3,926 research outputs found

    Baryon Dynamics, Dark Matter Substructure, and Galaxies

    Get PDF
    By comparing a collisionless cosmological N-body simulation (DM) to an SPH simulation with the same initial conditions, we investigate the correspondence between the dark matter subhalos produced by collisionless dynamics and the galaxies produced by dissipative gas dynamics in a dark matter background. When galaxies in the SPH simulation become satellites in larger groups, they retain local dark matter concentrations (SPH subhalos) whose mass is typically five times their baryonic mass. The more massive subhalos of the SPH simulation have corresponding subhalos of similar mass and position in the DM simulation; at lower masses, there is fairly good correspondence, but some DM subhalos are in different spatial positions and some suffer tidal stripping or disruption. The halo occupation statistics of DM subhalos -- the mean number of subhalos, pairs, and triples as a function of host halo mass -- are very similar to those of SPH subhalos and SPH galaxies. Gravity of the dissipative baryon component amplifies the density contrast of subhalos in the SPH simulation, making them more resistant to tidal disruption. Relative to SPH galaxies and SPH subhalos, the DM subhalo population is depleted in the densest regions of the most massive halos. The good agreement of halo occupation statistics between the DM subhalo and SPH galaxy populations leads to good agreement of their two-point correlation functions and higher order moments on large scales. The depletion of DM subhalos in dense regions depresses their clustering at R<1 Mpc/h. In these simulations, the "conversation" between dark matter and baryons is mostly one-way, with dark matter dynamics telling galaxies where to form and how to cluster, but the "back talk" of the baryons influences small scale clustering by enhancing the survival of substructure in the densest environments.Comment: 32 pages including 16 figs. Submitted to ApJ. PDF file with higher quality versions of Figs 2 and 3 available at http://www.astronomy.ohio-state.edu/~dhw/Preprints/subhalo.pd

    Radio Emission from an Ultraluminous X-Ray Source

    Get PDF
    The physical nature of ultraluminous x-ray sources is uncertain. Stellar mass black holes with beamed radiation and intermediate mass black holes with isotropic radiation are two plausible explanations. We discovered radio emission from an ultraluminous x-ray source in the dwarf irregular galaxy NGC 5408. The x-ray, radio and optical fluxes as well as the x-ray spectral shape are consistent with beamed relativistic jet emission from an accreting stellar black hole. If confirmed, this would suggest that the ultraluminous x-ray sources may be stellar-mass rather than intermediate mass black holes. However, interpretation of the source as a jet-producing intermediate-mass black hole cannot be ruled out at this time.Comment: 8 pages, one color figure. appeared in Science 299: 365-367 (January 17, 2003

    Nucleosynthesis constraints on the neutron star-black hole merger rate

    Full text link
    We derive constraints on the time-averaged event rate of neutron star-black hole (NS-BH) mergers by using estimates of the population-integrated production of heavy rapid neutron-capture (r-process) elements with nuclear mass numbers A > 140 by such events in comparison to the Galactic repository of these chemical species. Our estimates are based on relativistic hydrodynamical simulations convolved with theoretical predictions of the binary population. This allows us to determine a strict upper limit of the average NS-BH merger rate of ~6*10^-5 per year. We quantify the uncertainties of this estimate to be within factors of a few mostly because of the unknown BH spin distribution of such systems, the uncertain equation of state of NS matter, and possible errors in the Galactic content of r-process material. Our approach implies a correlation between the merger rates of NS-BH binaries and of double NS systems. Predictions of the detection rate of gravitational-wave signals from such compact-object binaries by Advanced LIGO and Advanced Virgo on the optimistic side are incompatible with the constraints set by our analysis.Comment: 5 pages, 3 figures; accepted for publication in ApJ

    Sub-Inertial Gravity Modes in the B8V Star KIC 7760680 Reveal Moderate Core Overshooting and Low Vertical Diffusive Mixing

