402 research outputs found
The use of a nutrient quality score is effective to assess the overall nutritional value of three brassica microgreens
Microgreens have immense potential for improving dietary patterns, but little information is available regarding their overall nutritional value. We evaluated the nutritional traits of three hydroponically grown Brassica microgreens by using a Nutrient Quality Score. Micro cauliflower, micro broccoli and micro broccoli raab were grown using nutrient solutions with three different NH4:NO3 molar ratios (5:95, 15:85, and 25:75). Protein, dietary fiber, β-carotene, α-tocopherol and mineral elements (Ca, K, Mg, Fe, Zn, Cu, Mn, and Na) were analyzed. We developed the Nutrient Quality Score (NQS 11.1) on the basis of 11 desirable nutrients and 1 nutrient (sodium) to be limited. All Brassica microgreens are an excellent source of Vitamins A and E (more than 20% of the daily reference value-DRV), as well as a good source of calcium and manganese (10-19% of the DRV). Micro cauliflower showed a NQS 11.1 at 47% higher than micro broccoli raab and micro broccoli. Using NH4:NO3 25:75 molar ratio, the average score was 27% higher than other molar ratios. In all cases, the microgreens in the present study showed a higher NQS 11.1 than their mature counterpart (on the basis of data from the United States Department of Agriculture), highlighting that the score of micro cauliflower was about six-fold higher than mature cauliflower. In conclusion, the NQS 11.1 was useful for assessing the overall nutritional quality of the three Brassica microgreens, instead of simply quantifying nutrient content, in order to compare a single nutrient among different genotypes. Furthermore, the results highlight that the micro broccoli raab, micro broccoli and micro cauliflower in this study can be considered nutrient-rich vegetables that are able to improve dietary patterns more effectively than their mature counterparts
Conductivity in organic semiconductors hybridized with the vacuum field
Organic semiconductors have generated considerable interest for their
potential for creating inexpensive and flexible devices easily processed on a
large scale [1-11]. However technological applications are currently limited by
the low mobility of the charge carriers associated with the disorder in these
materials [5-8]. Much effort over the past decades has therefore been focused
on optimizing the organisation of the material or the devices to improve
carrier mobility. Here we take a radically different path to solving this
problem, namely by injecting carriers into states that are hybridized to the
vacuum electromagnetic field. These are coherent states that can extend over as
many as 10^5 molecules and should thereby favour conductivity in such
materials. To test this idea, organic semiconductors were strongly coupled to
the vacuum electromagnetic field on plasmonic structures to form polaritonic
states with large Rabi splittings ca. 0.7 eV. Conductivity experiments show
that indeed the current does increase by an order of magnitude at resonance in
the coupled state, reflecting mostly a change in field-effect mobility as
revealed when the structure is gated in a transistor configuration. A
theoretical quantum model is presented that confirms the delocalization of the
wave-functions of the hybridized states and the consequences on the
conductivity. While this is a proof-of-principle study, in practice
conductivity mediated by light-matter hybridized states is easy to implement
and we therefore expect that it will be used to improve organic devices. More
broadly our findings illustrate the potential of engineering the vacuum
electromagnetic environment to modify and to improve properties of materials.Comment: 16 pages, 13 figure
Patchy Amphiphilic Dendrimers Bind Adenovirus and Control Its Host Interactions and in Vivo Distribution
The surface of proteins is heterogeneous with sophisticated but precise hydrophobic and hydrophilic patches, which is essential for their diverse biological functions. To emulate such distinct surface patterns on macromolecules, we used rigid spherical synthetic dendrimers (polyphenylene dendrimers) to provide controlled amphiphilic surface patches with molecular precision. We identified an,. I optimal spatial arrangement of these patches on certain dendrimers that enabled their interaction with human adenovirus 5 (Ads). Patchy dendrimers bound to the surface of Ads formed a synthetic polymer corona that greatly altered various host interactions of Ads as well as in vivo distribution. The dendrimer corona (1) improved the ability of Ad5-derived gene transfer vectors to transduce cells deficient for the primary Ad5 cell membrane receptor and (2) modulated the binding of Ads to blood coagulation factor X, one of the most critical virus host interactions in the bloodstream. It significantly enhanced the transduction efficiency of Ad5 while also protecting it from neutralization by natural antibodies and the complement system in human whole blood. Ads with a synthetic dendrimer corona revealed profoundly altered in vivo distribution, improved transduction of heart, and dampened vector sequestration by liver and spleen. We propose the design of bioactive polymers that bind protein surfaces solely based on their amphiphilic surface patches and protect against a naturally occurring protein corona, which is highly attractive to improve Ad5-based in vivo gene therapy applications
