11 research outputs found

    A simplified interventional mapping system (SIMS) for the selection of combinations of targeted treatments in non-small cell lung cancer

    Get PDF
    Non-small cell lung cancer (NSCLC) is a leading cause of death worldwide. Targeted monotherapies produce high regression rates, albeit for limited patient subgroups, who inevitably succumb. We present a novel strategy for identifying customized combinations of triplets of targeted agents, utilizing a simplified interventional mapping system (SIMS) that merges knowledge about existent drugs and their impact on the hallmarks of cancer. Based on interrogation of matched lung tumor and normal tissue using targeted genomic sequencing, copy number variation, transcriptomics, and miRNA expression, the activation status of 24 interventional nodes was elucidated. An algorithm was developed to create a scoring system that enables ranking of the activated interventional nodes for each patient. Based on the trends of co-activation at interventional points, combinations of drug triplets were defined in order to overcome resistance. This methodology will inform a prospective trial to be conducted by the WIN consortium, aiming to significantly impact survival in metastatic NSCLC and other malignancies

    Radiotherapy as a means to increase the efficacy of T-cell therapy in solid tumors

    No full text
    ABSTRACTChimeric antigen receptor (CAR)-T cells have demonstrated significant improvements in the treatment of refractory B-cell malignancies that previously showed limited survival. In contrast, early-phase clinical studies targeting solid tumors have been disappointing. This may be due to both a lack of specific and homogeneously expressed targets at the surface of tumor cells, as well as intrinsic properties of the solid tumor microenvironment that limit homing and activation of adoptive T cells. Faced with these antagonistic conditions, radiotherapy (RT) has the potential to change the overall tumor landscape, from depleting tumor cells to reshaping the tumor microenvironment. In this article, we describe the current landscape and discuss how RT may play a pivotal role for enhancing the efficacy of adoptive T-cell therapies in solid tumors. Indeed, by improving homing, expansion and activation of infused T cells while reducing tumor volume and heterogeneity, the use of RT could help the implementation of engineered T cells in the treatment of solid tumors

    Phase 1 study of the oral histone deacetylase inhibitor abexinostat in patients with Hodgkin lymphoma, non-Hodgkin lymphoma, or chronic lymphocytic leukaemia

    No full text
    International audienceBackground We determined the safety, pharmacokinetics, pharmacodynamics, and antitumour activity of abexinostat in B-cell lymphoma or chronic lymphocytic leukaemia. Patients and methods Thirty-five patients received oral abexinostat 30, 45, or 60 mg/m(2) bid in a 3 + 3 design in three 21-day schedules: 14 days on treatment in schedule 1 (D1-14); 10 days in schedule 2 (D1-5 and D8-12); and 12 days in schedule 3 (D1-4, D8-11, and D15-18). Safety, tumour response, plasma concentration, and histone H3 acetylation were measured. Results Two dose-limiting toxicities occurred in each schedule (one grade 3 febrile neutropenia; five grade 4 thrombocytopenia) at 60 mg/m(2) bid (maximal tolerated dose). The recommended dose was 45 mg/m(2) bid; schedule 1 was considered optimal. Non-haematological drug-related toxicities included grade 1 or 2 diarrhoea (43%), nausea (23%), and vomiting (11%); haematological toxicities included thrombocytopenia (31% grade 3, and 26% grade 4), which remained manageable and reversible on withdrawal. Of 29 evaluable patients, there were 2 complete and 6 partial responses; median duration of response was 14.6 months (range 3-16.5 months) (1 cycle is equivalent to 0.75 months). There was no evidence for nonlinear pharmacokinetics. There was a correlation between dose and histone acetylation. Conclusion Abexinostat has manageable toxicity and induced some durable complete and partial responses in B-cell lymphoma or chronic lymphocytic leukaemia. Our results suggest most favourable responses in patients with follicular lymphoma, though further research would be needed to confirm this finding

    Repurposing rotavirus vaccines for intratumoral immunotherapy can overcome resistance to immune checkpoint blockade

    No full text
    International audienceAlthough immune checkpoint-targeted therapies are currently revolutionizing cancer care, only a minority of patients develop durable objective responses to anti-PD-1, PD-L1, and CTLA-4 therapy. Therefore, new therapeutic interventions are needed to increase the immunogenicity of tumors and overcome the resistance to these immuno-therapies. Oncolytic properties of common viruses can be exploited for the priming of antitumor immunity, and such oncolytic viruses are currently in active clinical development in combination with immune checkpoint-targeted therapies. However, the routine implementation of these therapies is limited by their manufacturing constraints, the risk of exposure of clinical staff, and the ongoing regulations on genetically modified organisms. We sought to determine whether anti-infectious disease vaccines could be used as a commercially available source of immunostimulatory agents for cancer immunotherapy. We found that rotavirus vaccines have both immunostimulatory and oncolytic properties. In vitro, they can directly kill cancer cells with features of immunogenic cell death. In vivo, intratumoral rotavirus therapy has antitumor effects that are dependent on the immune system. In several immunocompetent murine tumor models, intratumoral rotavirus overcomes resistance to and synergizes with immune checkpoint-targeted therapy. Heat-and UV-inactivated rotavirus lost their oncolytic activity but kept their synergy with immune checkpoint-targeted antibodies through the up-regulation of the double-stranded RNA receptor retinoic acid-induced gene 1 (RIG-I). Rotavirus vaccines are clinical-grade products used in pediatric and adult populations. Therefore, in situ immunization strategies with intratumoral-attenuated rotavirus could be implemented quickly in the clinic

