10,449 research outputs found
Hadronic Decays of Charm
Recent hadronic charm decay results from fixed-target experiments are
presented. New measurements of the D0 to K-K+K-pi+ branching ratio are shown as
are recent results from Dalitz plot fits to D+ to K-K+pi+, pi+pi-pi+, K-pi+pi+,
K+pi-pi+ and D_s+ to pi+pi-pi+, K+pi-pi+. These fits include measurements of
the masses and widths of several light resonances as well as strong evidence
for the existence of two light scalar particles, the pipi resonance sigma and
the Kpi resonance kappa.Comment: 8 pages, 9 figures, to appear in the proceedings for the 9th
International Symposium on Heavy Flavors, Caltech, Pasadena, 10-13 Sept. 200
From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter
Recent progress in Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) provided extensive molecular mass data for complex natural organic matter (NOM). Structural information can be deduced solely from the molecular masses for ions with extreme molecular element ratios, in particular low H/C ratios, which are abundant in thermally altered NOM (e.g. black carbon). In this communication we propose a general aromaticity index (AI) and two threshold values as unequivocal criteria for the existence of either aromatic (AI > 0.5) or condensed aromatic structures (AI >= 0.67) in NOM. AI can be calculated from molecular formulae which are derived from exact molecular masses of naturally occurring compounds containing C, H, O, N, S and P and is especially applicable for substances with aromatic cores and few alkylations. In order to test the validity of our model index, AI is applied to FTICRMS data of a NOM deep-water sample from the Weddell Sea (Antarctica), a fulvic acid standard and an artificial dataset of all theoretically possible molecular formulae. For graphical evaluation a ternary plot is suggested for four-dimensional data representation. The proposed aromaticity index is a step towards structural identification of NOM and the molecular identification of black carbon in the environment
Dual-Species Plasmas Illustrate MHD Flows
Plasma loops created in the laboratory strongly resemble structures observed in the solar corona. For example, both solar coronal loops and experimental loops exhibit remarkably uniform axial cross sections. A magnetohydrodynamic theory that was proposed to explain this phenomenon predicts that a plasma loop whose axial magnetic field is constricted at both footpoints will experience bulk flows into the loop from both ends. To test this theory, dual-species plasma loops were formed by supplying a different neutral gas to each of the two footpoints. Optical filters were then used to separately image the motion of different sections of the plasma. Bulk flows were, in fact, observed
Planning for the mobile library: a strategy for managing innovation and transformation at the University of Glasgow Library
Modern mobile devices have powerful features that are transforming access to information. Lippincott argues that as mobile devices such as smartphones become ‘key information devices’ for our users, libraries will want to have a significant presence in offering content and services that are suitable for this medium. This article outlines the process of development and implementation of a mobile strategy at the University of Glasgow Library. What began as an investigation into a mobile interface to the library catalogue evolved into a comprehensive strategic review of how we deliver services now and in the future in this rapidly changing mobile environment
Beyond Basic Exercise Guidelines: Is Sitting Really the New Smoking?