Difference in astringency of the main pea protein fractions
Interactions between food and saliva govern complex mouthfeel perceptions such as astringency. Herein, we present a study of the interactions of salivary proteins with the main pea protein fractions that are obtained by isoelectric and salt precipitation (legumin-rich, vicilin-rich and albumin-rich fractions). The sensory evaluations performed on protein solutions by trained panelists evidenced that all three protein fractions exhibit a basal level of astringency, but that the albumin fraction was perceived as the most astringent one. All three fractions induced significant but comparable loss of salivary lubrication. Yet, when compared to the other fractions, the albumin fraction showed the formation of a thicker and more rigid film on salivary conditioning film-coated sensors as measured using a quartz crystal microbalance with dissipation monitoring (QCM-D). We also present proteomics studies on the precipitates obtained from the mixtures of saliva and pea protein fractions. Protein identification finds a pool of salivary proteins involved in non-specific interactions with all the three pea protein fractions. Yet, 13 pea proteins specific to the albumin fraction were identified as being involved in specific interactions with salivary proteins. Several of these proteins are part of the plant defense mechanisms and are likely to interact with many salivary proteins. This could explain the higher number of salivary proteins found in the precipitate induced by the albumin fraction when compared to the other two. These quantitative results increase the understanding of the complex links between plant protein-salivary protein interactions and astringency
The multifaceted covid-19: Ct aspects of its atypical pulmonary and abdominal manifestations and complications in adults and children. a pictorial review
Our daily experience in a COVID hospital has allowed us to learn about this disease in many of its changing and unusual aspects. Some of these uncommon manifestations, however, appeared more frequently than others, giving shape to a multifaceted COVID-19 disease. This pictorial review has the aim to describe the radiological aspects of atypical presentations and of some complications of COVID-19 disease in adults and children and provide a simple guide for radiologists to become familiar with the multiform aspects of this disease
Multi-sulfonated ligands on gold nanoparticles as virucidal antiviral for Dengue virus
Dengue virus (DENV) causes 390 million infections per year. Infections can be asymptomatic or range from mild fever to severe haemorrhagic fever and shock syndrome. Currently, no effective antivirals or safe universal vaccine is available. In the present work we tested different gold nanoparticles (AuNP) coated with ligands ω-terminated with sugars bearing multiple sulfonate groups. We aimed to identify compounds with antiviral properties due to irreversible (virucidal) rather than reversible (virustatic) inhibition. The ligands varied in length, in number of sulfonated groups as well as their spatial orientation induced by the sugar head groups. We identified two candidates, a glucose- and a lactose-based ligand showing a low EC50 (effective concentration that inhibit 50% of the viral activity) for DENV-2 inhibition, moderate toxicity and a virucidal effect in hepatocytes with titre reduction of Median Tissue Culture Infectious Dose log10TCID50 2.5 and 3.1. Molecular docking simulations complemented the experimental findings suggesting a molecular rationale behind the binding between sulfonated head groups and DENV-2 envelope protein
Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower
The results of the analysis of the data collected with the NEMO Phase-2
tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are
presented. Cherenkov photons detected with the photomultipliers tubes were used
to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution
was measured and the results compared with Monte Carlo simulations. An
evaluation of the systematic effects due to uncertainties on environmental and
detector parameters is also included. The associated depth intensity relation
was evaluated and compared with previous measurements and theoretical
predictions. With the present analysis, the muon depth intensity relation has
been measured up to 13 km of water equivalent.Comment: submitted to Astroparticle Physic
Benzene with Alkyl Chains Is a Universal Scaffold for Multivalent Virucidal Antivirals.
