8 research outputs found

    Evidence of recent ruptures in the central faults of the Acambay Graben (central Mexico)

    Get PDF
    The Acambay Graben, within the central part of the Trans-Mexican Volcanic Belt, is one of the major sources of continental earthquakes in Mexico. To date, the activity and paleoseismological history of the axial faults of the graben are not well constrained. We provide morphological, structural and sedimentological evidence of the seismogenic nature of two of the axial structures, the Temascalcingo and the Tepuxtepec fault systems. Faults consist of multiple parallel scarps with en echelon and horse-splay patterns. Fault systems extend for 60 km and displace Quaternary to Upper Miocene volcanic edifices and volcano-sedimentary materials. Surface lengths of individual fault traces range between 3 and 25 km, and observed throws reach a minimum of 150-200 m. The long-term and short-term slip rate of the Temascalcingo fault system in the studied section presents similar values, ranging from 0.06 ± 0.02 (minimum long term) to 0.12 ± 0.02 mm y−1 (maximum value of average short-term). Only the long-term slip rate of the Tepuxtepec system could be constrained in 0.01-0.02 mm/y, being a minimum estimate. The Holocene fault rupture history at two sites provided evidence of six ruptures since 12,500-11,195 BCE, among which three ruptures should have occurred between 11,847 ± 652 BCE and 11,425 ± 465 BCE Variable single event displacements (SEDs, between 6 and 77) are interpreted as the result of fault interdependences and/or the interaction with the latest volcanic activity. Also, small displacements triggered by activity on other faults probably contributed to slip variability, i.e., faults display primary and secondary behavior

    First evidence of paleoearthquakes along the Carboneras Fault Zone (SE Iberian Peninsula): Los Trances site

    Get PDF
    Seismogenic faults that have not produced historical large earthquakes remain unnoticed and, thus, are dangerously left out from seismic hazard analyses. The seismogenic nature of the Carboneras Fault Zone, a left-lateral strikeslip fault in the Eastern Betic Shear Zone (southeastern Spain), has not been fully explored to date in spite of having a morphological expression equivalent to the Alhama de Murcia Fault, a seismogenic fault in the same tectonic system. This study provides the first paleoseismic evidence of the seismogenic nature of the Carboneras Fault Zone, based on the analysis of 3 trenches at Los Trances site, on the northwestern edge of the La Serrata Range. Cross cutting relationships and numerical dating, based on radiocarbon, thermoluminescence and U-series, reveal a minimum of 4 paleoearthquakes: Paleoearthquake1 (the oldest) and Paleoearthquake2 took place after 133ka, Paleoearthquake3 occurred between 83–73ka and Paleoearthquake4 happened after 42.5ka (probably after 30.8ka), resulting in a maximum possible average recurrence of 33ka. This value, based on a minimum amount of paleoearthquakes, is probably overestimated, as it does not scale well with published slip-rates derived from offset channels or GPS geodetical data. The characterization of this fault as seismogenic, implies that it should be considered in the seismic hazard analyses of the SE Iberian Peninsula

    Paleoseismology of a major crustal seismogenic source near Mexico City. The southern border of the Acambay Graben

    Get PDF
    The Trans-Mexican Volcanic Belt is an active continental volcanic arc related to subduction along the Middle America trench. It is characterized by intra-arc extension resulting into several major arc-parallel active fault systems and tectonic basins. The Acambay graben, one of the largest of these basins, is located near Mexico City, in the central part of this province. In 1912, a M 6.9 earthquake ruptured the surface along the northern border of the graben together with at least two other faults. In this paper, we analyze the paleoseismic history of the southern border of the Acambay Graben, with new observations made in one natural outcrop and four paleoseismological trenches excavated across branches of the Venta de Bravo Fault at the site where it overlaps with the Pastores Fault. We present evidence of at least two paleo-earthquakes that occurred between 12,190 +/- 175 and 5,822 +/- 87 cal year BP and between 647 +/- 77 and 250 cal year BP. On one of these branches, we estimate a minimum slip-rate value between 0.1 and 0.23 mm/year for the last 12 ka and a mean recurrence interval of 8.5 +/- 3 ka. By considering several likely rupture lengths along the Venta de Bravo and Pastores faults, we calculated a maximum possible magnitude of M-w 7.01 +/- 0.27. Finally, by correlating events recorded along different faults within the Acambay Graben, we discuss several possible rupture coalescent scenarios and related consequences for Mexico City