The Just Stand movement has recently gained a foothold at CSB|SJU with the addition of sit-stand workstations in Clemens Library, Murray Hall, and several faculty and staff offices. Researchers have been studying sitting disease, more formally termed sedentary physiology, for over a decade and have begun to conclude that simply meeting exercise guidelines is not enough to reduce risk for chronic diseases. An individual can be physically active and lead a sedentary lifestyle. The two are not mutually exclusive. The average American adult, even those who meet the general exercise guidelines, spends 55% of their waking hours sedentary. Sedentary behaviors are characterized by wakeful activities that require little physical movement, low energy expenditure, and are performed in a sitting or lying position. Sedentary time is closely related to adverse health risks even if individuals perform physical activity on a daily basis. So what exactly happens when we sit and how can moving more help us decrease our risk for chronic diseases like cardiovascular disease and diabetes? During this presentation, I discuss why too much sitting can be detrimental to health, examine how sedentary time impacts our students, faculty, and staff, and share simple ways you can decrease your sedentary time both at work and at home
-- hadronic mixing and DCS decays from FOCUS
We present an analysis of the decay from FOCUS. From a
sample of 234 events we find a branching ratio of
under the assumption of no mixing and no CP violation. We also present limits
on charm mixing.Comment: Proceedings from talk at 2004 DPF Meeting at University of
California, Riversid
Impact of environmental risk factors for schizophrenia on the developing brain, characterisation of the effects of polyIC and THC on functional neural systems and behaviour
Strathclyde theses - ask staff. Thesis no. : T13455Cannabis abuse can produce deficits in cognition and has been implicated as a 'late' environmental risk factor in the pathogenesis of the poly-factorial disorder schizophrenia. Evidence suggests an age-related susceptibility to the deleterious effects of cannabis as early onset of use may increase the vulnerability of the brain to the adverse consequences of cannabis abuse. Animal models are crucial for exploration of mechanistic and causative theories, and long-term behavioural consequences of adolescent cannabis abuse in a controlled experimental environment. This thesis evaluates the vulnerability of the adolescent/peripubertal brain to Δ9-tetrahydrocannabinol (THC), the principal psychoactive constituent of cannabis, and explores the potential interplay between this schizophrenia-related 'late' environmental risk factor and an 'early' environmental risk factor (prenatal infection - maternal immune activation (MIA)) on functional neural systems and behaviours relevant to schizophrenia. Cannabinoid CB1 receptor ontogeny (activated in the brain by the receptor ligand THC) within important cognitive substrates, the prefrontal cortex (PFC) and hippocampus, was investigated to delineate a period of neurodevelopmental vulnerability for peripubertal THC treatment. CB1 receptor ligand binding revealed that the PFC and hippocampus follow differential late maturational trajectories throughout the peripubertal period. The 'vulnerability window' for peripubertal THC treatment was defined as post-natal day (PD) 35-56 to encompass the dynamic peripubertal ontogenetic patterns of the CB1 receptor in both these regions. Furthermore, age-related alterations in cerebral metabolism and regional functional connectivity profiles were evident in the hippocampus and important neuromodulatory nuclei including the ventral tegmental area, dorsal raphe, locus coeruleus and the diagonal band of Broca.;Acute THC administration (5mg/kg) produced hypometabolism in the thalamus and an altered functional connectivity profile between thalamic nuclei and the PFC, hippocampus and the nucleus accumbens. THC-induced anomalistic neural activity was evident in key neuromodulatory nuclei and produced perturbed functional connectivity within acetylcholine, noradrenaline, and dopamine neural pathways. Acute THC treatment resulted in alterations in cerebral metabolism in the amygdala and aberrant functional connectivity profiles between amygdaloid nuclei and the hippocampus, PFC and nucleus accumbens. There appeared to be an age-related sensitivity to THC in several thalamic, neuromodulatory and amygdaloid nuclei. Peripubertal low-dose intermittent THC (3.5mg/kg, 3 times a week), mimetic of light, recreational adolescent cannabis use, produced long-term cognitive inflexibility, as measured by the attentional-set shifting task, perturbed cerebral metabolism in the dorsolateral orbital cortex and the nucleus accumbens core and altered functional coupling between both these regions and neural substrates subserving reward-related learning including prefrontal, septal and amygdala subfields. High-dose daily THC (7mg/kg) throughout the peripubertal period, mimetic of heavy daily cannabis abuse, did not precipitate any schizophrenia-related behaviours in adulthood. MIA induced by prenatal exposure to the immune-stimulating agent polyriboinosinic-polyribocytidilic acid (PolyIC) did not produce any schizophrenia-related phenotypes in adulthood. However, prenatal PolyIC exposure produced residual hypermetabolism