52 research outputs found

    Novel Rickettsia in Ticks, Tasmania, Australia

    Get PDF
    A novel rickettsia was detected in Ixodes tasmani ticks collected from Tasmanian devils. A total of 55% were positive for the citrate synthase gene by quantitative PCR. According to current criteria for rickettsia speciation, this new rickettsia qualifies as Candidatus Rickettsia tasmanensis, named after the location of its detection

    Evidence of exposure to Rickettsia felis in Australian patients

    Get PDF
    AbstractRickettsia felis is an emerging zoonosis, causing flea-borne spotted fever (FBSF). Serological diagnosis is typically confounded by cross-reactivity with typhus group rickettsiae and prior to the development of specific serological methods, cases of FBSF in Australia were misdiagnosed.Patient sera tested between August 2010 and December 2013 and known to be seropositive to R. typhi by immunofluorescence antibody testing (IFAT) were subsequently retested against R. felis using an R. felis-specific IFAT. Sera of 49 patients were of a sufficient quality to be included in re-analysis. A classification of FBSF and murine typhus (MT) was attributed to fourteen and seven patients respectively, based on a minimum four-fold higher antibody titre to R. felis than to R. typhi and vice versa. Twenty-eight patients were classified as indeterminate for either R. felis or R. typhi (antibody titres within two-fold of one another).Historically, it is likely that Australian patients clinically ill with FBSF were misdiagnosed. It is important that medical practitioners consider FBSF as part of their differential diagnoses, and obtain relevant history with regard to patient's exposure to domestic pets and their fleas. Australian microbiology diagnostic laboratories should include serological testing for R. felis as part of the diagnostic panel for febrile diseases. Veterinarians are encouraged to increase their awareness of this emerging zoonosis and advocate flea control in pets

    Rickettsia felis in Fleas, Western Australia

    Get PDF
    This study is the first confirmation of Rickettsia felis in Australia. The organism was identified from 4 species of fleas obtained from dogs and cats in Western Australia, by using polymerase chain reaction amplification and DNA sequencing of the citrate synthase and outer membrane protein A genes

    Rickettsia felis, an emerging flea-transmitted human pathogen

    Get PDF
    Rickettsia felis was first recognised two decades ago and has now been described as endemic to all continents except Antarctica. The rickettsiosis caused by R. felis is known as flea-borne spotted fever or cat-flea typhus. The large number of arthropod species found to harbour R. felis and that may act as potential vectors support the view that it is a pan-global microbe. The main arthropod reservoir and vector is the cat flea, Ctenocephalides felis, yet more than 20 other species of fleas, ticks, and mites species have been reported to harbour R. felis. Few bacterial pathogens of humans have been found associated with such a diverse range of invertebrates. With the projected increase in global temperature over the next century, there is concern that changes to the ecology and distribution of R. felis vectors may adversely impact public health

    Rickettsioses in Australia

    No full text
    Australia, an island continent in the southern hemisphere, has a range of rickettsial diseases that include typhus group rickettsiae (Rickettsia typhi), spotted fever group rickettsiae (R. australis, R. honei), scrub typhus group rickettsiae (R. tsutsugamushi), and Q fever (C. burnetii). Our knowledge of Australian rickettsiae is expanding with the recognition of an expanded range of R. honei (Flinders Island spotted fever) to Tasmania and southeastern mainland Australia (not just on Flinders Island), and the detection of a new SFG species (or subspecies), tentatively named "R. marmionii" in the eastern half of Australia. This rickettsia causes both acute disease (7 cases, recognized so far) and is also associated (as a "R. marmionii" bacteriaemia) with patients having a chronic illness. The significance of the latter is under investigation. It may be a marker of autoimmune disease or chronic fatigue in some patients

    საქართველოს საბჭოთა სოციალისტური რესპუბლიკის მთავრობის დადგენილებათა კრებული N5

    Get PDF
    It has been claimed that dogs can be useful sentinels for public health monitoring of vector-borne infectious diseases, including Rickettsia spp. We used 153 canine blood samples opportunistically collected at Murdoch University Veterinary Hospital and 156 canine sera collected from Aboriginal communities in northwest Western Australia to test for evidence of Rickettsia spp. exposure, using microimmunofluorescence (MIF) in the latter case, and both MIF and polymerase chain reaction (PCR) in the former. Conventional and real-time PCR failed to amplify any Rickettsia spp. DNA. The seroprevalence for spotted fever group/transitional group Rickettsia spp. in Western Australian dogs was 17.3% (54/312), and for typhus group (TG) Rickettsia spp., 18.4% (57/310), with a cut-off titer of 1:128. Young dogs (≤ 2 years) from Aboriginal communities had significantly lower seropositivity to TG Rickettsia spp. compared with all other groups, and young Perth dogs had a significantly higher seropositivity to TG Rickettsia spp. than all Aboriginal community dogs

    Is there a Lyme-like disease in Australia? Summary of the findings to date

    Get PDF
    Lyme Borreliosis is a common tick-borne disease of the northern hemisphere caused by the spirochaetes of the Borrelia burgdorferi sensu lato (B. burgdorferi s. l.) complex. It results in multi-organ disease with arthritic, cardiac, neurological and dermatological manifestations. In the last twenty-five years there have been over 500 reports of an Australian Lyme-like syndrome in the scientific literature. However, the diagnoses of Lyme Borreliosis made in these cases have been primarily by clinical presentation and laboratory results of tentative reliability and the true cause of these illnesses remains unknown. A number of animals have been introduced to Australia that may act as B. burgdorferi s. l. reservoirs in Lyme-endemic countries, and there are some Australian Ixodes spp. and Haemaphysalis spp. ticks whose geographical distribution matches that of the Australian Lyme-like cases. Four published studies have searched for Borrelia in Australian ticks, with contradicting results. The cause of the potential Lyme-like disease in Australia remains to be defined. The evidence to date as to whether these illnesses are caused by a Borrelia species, another tick borne pathogen or are due to a novel or unrelated aetiology is summarised in this review
    corecore