    First evidence of paleoearthquakes along the Carboneras Fault Zone (SE Iberian Peninsula): Los Trances site

    Get PDF
    Seismogenic faults that have not produced historical large earthquakes remain unnoticed and, thus, are dangerously left out from seismic hazard analyses. The seismogenic nature of the Carboneras Fault Zone, a left-lateral strikeslip fault in the Eastern Betic Shear Zone (southeastern Spain), has not been fully explored to date in spite of having a morphological expression equivalent to the Alhama de Murcia Fault, a seismogenic fault in the same tectonic system. This study provides the first paleoseismic evidence of the seismogenic nature of the Carboneras Fault Zone, based on the analysis of 3 trenches at Los Trances site, on the northwestern edge of the La Serrata Range. Cross cutting relationships and numerical dating, based on radiocarbon, thermoluminescence and U-series, reveal a minimum of 4 paleoearthquakes: Paleoearthquake1 (the oldest) and Paleoearthquake2 took place after 133ka, Paleoearthquake3 occurred between 83-73ka and Paleoearthquake4 happened after 42.5ka (probably after 30.8ka), resulting in a maximum possible average recurrence of 33ka. This value, based on a minimum amount of paleoearthquakes, is probably overestimated, as it does not scale well with published slip-rates derived from offset channels or GPS geodetical data. The characterization of this fault as seismogenic, implies that it should be considered in the seismic hazard analyses of the SE Iberian Peninsula

    First evidence of paleoearthquakes along the Carboneras Fault Zone (SE Iberian Peninsula) : Los Trances site

    Get PDF
    Seismogenic faults that have not produced historical large earthquakes remain unnoticed and, thus, are dangerously left out from seismic hazard analyses. The seismogenic nature of the Carboneras Fault Zone, a left-lateral strikeslip fault in the Eastern Betic Shear Zone (southeastern Spain), has not been fully explored to date in spite of having a morphological expression equivalent to the Alhama de Murcia Fault, a seismogenic fault in the same tectonic system. This study provides the first paleoseismic evidence of the seismogenic nature of the CarbonerasFault Zone, based on the analysis of 3 trenches at Los Trances site, on the northwestern edge of the La Serrata Range. Cross cutting relationships and numerical dating, based on radiocarbon, thermoluminescence and U-series, reveal a minimum of 4 paleoearthquakes: Paleoearthquake1 (the oldest) and Paleoearthquake2 took place after 133ka, Paleoearthquake3 occurred between 83-73ka and Paleoearthquake4 happened after 42.5ka (probably after 30.8ka), resulting in a maximum possible average recurrence of 33ka. This value, based on a minimum amount of paleoearthquakes, is probably overestimated, as it does not scale well with published slip-rates derived from offset channels or GPS geodetical data. The characterization of this fault as seismogenic, implies that it should be considered in the seismic hazard analyses of the SE Iberian Peninsula

    First evidence of paleoearthquakes along the Carboneras Fault Zone (SE Iberian Peninsula): Los Trances site