    The Histone Deacetylase Inhibitor Abexinostat Induces Cancer Stem Cells Differentiation in Breast Cancer with Low Xist Expression

    No full text
    International audiencePurpose: Cancer stem cells (CSC) are the tumorigenic cell population that has been shown to sustain tumor growth and to resist conventional therapies. The purpose of this study was to evaluate the potential of histone deacetylase inhibitors (HDACi) as anti-CSC therapies. Experimental Design: We evaluated the effect of the HDACi compound abexinostat on CSCs from 16 breast cancer cell lines (BCL) using ALDEFLUOR assay and tumorsphere formation. We performed gene expression profiling to identify biomarkers predicting drug response to abexinostat. Then, we used patient-derived xenograft (PDX) to confirm, in vivo, abexinostat treatment effect on breast CSCs according to the identified biomarkers. Results: We identified two drug-response profiles to abexinostat in BCLs. Abexinostat induced CSC differentiation in low-dose sensitive BCLs, whereas it did not have any effect on the CSC population from high-dose sensitive BCLs. Using gene expression profiling, we identified the long noncoding RNA Xist (X-inactive specific transcript) as a biomarker predicting BCL response to HDACi. We validated that low Xist expression predicts drug response in PDXs associated with a significant reduction of the breast CSC population. Conclusions: Our study opens promising perspectives for the use of HDACi as a differentiation therapy targeting the breast CSCs and identified a biomarker to select patients with breast cancer susceptible to responding to this treatment. Clin Cancer Res; 19(23); 6520-31. (C) 2013 AACR

    TIPIN depletion leads to apoptosis in breast cancer cells

    No full text
    International audienceTriple-negative breast cancer (TNBC) is the breast cancer subgroup with the most aggressive clinical behavior. Alternatives to conventional chemotherapy are required to improve the survival of TNBC patients. Gene-expression analyses for different breast cancer subtypes revealed significant overexpression of the Timeless-interacting protein (TIPIN), which is involved in the stability of DNA replication forks, in the highly proliferative associated TNBC samples. Immunohistochemistry analysis showed higher expression of TIPIN in the most proliferative and aggressive breast cancer subtypes including TNBC, and no TIPIN expression in healthy breast tissues. The depletion of TIPIN by RNA interference impairs the proliferation of both human breast cancer and non-tumorigenic cell lines. However, this effect may be specifically associated with apoptosis in breast cancer cells. TIPIN silencing results in higher levels of single-stranded DNA (ssDNA), indicative of replicative stress (RS), in TNBC compared to non-tumorigenic cells. Upon TIPIN depletion, the speed of DNA replication fork was significantly decreased in all BC cells. However, TIPIN-depleted TNBC cells are unable to fire additional replication origins in response to RS and therefore undergo apoptosis. TIPIN knockdown in TNBC cells decreases tumorigenicity in vitro and delays tumor growth in vivo. Our findings suggest that TIPIN is important for the maintenance of DNA replication and represents a potential treatment target for the worst prognosis associated breast cancers, such as TNBC

    Polo-like Kinase 1: A Potential Therapeutic Option in Combination with Conventional Chemotherapy for the Management of Patients with Triple-Negative Breast Cancer

    No full text
    Breast cancers are composed of molecularly distinct subtypes with different clinical outcomes and responses to therapy. To discover potential therapeutic targets for the poor prognosis-associated triple-negative breast cancer (TNBC), gene expression profiling was carried out on a cohort of 130 breast cancer samples. Polo-like kinase 1 (PLK1) was found to be significantly overexpressed in TNBC compared with the other breast cancer subtypes. High PLK1 expression was confirmed by reverse phase protein and tissue microarrays. In triple-negative cell lines, RNAi-mediated PLK1 depletion or inhibition of PLK1 activity with a small molecule (BI-2536) induced an increase in phosphorylated H2AX, G(2)-M arrest, and apoptosis. A soft-agar colony assay showed that PLK1 silencing impaired clonogenic potential of TNBC cell lines. When cells were grown in extracellular matrix gels (Matrigel), and exposed to BI-2536, apoptosis was observed specifically in TNBC cancerous cells, and not in a normal cell line. When administrated as a single agent, the PLK1 inhibitor significantly impaired tumor growth in vivo in two xenografts models established from biopsies of patients with TNBC. Most importantly, the administration of BI-2536, in combination with doxorubicin + cyclophosphamide chemotherapy, led to a faster complete response compared with the chemotherapy treatment alone and prevented relapse, which is the major risk associated with TNBC. Altogether, our observations suggest PLK1 inhibition as an attractive therapeutic approach, in association with conventional chemotherapy, for the management of patients with TNBC. Cancer Res; 73(2); 813-23. (C) 2012 AACR
    corecore