114 research outputs found
Automatically building research reading lists
All new researchers face the daunting task of familiarizing themselves with the existing body of research literature in their respective fields. Recommender algorithms could aid in preparing these lists, but most current algorithms do not understand how to rate the importance of a paper within the literature, which might limit their effectiveness in this domain. We explore several methods for augmenting exist-ing collaborative and content-based filtering algorithms with measures of the influence of a paper within the web of cita-tions. We measure influence using well-known algorithms, such as HITS and PageRank, for measuring a node’s im-portance in a graph. Among these augmentation methods is a novel method for using importance scores to influence collaborative filtering. We present a task-centered evalua-tion, including both an offline analysis and a user study, of the performance of the algorithms. Results from these stud-ies indicate that collaborative filtering outperforms content-based approaches for generating introductory reading lists
On the single mode approximation in spinor-1 atomic condensate
We investigate the validity conditions of the single mode approximation (SMA)
in spinor-1 atomic condensate when effects due to residual magnetic fields are
negligible. For atomic interactions of the ferromagnetic type, the SMA is shown
to be exact, with a mode function different from what is commonly used.
However, the quantitative deviation is small under current experimental
conditions (for Rb atoms). For anti-ferromagnetic interactions, we find
that the SMA becomes invalid in general. The differences among the mean field
mode functions for the three spin components are shown to depend strongly on
the system magnetization. Our results can be important for studies of beyond
mean field quantum correlations, such as fragmentation, spin squeezing, and
multi-partite entanglement.Comment: Revised, newly found analytic proof adde
The dynamics of quantum phases in a spinor condensate
We discuss the quantum phases and their diffusion dynamics in a spinor-1
atomic Bose-Einstein condensate. For ferromagnetic interactions, we obtain the
exact ground state distribution of the phases associated with the total atom
number (), the total magnetization (), and the alignment (or
hypercharge) () of the system. The mean field ground state is stable against
fluctuations of atom numbers in each of the spin components, and the phases
associated with the order parameter for each spin components diffuse while
dynamically recover the two broken continuous symmetries [U(1) and SO(2)] when
and are conserved as in current experiments. We discuss the
implications to the quantum dynamics due to an external (homogeneous) magnetic
field. We also comment on the case of a spinor-1 condensate with
anti-ferromagnetic interactions.Comment: 5 figures, an extended version of cond-mat/030117
Spin squeezing and entanglement in spinor-1 condensates
We analyze quantum correlation properties of a spinor-1 (f=1) Bose Einstein
condensate using the Gell-Mann realization of SU(3) symmetry. We show that
previously discussed phenomena of condensate fragmentation and spin-mixing can
be explained in terms of the hypercharge symmetry. The ground state of a
spinor-1 condensate is found to be fragmented for ferromagnetic interactions.
The notion of two bosonic mode squeezing is generalized to the two spin (U-V)
squeezing within the SU(3) formalism. Spin squeezing in the isospin subspace
(T) is found and numerically investigated. We also provide new results for the
stationary states of spinor-1 condensates.Comment: 9 pages, 6 figure
Entangling Two Bose-Einstein Condensates by Stimulated Bragg Scattering
We propose an experiment for entangling two spatially separated Bose-Einstein
condensates by Bragg scattering of light. When Bragg scattering in two
condensates is stimulated by a common probe, the resulting quasiparticles in
the two condensates get entangled due to quantum communication between the
condensates via probe beam. The entanglement is shown to be significant and
occurs in both number and quadrature phase variables. We present two methods of
detecting the generated entanglement.Comment: 4 pages, Revte
Rate and Volume of Intermittent Enteral Feeding
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141999/1/jpen0125.pd
Maghemite nanoparticles bearing di(amidoxime) groups for the extraction of uranium from wastewaters