within discrete components of the prefrontal cortex dorsolateral orbital and cingulate cortices and hypometabolism within the CA3 subfield of the hippocampus. The functional connectivity signatures of all these regions indicated a unified MIA effect of aberrant mesocorticolimbic functional coupling in adulthood. Furthermore, chronic intermittent treatment with low-dose THC during the peripubertal period caused an increase in sensitivity to amphetamine (indicative of aberrant mesolimbic dopamine transmission) in PolyIC-treated offspring compared to PBS-treated offspring, suggestive of a synergistic effect of these two environmental risk factors. In conclusion, the findings presented in this thesis have provided clear evidence of dose-specific detrimental effects of 'adolescent' THC exposure on behaviour and the functional neural systems that may underpin these deficits which impact on behaviour and neural systems into adulthood.Cannabis abuse can produce deficits in cognition and has been implicated as a 'late' environmental risk factor in the pathogenesis of the poly-factorial disorder schizophrenia. Evidence suggests an age-related susceptibility to the deleterious effects of cannabis as early onset of use may increase the vulnerability of the brain to the adverse consequences of cannabis abuse. Animal models are crucial for exploration of mechanistic and causative theories, and long-term behavioural consequences of adolescent cannabis abuse in a controlled experimental environment. This thesis evaluates the vulnerability of the adolescent/peripubertal brain to Δ9-tetrahydrocannabinol (THC), the principal psychoactive constituent of cannabis, and explores the potential interplay between this schizophrenia-related 'late' environmental risk factor and an 'early' environmental risk factor (prenatal infection - maternal immune activation (MIA)) on functional neural systems and behaviours relevant to schizophrenia. Cannabinoid CB1 receptor ontogeny (activated in the brain by the receptor ligand THC) within important cognitive substrates, the prefrontal cortex (PFC) and hippocampus, was investigated to delineate a period of neurodevelopmental vulnerability for peripubertal THC treatment. CB1 receptor ligand binding revealed that the PFC and hippocampus follow differential late maturational trajectories throughout the peripubertal period. The 'vulnerability window' for peripubertal THC treatment was defined as post-natal day (PD) 35-56 to encompass the dynamic peripubertal ontogenetic patterns of the CB1 receptor in both these regions. Furthermore, age-related alterations in cerebral metabolism and regional functional connectivity profiles were evident in the hippocampus and important neuromodulatory nuclei including the ventral tegmental area, dorsal raphe, locus coeruleus and the diagonal band of Broca.;Acute THC administration (5mg/kg) produced hypometabolism in the thalamus and an altered functional connectivity profile between thalamic nuclei and the PFC, hippocampus and the nucleus accumbens. THC-induced anomalistic neural activity was evident in key neuromodulatory nuclei and produced perturbed functional connectivity within acetylcholine, noradrenaline, and dopamine neural pathways. Acute THC treatment resulted in alterations in cerebral metabolism in the amygdala and aberrant functional connectivity profiles between amygdaloid nuclei and the hippocampus, PFC and nucleus accumbens. There appeared to be an age-related sensitivity to THC in several thalamic, neuromodulatory and amygdaloid nuclei. Peripubertal low-dose intermittent THC (3.5mg/kg, 3 times a week), mimetic of light, recreational adolescent cannabis use, produced long-term cognitive inflexibility, as measured by the attentional-set shifting task, perturbed cerebral metabolism in the dorsolateral orbital cortex and the nucleus accumbens core and altered functional coupling between both these regions and neural substrates subserving reward-related learning including prefrontal, septal and amygdala subfields. High-dose daily THC (7mg/kg) throughout the peripubertal period, mimetic of heavy daily cannabis abuse, did not precipitate any schizophrenia-related behaviours in adulthood. MIA induced by prenatal exposure to the immune-stimulating agent polyriboinosinic-polyribocytidilic acid (PolyIC) did not produce any schizophrenia-related phenotypes in adulthood. However, prenatal PolyIC exposure produced residual hypermetabolism within discrete components of the prefrontal cortex dorsolateral orbital and cingulate cortices and hypometabolism within the CA3 subfield of the hippocampus. The functional connectivity signatures of all these regions indicated a unified MIA effect of aberrant mesocorticolimbic functional coupling in adulthood. Furthermore, chronic intermittent treatment with low-dose THC during the peripubertal period caused an increase in sensitivity to amphetamine (indicative of aberrant mesolimbic dopamine transmission) in PolyIC-treated offspring compared to PBS-treated offspring, suggestive of a synergistic effect of these two environmental risk factors. In conclusion, the findings presented in this thesis have provided clear evidence of dose-specific detrimental effects of 'adolescent' THC exposure on behaviour and the functional neural systems that may underpin these deficits which impact on behaviour and neural systems into adulthood
- …