of A and B
families is clearly visible on the autocorrelation image

where two patterns are nearly superimposed. Each spot

of one family is very close to a spot of the other family.
This proximity causes misinterpretation when autocor-

relation is submitted to FFT then IFFT. Nearby spots on

the autocorrelation are merged together on the IFFT to
create a new bigger spot. The same problem is also seen

in case of cubic close-packed simulated image. Six spots

Fig 16. Interlaced odd and even pattern on the IFFT of sampleA.
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arranged as a hexagon highlight the existence of A, B,
and C families on the autocorrelation image but only one

family is visible on the IFFT. This phenomenon is

caused by insufficient pixel resolution on the original
SEM image that is propagated and amplified through the

subsequent steps of the treatment. This is also a

limitation to our method that can be reduced by
choosing the best pixel resolution of the SEM whenever

possible. Modern SEMs have a range of pixel

resolutions, and, unfortunately, some are too low for
this procedure. The pixel resolution will probably

increase in the future thus increasing the applicability

of this method.
Accordingly, to improve the resulting images, not

only the size of the spheres has to be considered but also

the relative position between spheres from different
families of layers.

Despite siliceous cement which hides the sphere

pattern of sample B and the limitations described above,
we confirmed the existence of a regular structure as was

expected because of the play of colors, we observed its

symmetry, and we measured the average size of the
silica spheres.

Further work on this procedure could include the

creation of software tools to construct simulated SEM
images for comparison with real SEM images or the

creation of a library of IFFTs from different types of

structures as references.

Conclusion, Perspectives

In an unusual way, scanning electronmicroscopywas

successfully used to investigate the periodic structure of
play-of-color opals. We developed a methodology to

calculate image acquisition parameters to get appropri-

ate image resolution. The resulting SEM images were
treated with dedicated software to get FFT images and

IFFT images.

This technique was first tested on a reference opal
sample that clearly shows a periodic structure on the

SEM image to demonstrate that the procedure gives

results consistent with the direct observation. Then the
procedure was applied to another opal sample from

which no periodic structure can be seen on an SEM

image. The IFFT image clearly revealed a periodic
structure in this second sample.

Results on both samples are consistent. Hidden or

not, the structure of opal is revealed even when surface
conditions prohibit collection of structure parameters

directly.

In addition, information about breaking habits were
revealed, such as parallel stairs that arise from the

combination of the oblique breaking plane with the

periodic structure of the opal. By the method presented
herein, we obtained more information about the surfaces

of our broken samples than observing traditional SEM

images alone. Also, FFT allows precise measurement of
an average silica sphere diameter from a very large

sampling of many spheres.

The limitations of the methodology arise from the
initial resolution of the SEM image because the pixel

resolution of the SEM has to be as high as possible to

clearly visualize smallest parameters of the sample
pattern. It is these fine details that can be lost during

successive calculations.

This methodology allowed us to simplify opal sample
preparation and to observe a surface without preliminary

etching with hydrofluoric acid, a traditional method for

investigating the periodic structure in opals. Here, we
avoid the sphere damage that can be caused by the

chemical etch.

Our method reveals periodic patterns in apparently
homogeneous images, and allows measurement of

periodicity parameters (distance between patterns).

However, we encountered difficulties in determining
the exact 3D structure of our samples. This shows that

further development in structure analysis is necessary,

through simulation or analysis of well-known structures,
to improve structure determination.

We believe that our method is applicable for

observation of natural or synthetic materials presenting
such periodic structures as, for example, photonic

crystals. In addition, it may be used to investigate the

propagation of shock waves in periodically structured
materials.
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