6,378 research outputs found

    A broad iron line in the Chandra/HETG spectrum of 4U 1705-44

    Get PDF
    We present the results of a Chandra 30 ks observation of the low mass X-ray binary and atoll source 4U 1705-44. Here we concentrate on the study of discrete features in the energy spectrum at energies below 3 keV, as well as on the iron Kalpha line, using the HETG spectrometer on board of the Chandra satellite. Below 3 keV, three narrow emission lines are found at 1.47, 2.0, and 2.6 keV. The 1.47 and 2.6 keV are probably identified with Ly-alpha emission from Mg XII and S XVI, respectively. The identification of the feature at 2.0 keV is uncertain due to the presence of an instrumental feature at the same energy. The iron Kalpha line at ~6.5 keV is found to be intrinsically broad (FWHM ~ 1.2 keV); its width can be explained by reflection from a cold accretion disk extending down to 15 km from the neutron star center or by Compton broadening in the external parts of a hot (~2 keV) Comptonizing corona. We finally report here precise X-ray coordinates of the source.Comment: 8 pages including 2 figures. ApJ Letters, in pres

    Integrating Superconductive and Optical Circuits

    Full text link
    We have integrated on oxidized silicon wafers superconductive films and Josephson junctions along with sol-gel optical channel waveguides. The fabrication process is carried out in two steps that result to be solid and non-invasive. It is demonstrated that 660 nm light, coupled from an optical fibre into the channel sol-gel waveguide, can be directed toward superconducting tunnel junctions whose current-voltage characteristics are affected by the presence of the radiation. The dependence of the change in the superconducting energy gap under optical pumping is discussed in terms of a non-equilibrium superconductivity model.Comment: Document composed of 7 pages of text and 3 figure

    On the Optical -- X-ray correlation from outburst to quiescence in Low Mass X-ray Binaries: the representative cases of V404 Cyg and Cen X-4

    Get PDF
    Low mass X-ray binaries (LMXBs) show evidence of a global correlation of debated origin between X-ray and optical luminosity. We study for the first time this correlation in two transient LMXBs, the black hole V404 Cyg and the neutron star Cen X-4, over 6 orders of magnitude in X-ray luminosity, from outburst to quiescence. After subtracting the contribution from the companion star, the Cen X-4 data can be described by a single power law correlation of the form Lopt∝ LX0.44L_{opt}\propto\,L_{X}^{0.44}, consistent with disk reprocessing. We find a similar correlation slope for V404 Cyg in quiescence (0.46) and a steeper one (0.56) in the outburst hard state of 1989. However, V404 Cyg is about 160−280160-280 times optically brighter, at a given 3−93-9 keV X-ray luminosity, compared to Cen X-4. This ratio is a factor of 10 smaller in quiescence, where the normalization of the V404 Cyg correlation also changes. We show that once the bolometric X-ray emission is considered and the known main differences between V404 Cyg and Cen X-4 are taken into account (a larger compact object mass, accretion disk size, and the presence of a strong jet contribution in the hard state for the black hole system) the two systems lie on the same correlation. In V404 Cyg, the jet dominates spectrally at optical-infrared frequencies during the hard state, but makes a negligible contribution in quiescence, which may account for the change in its correlation slope and normalization. These results provide a benchmark to compare with data from the 2015 outburst of V404 Cyg and, potentially, other transient LMXBs as well.Comment: Accepted on ApJ, 12 pages, 4 figures, 4 table

    The X-ray spectrum of the bursting atoll source 4U~1728-34 observed with INTEGRAL

    Get PDF
    We present for the first time a study of the 3-200 keV broad band spectra of the bursting atoll source 4U 1728-34 (GX 354-0) along its hardness intensity diagram. The analysis was done using the INTEGRAL public and Galactic Center deep exposure data ranging from February 2003 to October 2004. The spectra are well described by a thermal Comptonization model with an electron temperature from 35 keV to 3 keV and Thomson optical depth, tau_T, from 0.5 to 5 in a slab geometry. The source undergoes a transition from an intermediate/hard to a soft state where the source luminosity increases from 2 to 12% of Eddington. We have also detected 36 type I X-ray bursts two of which show photospheric radius expansion. The energetic bursts with photospheric radius expansion occurred at an inferred low mass accretion rate per unit area of \dot m ~ 1.7x10E3 g/cm2/s, while the others at a higher one between 2.4x10E3 - 9.4x10E3 g/cm2/s. For 4U1728-34 the bursts' total fluence, and the bursts' peak flux are anti-correlated with the mass accretion rate. The type I X-ray bursts involve pure helium burning either during the hard state, or during the soft state of the source.Comment: 11 pages, 7 figures, and 2 tables. Accepted for publication in A&