Polyamidoximes (pAMD) are known to have strong affinities for uranyl cations. Grafting pAMD onto the surface of functionalized maghemite nanoparticles (MNP) leads to a nanomaterial with high capacities in the extraction of uranium from wastewaters by magnetic sedimentation. A diamidoxime (dAMD) specifically synthesized for this purpose showed a strong affinity for uranyl: Ka = 105 M-1 as determined by Isothermal Titration Calorimetry (nano-ITC). The dAMD was grafted onto the surface of MNP and the obtained sorbent (MNP-dAMD) was characterized. The nanohybrids were afterward incubated with different concentrations of uranyl and the solid phase recovered by magnetic separation. This latter was characterized by zeta-potential measurements, X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Fluorescence spectroscopy (XRF), whereas the supernatant was analyzed by Inductively Coupled Plasma coupled to Mass Spectrometry (ICP-MS). All the data fitted the models of Langmuir, Freundlich and Temkin isotherms very well. These isotherms allowed us to evaluate the efficiency of the adsorption of uranium by MNP-dAMD. The saturation sorption capacity (qmax) was determined. It indicates that MNP-dAMD is able to extract up to 120 mg of uranium per gram of sorbent. Spherical aberration (Cs)-corrected High-Resolution Scanning Transmission Electron Microscopy (HRSTEM) confirmed these results and clearly showed that uranium is confined at the surface of the sorbent. Thus, MNP-dAMD presents a strong potential for the extraction of uranium from wastewaters
Minimizing the source of nociception and its concurrent effect on sensory hypersensitivity: An exploratory study in chronic whiplash patients
Abstract. Background. The cervical zygapophyseal joints may be a primary source of pain in up to 60% of individuals with chronic whiplash associated disorders (WAD) and may be a contributing factor for peripheral and centrally mediated pain (sensory hypersensitivity). Sensory hypersensitivity has been associated with a poor prognosis. The purpose of the study was to determine if there is a change in measures indicative of sensory hypersensitivity in patients with chronic WAD grade II following a medial branch block (MBB) procedure in the cervical spine. Methods. Measures of sensory hypersensitivity were taken via quantitative sensory testing (QST) consisting of pressure pain thresholds (PPT's) and cold pain thresholds (CPT's). In patients with chronic WAD (n = 18), the measures were taken at three sites bilaterally, pre- and post- MBB. Reduced pain thresholds at remote sites have been considered an indicator of central hypersensitivity. A healthy age and gender matched comparison group (n = 18) was measured at baseline. An independent t-test was applied to determine if there were any significant differences between the WAD and normative comparison groups at baseline with respect to cold pain and pressure pain thresholds. A dependent t-test was used to determine whether there were any significant differences between the pre and post intervention cold pain and pressure pain thresholds in the patients with chronic WAD. Results. At baseline, PPT's were decreased at all three sites in the WAD group (p < 0.001). Cold pain thresholds were increased in the cervical spine in the WAD group (p < 0.001). Post-MBB, the WAD group showed significant increases in PPT's at all sites (p < 0.05), and significant decreases in CPT's at the cervical spine (p < 0.001). Conclusions. The patients with chronic WAD showed evidence of widespread sensory hypersensitivity to mechanical and thermal stimuli. The WAD group revealed decreased sensory hypersensitivity following a decrease in their primary source of pain stemming from the cervical zygapophyseal joints
Recommended from our members
Comparison of Head Impact Exposure Between Concussed Football Athletes and Matched Controls: Evidence for a Possible Second Mechanism of Sport-Related Concussion
Studies of football athletes have implicated repetitive head impact exposure in the onset of cognitive and brain structural changes, even in the absence of diagnosed concussion. Those studies imply accumulating damage from successive head impacts reduces tolerance and increases risk for concussion. Support for this premise is that biomechanics of head impacts resulting in concussion are often not remarkable when compared to impacts sustained by athletes without diagnosed concussion. Accordingly, this analysis quantified repetitive head impact exposure in a cohort of 50 concussed NCAA Division I FBS college football athletes compared to controls that were matched for team and position group. The analysis quantified the number of head impacts and risk weighted exposure both on the day of injury and for the season to the date of injury. 43% of concussed athletes had the most severe head impact exposure on the day of injury compared to their matched control group and 46% of concussed athletes had the most severe head impact exposure for the season to the date of injury compared to their matched control group. When accounting for date of injury or season to date of injury, 72% of all concussed athletes had the most or second most severe head impact exposure compared to their matched control group. These trends associating cumulative head impact exposure with concussion onset were stronger for athletes that participated in a greater number of contact activities. For example, 77% of athletes that participated in ten or more days of contact activities had greater head impact exposure than their matched control group. This unique analysis provided further evidence for the role of repetitive head impact exposure as a predisposing factor for the onset of concussion. The clinical implication of these findings supports contemporary trends of limiting head impact exposure for college football athletes during practice activities in an effort to also reduce risk of concussive injury
- …