    Get PDF
    Seismogenic faults that have not produced historical large earthquakes remain unnoticed and, thus, are dangerously left out from seismic hazard analyses. The seismogenic nature of the Carboneras Fault Zone, a left-lateral strikeslip fault in the Eastern Betic Shear Zone (southeastern Spain), has not been fully explored to date in spite of having a morphological expression equivalent to the Alhama de Murcia Fault, a seismogenic fault in the same tectonic system. This study provides the first paleoseismic evidence of the seismogenic nature of the CarbonerasFault Zone, based on the analysis of 3 trenches at Los Trances site, on the northwestern edge of the La Serrata Range. Cross cutting relationships and numerical dating, based on radiocarbon, thermoluminescence and U-series, reveal a minimum of 4 paleoearthquakes: Paleoearthquake1 (the oldest) and Paleoearthquake2 took place after 133ka, Paleoearthquake3 occurred between 83–73ka and Paleoearthquake4 happened after 42.5ka (probably after 30.8ka), resulting in a maximum possible average recurrence of 33ka. This value, based on a minimum amount of paleoearthquakes, is probably overestimated, as it does not scale well with published slip-rates derived from offset channels or GPS geodetical data. The characterization of this fault as seismogenic, implies that it should be considered in the seismic hazard analyses of the SE Iberian Peninsula

    First evidence of paleoearthquakes along the Carboneras Fault Zone (SE Iberian Peninsula): Los Trances site

    No full text
    Seismogenic faults that have not produced historical large earthquakes remain unnoticed and, thus, are dangerously left out from seismic hazard analyses. The seismogenic nature of the Carboneras Fault Zone, a left-lateral strikeslip fault in the Eastern Betic Shear Zone (southeastern Spain), has not been fully explored to date in spite of having a morphological expression equivalent to the Alhama de Murcia Fault, a seismogenic fault in the same tectonic system. This study provides the first paleoseismic evidence of the seismogenic nature of the Carboneras Fault Zone, based on the analysis of 3 trenches at Los Trances site, on the northwestern edge of the La Serrata Range. Cross cutting relationships and numerical dating, based on radiocarbon, thermoluminescence and U-series, reveal a minimum of 4 paleoearthquakes: Paleoearthquake1 (the oldest) and Paleoearthquake2 took place after 133ka, Paleoearthquake3 occurred between 83-73ka and Paleoearthquake4 happened after 42.5ka (probably after 30.8ka), resulting in a maximum possible average recurrence of 33ka. This value, based on a minimum amount of paleoearthquakes, is probably overestimated, as it does not scale well with published slip-rates derived from offset channels or GPS geodetical data. The characterization of this fault as seismogenic, implies that it should be considered in the seismic hazard analyses of the SE Iberian Peninsula

    First evidence of paleoearthquakes along the Carboneras Fault Zone (SE Iberian Peninsula) : Los Trances site

    No full text
    Seismogenic faults that have not produced historical large earthquakes remain unnoticed and, thus, are dangerously left out from seismic hazard analyses. The seismogenic nature of the Carboneras Fault Zone, a left-lateral strikeslip fault in the Eastern Betic Shear Zone (southeastern Spain), has not been fully explored to date in spite of having a morphological expression equivalent to the Alhama de Murcia Fault, a seismogenic fault in the same tectonic system. This study provides the first paleoseismic evidence of the seismogenic nature of the CarbonerasFault Zone, based on the analysis of 3 trenches at Los Trances site, on the northwestern edge of the La Serrata Range. Cross cutting relationships and numerical dating, based on radiocarbon, thermoluminescence and U-series, reveal a minimum of 4 paleoearthquakes: Paleoearthquake1 (the oldest) and Paleoearthquake2 took place after 133ka, Paleoearthquake3 occurred between 83-73ka and Paleoearthquake4 happened after 42.5ka (probably after 30.8ka), resulting in a maximum possible average recurrence of 33ka. This value, based on a minimum amount of paleoearthquakes, is probably overestimated, as it does not scale well with published slip-rates derived from offset channels or GPS geodetical data. The characterization of this fault as seismogenic, implies that it should be considered in the seismic hazard analyses of the SE Iberian Peninsula
    corecore