    Get PDF
    KIC 7760680 is so far the richest slowly pulsating B star, by exhibiting 36 consecutive dipole (ℓ=1\ell=1) gravity (g-) modes. The monotonically decreasing period spacing of the series, in addition to the local dips in the pattern confirm that KIC 7760680 is a moderate rotator, with clear mode trapping in chemically inhomogeneous layers. We employ the traditional approximation of rotation to incorporate rotational effects on g-mode frequencies. Our detailed forward asteroseismic modelling of this g-mode series reveals that KIC 7760680 is a moderately rotating B star with mass ∌3.25\sim3.25 M⊙_\odot. By simultaneously matching the slope of the period spacing, and the number of modes in the observed frequency range, we deduce that the equatorial rotation frequency of KIC 7760680 is 0.4805 day−1^{-1}, which is 26\% of its Roche break up frequency. The relative deviation of the model frequencies and those observed is less than one percent. We succeed to tightly constrain the exponentially-decaying convective core overshooting parameter to fov≈0.024±0.001f_{\rm ov}\approx0.024\pm0.001. This means that convective core overshooting can coexist with moderate rotation. Moreover, models with exponentially-decaying overshoot from the core outperform those with the classical step-function overshoot. The best value for extra diffusive mixing in the radiatively stable envelope is confined to log⁥Dext≈0.75±0.25\log D_{\rm ext}\approx0.75\pm0.25 (with DextD_{\rm ext} in cm2^2 sec−1^{-1}), which is notably smaller than theoretical predictions.Comment: 12 Figures, 2 Tables, all data publicly available for download; accepted for publication in Astrophysical Journa

    Nucleosynthesis in dynamical and torus ejecta of compact binary mergers

    Full text link
    We present a comprehensive study of r-process element nucleosynthesis in the ejecta of compact binary mergers (CBMs) and their relic black-hole (BH)-torus systems. The evolution of the BH-accretion tori is simulated for seconds with a Newtonian hydrodynamics code including viscosity effects, pseudo-Newtonian gravity for rotating BHs, and an energy-dependent two-moment closure scheme for the transport of electron neutrinos and antineutrinos. The investigated cases are guided by relativistic double neutron star (NS-NS) and NS-BH merger models, producing ~3-6 Msun BHs with rotation parameters of A~0.8 and tori of 0.03-0.3 Msun. Our nucleosynthesis analysis includes the dynamical (prompt) ejecta expelled during the CBM phase and the neutrino and viscously driven outflows of the relic BH-torus systems. While typically ~20-25% of the initial accretion-torus mass are lost by viscously driven outflows, neutrino-powered winds contribute at most another ~1%, but neutrino heating enhances the viscous ejecta significantly. Since BH-torus ejecta possess a wide distribution of electron fractions (0.1-0.6) and entropies, they produce heavy elements from A~80 up to the actinides, with relative contributions of A>130 nuclei being subdominant and sensitively dependent on BH and torus masses and the exact treatment of shear viscosity. The combined ejecta of CBM and BH-torus phases can reproduce the solar abundances amazingly well for A>90. Varying contributions of the torus ejecta might account for observed variations of lighter elements with 40<Z<56 relative to heavier ones, and a considerable reduction of the prompt ejecta compared to the torus ejecta, e.g. in highly asymmetric NS-BH mergers, might explain the composition of heavy-element deficient stars.Comment: 7 pages, 4 figures, only changed title compared to previous version, accepted for publication in Proceedings of Science (Nuclei in the Cosmos XIII, Debrecen

    Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers

    Full text link
    We present the first comprehensive study of r-process element nucleosynthesis in the ejecta of compact binary mergers (CBMs) and their relic black-hole (BH)-torus systems. The evolution of the BH-accretion tori is simulated for seconds with a Newtonian hydrodynamics code including viscosity effects, pseudo-Newtonian gravity for rotating BHs, and an energy-dependent two-moment closure scheme for the transport of electron neutrinos and antineutrinos. The investigated cases are guided by relativistic double neutron star (NS-NS) and NS-BH merger models, producing ~3-6 Msun BHs with rotation parameters of A~0.8 and tori of 0.03-0.3 Msun. Our nucleosynthesis analysis includes the dynamical (prompt) ejecta expelled during the CBM phase and the neutrino and viscously driven outflows of the relic BH-torus systems. While typically ~20-25% of the initial accretion-torus mass are lost by viscously driven outflows, neutrino-powered winds contribute at most another ~1%, but neutrino heating enhances the viscous ejecta significantly. Since BH-torus ejecta possess a wide distribution of electron fractions (0.1-0.6) and entropies, they produce heavy elements from A~80 up to the actinides, with relative contributions of A>130 nuclei being subdominant and sensitively dependent on BH and torus masses and the exact treatment of shear viscosity. The combined ejecta of CBM and BH-torus phases can reproduce the solar abundances amazingly well for A>90. Varying contributions of the torus ejecta might account for observed variations of lighter elements with 40<Z<56 relative to heavier ones, and a considerable reduction of the prompt ejecta compared to the torus ejecta, e.g. in highly asymmetric NS-BH mergers, might explain the composition of heavy-element deficient stars.Comment: 30 pages, 22 figures; revised version, accepted by MNRAS; appendix added with test results for neutrino transpor

    Hydraulic Fracture Monitoring: A Jonah Field Case Study

    Get PDF
    Hydraulic fracturing involves the injection of a fluid to fracture oil and gas reservoirs, and thus increase their permeability. The process creates numerous microseismic events, which can be used to monitor subsurface operations. In this study we introduce a novel microearthquake relocation workflow based on crosswell seismic observations and in-situ velocity measurements, and then apply it to data from two hydraulic fracture stages conducted at the Jonah field (Wyoming). The relocation is carried out by global optimization of a probability density function including P- and S-wave traveltimes, as well as source-receiver azimuths. By averaging multiple cross-well observations, we reorient the three component receivers and reduce the scatter of measured azimuth values by 50-60%. By simultaneously relocating the observed microearthquake ensemble for one fracture stage, we derive a more reliable image of the average fracture orientation and reduce the scatter of microearthquake locations by 20-40% as compared to conventional approaches. For the two stages of fracturing investigated, the microearthquakes are found to follow a NW-SE trend that places constraints on the local stress field and on the newly created fluid paths.Massachusetts Institute of Technology. Earth Resources Laboratory; Schlumberger-Doll Research Cente

    Perancangan Sistem Informasi Data Bibit pada Balai Penyuluhanpertanian Perikanan dan Kehutanan (Bp3k) Kec. Sitinjau Laut

    Full text link
    BP3K kecamatan setinjau laut merupakan badan unit daerah yang fokus di bidangpenyulahan, pertanian perikanan dan kehutanan. “Dalam melakukan pengolahandata BP3K masih menggunakan penginputan data ke dalam buku besar dan belummemiliki suatu sistem penyimpanan data secara komputerisasi yang mampumengedit atau mengolah kembali data yang di simpan sehingga sering mengalamiketerlambatan dan kesalahan dalam pencarian data dan penyajian resi/laporan”.Berdasarkan permasalahan di atas maka diusulkan penerapan program aplikasiyang dikembangkan menjadi sebuah program aplikasi dengan bahasapemrograman dan terintegrasi dengan database. Hasil yang dicapai yaituberupa sebuah rancangan sistem informasi terkomputerisasi berbasis databaseyang dapat memudahkan pihak BP3K dalam mengolah data khususnya masalahbibit masuk atau penyaluran bibit dan memberikan laporan secaracepat dan tepat waktu. Dengandibangunnya aplikasi berbasis komputer ini, diharapkan semua kendala yang adadapat teratasi dengan baik sehingga terwujud sistem yang efektif dan efisien
    • 

    corecore