30 research outputs found

    Multi-membership gene regulation in pathway based microarray analysis

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results: We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions: We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.The work was sponsored by the studentship scheme of the School of Information Systems, Computing and Mathematics, Brunel Universit

    Clinical and transcriptomic features of persistent exacerbation-prone severe asthma in U-BIOPRED cohort

    Get PDF
    Background: Exacerbation-prone asthma is a feature of severe disease. Yet, the basis for its persistency remains unclear. Objectives: To determine the clinical and transcriptomic features of the frequent-exacerbator (FE) and of persistent FEs (PFE) in U-BIOPRED cohort. Methods: We compared features of FE (≥2 exacerbations in past year) to infrequent exacerbators (IE, <2 exacerbations) and of PFE with repeat ≥2 exacerbations during the following year to persistent IE (PIE). Transcriptomic data in blood, bronchial and nasal epithelial brushings, bronchial biopsies and sputum cells were analysed by gene set variation analysis for 103 gene signatures. Results: Of 317 patients, 62.4 % were FE of whom 63.6% were PFE, while 37.6% were IE of whom 61.3% were PIE. Using multivariate analysis, FE was associated with short-acting beta-agonist use, sinusitis and daily oral corticosteroid use, while PFE with eczema, short-acting beta-agonist use and asthma control index. CEA Cell Adhesion Molecule 5 (CEACAM5) was the only differentially-expressed transcript in bronchial biopsies between PE and IE. There were no differentially-expressed genes in the other 4 compartments. There were higher expression scores for Type 2 , T-helper type-17 and Type 1 pathway signatures together with those associated with viral infections in bronchial biopsies from FE compared to IE, while higher expression scores of Type 2, Type 1 and steroid insensitivity pathway signatures in bronchial biopsies of PFE compared to PIE. Conclusion: FE group and its PFE subgroup are associated with poor asthma control while expressing higher Type 1 and Type 2 activation pathways compared to IE and PIE, respectively

    Transcriptomic gene signatures associated with persistent airflow limitation in patients with severe asthma

    Get PDF
    A proportion of severe asthma patients suffers from persistent airflow limitation (PAL), often associated with more symptoms and exacerbations. Little is known about the underlying mechanisms. Here, our aim was to discover unexplored potential mechanisms using Gene Set Variation Analysis (GSVA), a sensitive technique that can detect underlying pathways in heterogeneous samples. Severe asthma patients from the U-BIOPRED cohort with PAL (post-bronchodilator forced expiratory volume in 1 s/forced vital capacity ratio below the lower limit of normal) were compared with those without PAL. Gene expression was assessed on the total RNA of sputum cells, nasal brushings, and endobronchial brushings and biopsies. GSVA was applied to identify differentially enriched predefined gene signatures based on all available gene expression publications and data on airways disease. Differentially enriched gene signatures were identified in nasal brushings (n=1), sputum (n=9), bronchial brushings (n=1) and bronchial biopsies (n=4) that were associated with response to inhaled steroids, eosinophils, interleukin-13, interferon-α, specific CD4+ T-cells and airway remodelling. PAL in severe asthma has distinguishable underlying gene networks that are associated with treatment, inflammatory pathways and airway remodelling. These findings point towards targets for the therapy of PAL in severe asthma

    Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis

    Get PDF
    Background: Severe asthma patients with a significant smoking history have airflow obstruction with reported neutrophilia. We hypothesise that multi-omic analysis will enable the definition of smoking and ex-smoking severe asthma molecular phenotypes. Methods: The U-BIOPRED severe asthma patients containing current-smokers (CSA), exsmokers (ESA), non-smokers (NSA) and healthy non-smokers (NH) was examined. Blood and sputum cell counts, fractional exhaled nitric oxide and spirometry were obtained. Exploratory proteomic analysis of sputum supernatants and transcriptomic analysis of bronchial brushings, biopsies and sputum cells was performed. Results: Colony stimulating factor (CSF)2 protein levels were increased in CSA sputum supernatants with azurocidin 1, neutrophil elastase and CXCL8 upregulated in ESA. Phagocytosis and innate immune pathways were associated with neutrophilic inflammation in ESA. Gene Set Variation Analysis of bronchial epithelial cell transcriptome from CSA showed enrichment of xenobiotic metabolism, oxidative stress and endoplasmic reticulum stress compared to other groups. CXCL5 and matrix metallopeptidase 12 genes were upregulated in ESA and the epithelial protective genes, mucin 2 and cystatin SN, were downregulated. Conclusion: Despite little difference in clinical characteristics, CSA were distinguishable from ESA subjects at the sputum proteomic level with CSA having increased CSF2 expression and ESA patients showed sustained loss of epithelial barrier processes

    based microarray

    No full text
    Multi-membership gene regulation in pathwa

    Symptomatic colonic lipomas: Report of two cases and a review of the literature

    No full text
    Colonic lipomas are the second most common benign tumor of the colon. During a systematic literature search, a lack of review is observed. This study reports two cases of colonic lipomas and also tries to review the clinical and pathologic features of the reported symptomatic lipomas

    IL-33 drives influenza-induced asthma exacerbations by halting innate and adaptive antiviral immunity

    No full text
    Background: Influenza virus triggers severe asthma exacerbations for which no adequate treatment is available. It is known that IL-33 levels correlate with exacerbation severity, but its role in the immunopathogenesis of exacerbations has remained elusive. Objective: We hypothesized that IL-33 is necessary to drive asthma exacerbations. We intervened with the IL-33 cascade and sought to dissect its role, also in synergy with thymic stromal lymphopoietin (TSLP), in airway inflammation, antiviral activity, and lung function. We aimed to unveil the major source of IL-33 in the airways and IL-33–dependent mechanisms that underlie severe asthma exacerbations. Methods: Patients with mild asthma were experimentally infected with rhinovirus. Mice were chronically exposed to house dust mite extract and then infected with influenza to resemble key features of exacerbations in human subjects. Interventions included the anti–IL-33 receptor ST2, anti–TSLP, or both. Results: We identified bronchial ciliated cells and type II alveolar cells as a major local source of IL-33 during virus-driven exacerbation in human subjects and mice, respectively. By blocking ST2, we demonstrated that IL-33 and not TSLP was necessary to drive exacerbations. IL-33 enhanced airway hyperresponsiveness and airway inflammation by suppressing innate and adaptive antiviral responses and by instructing epithelial cells and dendritic cells of house dust mite–sensitized mice to dampen IFN-β expression and prevent the TH1-promoting dendritic cell phenotype. IL-33 also boosted luminal NETosis and halted cytolytic antiviral activities but did not affect the TH2 response. Conclusion: Interventions targeting the IL-33/ST2 axis could prove an effective acute short-term therapy for virus-induced asthma exacerbations
    corecore