Most viruses start their invasion by binding to glycoproteins' moieties on the cell surface (heparan sulfate proteoglycans [HSPG] or sialic acid [SA]). Antivirals mimicking these moieties multivalently are known as broad-spectrum multivalent entry inhibitors (MEI). Due to their reversible mechanism, efficacy is lost when concentrations fall below an inhibitory threshold. To overcome this limitation, we modify MEIs with hydrophobic arms rendering the inhibitory mechanism irreversible, i.e., preventing the efficacy loss upon dilution. However, all our HSPG-mimicking MEIs only showed reversible inhibition against HSPG-binding SARS-CoV-2. Here, we present a systematic investigation of a series of small molecules, all containing a core and multiple hydrophobic arms terminated with HSPG-mimicking moieties. We identify the ones that have irreversible inhibition against all viruses including SARS-CoV-2 and discuss their design principles. We show efficacy in vivo against SARS-CoV-2 in a Syrian hamster model through both intranasal instillation and aerosol inhalation in a therapeutic setting (12 h postinfection). We also show the utility of the presented design rules in producing SA-mimicking MEIs with irreversible inhibition against SA-binding influenza viruses
New approach for time-resolved and dynamic investigations on nanoparticles agglomeration
Nanoparticle (NP) colloidal stability plays a crucial role in biomedical application not only for human and environmental safety but also for NP efficiency and functionality. NP agglomeration is considered as a possible process in monodispersed NP colloidal solutions, which drastically affects colloidal stability. This process is triggered by changes in the physicochemical properties of the surrounding media, such as ionic strength (IS), pH value, or presence of biomolecules. Despite different available characterization methods for nanoparticles (NPs), there is a lack of information about the underlying mechanisms at the early stage of dynamic behaviors, namely changing in NP size distribution and structure while placing them from a stable colloidal solution to a new media like biological fluids. In this study, an advanced in situ approach is presented that combines small angle X-ray scattering (SAXS) and microfluidics, allowing label-free, direct, time-resolved, and dynamic observations of the early stage of NP interaction/agglomeration initiated by environmental changes. It is shown for silica NPs that the presence of protein in the media enormously accelerates the NP agglomeration process compared to respective changes in IS and pH. High IS results in a staring agglomeration process after 40 min, though, in case of protein presence in media, this time decreased enormously to 48 s. These time scales show that this method is sensitive and precise in depicting the dynamics of fast and slow NP interactions in colloidal conditions and therefore supports understanding the colloidal stability of NPs in various media concluding in safe and efficient NP designing for various applications
Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS
Tensions in several phenomenological models grew with experimental results on
neutrino/antineutrino oscillations at Short-Baseline (SBL) and with the recent,
carefully recomputed, antineutrino fluxes from nuclear reactors. At a
refurbished SBL CERN-PS facility an experiment aimed to address the open issues
has been proposed [1], based on the technology of imaging in ultra-pure
cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of
the physics case was performed. We tackled specific physics models and we
optimized the neutrino beam through a full simulation. Experimental aspects not
fully covered by the LAr detection, i.e. the measurements of the lepton charge
on event-by-event basis and their energy over a wide range, were also
investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino
interactions play an important role in disentangling different phenomenological
scenarios provided their charge state is determined. Also, the study of muon
appearance/disappearance can benefit of the large statistics of CC muon events
from the primary neutrino beam. Results of our study are reported in detail in
this proposal. We aim to design, construct and install two Spectrometers at
"NEAR" and "FAR" sites of the SBL CERN-PS, compatible with the already proposed
LAr detectors. Profiting of the large mass of the two Spectrometers their
stand-alone performances have also been exploited.Comment: 70 pages, 38 figures. Proposal submitted to SPS-C, CER
- …