4 research outputs found

    Individual patient data meta-analysis of organ failure in acute pancreatitis : protocol of the PANCREA II study

    Get PDF
    Context Organ failure is a major determinant of mortality in patients with acute pancreatitis. These patients usually requireadmission to high dependency or intensive care units and consume considerable health care resources. Given a low incidence rate of organ failure and a lack of large non-interventional studies in the field of acute pancreatitis, the characteristics of organ failure that influence outcomes of patients with acute pancreatitis remain largely unknown. Therefore, the Pancreatitis Across Nations Clinical Research and Education Alliance (PANCREA) aims to conduct a meta-analysis of individual patient data from prospective non-interventional studies to determine the influence of timing, duration, sequence, and combination of different organ failures on mortality in patients with acute pancreatitis. Methods Pancreatologists currently active with acute pancreatitis clinical research will be invited to contribute. To be eligible for inclusion patients will have to meet the criteria of acute pancreatitis, develop at least one organ failure during the first week of hospitalization, and not be enrolled into an intervention study. Raw data will then be collated and checked. Individual patient data analysis based on a logistic regression model with adjustment for confounding variables will be done. For all analyses, corresponding 95% confidence intervals and P values will be reported. Conclusion This collaborative individual patient data meta-analysis will answer important clinical questions regarding patients with acute pancreatitis that develop organ failure. Information derived from this study will be used to optimize routine clinical management and improve care strategies. It can also help validate outcome definitions, allow comparability of results and form a more accurate basis for patient allocation in further clinical studies

    Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index

    No full text
    The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single-nucleotide polymorphisms (SNPs) with the lowest P-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI-related loci was performed in the AN GWAMA. We detected significant associations (P-values <5 Ă— 10-5, Bonferroni-corrected P<0.05) for nine SNP alleles at three independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; Poverall: 2.47 Ă— 10-06/Pfemales: 3.45 Ă— 10-07/Pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet-induced obese (DIO) mice as compared with age-matched lean controls. We observed no evidence for associations for the look-up of BMI-related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation
    corecore