    XMM-Newton and Swift observations of XTE J1743-363

    Full text link
    XTEJ1743-363 is a poorly known hard X-ray transient, that displays short and intense flares similar to those observed from Supergiant Fast X-ray Transients. The probable optical counterpart shows spectral properties similar to those of an M8 III giant, thus suggesting that XTEJ1743-363 belongs to the class of the Symbiotic X-ray Binaries. In this paper we report on the first dedicated monitoring campaign of the source in the soft X-ray range with XMM-Newton and Swift/XRT. T hese observations confirmed the association of XTEJ1743-363 with the previously suggested M8 III giant and the classification of the source as a member of the Symbiotic X-ray binaries. In the soft X-ray domain, XTEJ1743-363 displays a high absorption (~6x10^22 cm^-2 ) and variability on time scales of hundreds to few thousand seconds, typical of wind accreting systems. A relatively faint flare (peak X-ray flux 3x10^-11 erg/cm^2/s) lasting ~4 ks is recorded during the XMM-Newton observation and interpreted in terms of the wind accretion scenario.Comment: Accepted for publication on A&

    A gamma ray burst with small contamination

    Full text link
    We present a scenario (SupraNova) for the formation of GRBs occurring when a supramassive neutron star (SMNS) loses so much angular momentum that centrifugal support against self--gravity becomes impossible, and the star implodes to a black hole. This may be the baryon--cleanest environment proposed so far, because the SN explosion in which the SMNS formed swept the medium surrounding the remnant, and the quickly spinning remnant loses energy through magnetic dipole radiation at a rate exceeding its Eddington luminosity by some four orders of magnitude. The implosion is adiabatic because neutrinos have short mean free paths, and silent, given the prompt collapse of the polar caps. However, a mass ~ 0.1 M_solar in the equatorial belt can easily reach centrifugal equilibrium. The mechanism of energy extraction is via the conversion of the Poynting flux (due to the large--scale magnetic field locked into the minitorus) into a magnetized relativistic wind. Occasionally this model will produce quickly decaying, or non--detectable afterglows.Comment: To appear in The Astrophysical Journal Letters. AASTeX LateX, no figure

    Future X-ray timing missions

    Get PDF
    Thanks to the Rossi X-ray Timing Explorer (RXTE), it is now widely recognized that fast X-ray timing can be used to probe strong gravity fields around collapsed objects and constrain the equation of state of dense matter in neutron stars. We first discuss some of the outstanding issues which could be solved with an X-ray timing mission building on the great successes of RXTE and providing an order of magnitude better sensitivity. Then we briefly describe the 'Experiment for X-ray timing and Relativistic Astrophysics' (EXTRA) recently proposed to the European Space Agency as a follow-up to RXTE and the related US mission 'Relativistic Astrophysics Explorer' (RAE).Comment: To be published in `Proceedings of the Third Microquasar Workshop: Granada Workshop on galactic relativistic jet sources', Eds A. J. Castro-Tirado, J. Greiner and J. M. Paredes, Astrophysics and Space Science, in press. More about EXTRA can be found at: http://www.cesr.fr/~barret/extra.htm

    Mean Field Renormalization Group for the Boundary Magnetization of Strip Clusters

    Full text link
    We analyze in some detail a recently proposed transfer matrix mean field approximation which yields the exact critical point for several two dimensional nearest neighbor Ising models. For the square lattice model we show explicitly that this approximation yields not only the exact critical point, but also the exact boundary magnetization of a semi--infinite Ising model, independent of the size of the strips used. Then we develop a new mean field renormalization group strategy based on this approximation and make connections with finite size scaling. Applying our strategy to the quadratic Ising and three--state Potts models we obtain results for the critical exponents which are in excellent agreement with the exact ones. In this way we also clarify some advantages and limitations of the mean field renormalization group approach.Comment: 16 pages (plain TeX) + 8 figures (PostScript, appended), POLFIS-TH.XX/9

    Timing an Accreting Millisecond Pulsar: Measuring the Accretion Torque in IGR J00291+5934

    Get PDF
    We present here a timing analysis of the fastest accreting millisecond pulsar IGR J00291+5934 using RXTE data taken during the outburst of December 2004. We corrected the arrival times of all the events for the orbital (Doppler) effects and performed a timing analysis of the resulting phase delays. In this way we find a clear parabolic trend of the pulse phase delays showing that the pulsar is spinning up as a consequence of accretion torques during the X-ray outburst. The accretion torque gives us for the first time an independent estimate of the mass accretion rate onto the neutron star, which can be compared with the observed X-ray luminosity. We also report a revised value of the spin period of the pulsar.Comment: Proceedings of the Frascati Workshop 2005: Multifrequency Behaviour of High Energy Cosmic Sources, Vulcano, May 23-28. 7 pages including 1 figur
    • 

    corecore