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Abstract 

Recent developments in automation and novel experimental techniques have led to the 

accumulation of vast amounts of biological data and the emergence of numerous 

databases to store the wealth of information. Consequentially, bioinformatics have drawn 

considerable attention, accompanied by the development of a plethora of tools for the 

analysis of biological data.  

DNA microarrays constitute a prominent example of a high-throughput experimental 

technique that has required substantial contribution of bioinformatics tools. Following its 

popularity there is an on-going effort to integrate gene expression with other types of 

data in a common analytical approach. Pathway based microarray analysis seeks to 

facilitate microarray data in conjunction with biochemical pathway data and look for a 

coordinated change in the expression of genes constituting a pathway.  

However, it has been observed that genes in a pathway may show variable expression, 

with some appearing activated while others repressed. This thesis aims to add some 

contribution to pathway based microarray analysis and assist the interpretation of such 

observations, based on the fact that in all organisms a substantial number of genes take 

part in more than one biochemical pathway. It explores the hypothesis that the 

expression of such genes represents a net effect of their contribution to all their 

constituent pathways, applying statistical and data mining approaches. A heuristic search 

methodology is proposed to manipulate the pathway contribution of genes to follow 

underlying trends and interpret microarray results centred on pathway behaviour. The 

methodology is further refined to account for distinct genes encoding enzymes that 

catalyse the same reaction, and applied to modules, shorter chains of reactions forming 

sub-networks within pathways. Results based on various datasets are discussed, showing 

that the methodology is promising and may assist a biologist to decipher the biochemical 

state of an organism, in experiments where pathways exhibit variable expression. 
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Chapter 1: Introduction 

 

1.1 Overview 

In the last couple of decades the face of biological research has undergone substantial 

transformation from both a qualitative and a quantitative perspective. The cumulative 

progress in a wide range of scientific fields including computer science, 

mathematics, physics and chemistry along with a rapid increase in automation have 

made it possible to develop novel, high throughput experimental techniques for the 

study of biological phenomena. It is now possible to gain insights into aspects of 

living structures and functions which have never before been accessible to us. At the 

same time we are now able to produce huge amounts of very diverse biological 

datasets. Bioinformatics sprung into existence and gained wide spread popularity in 

the 90s due to the need to find efficient ways to store, manipulate and analyse the 

newly acquired data. 

DNA Microarrays have played a major role in the area of bioinformatics research. 

This experimental technique allows us to observe the expressional behaviour of 

entire genomes in a single experiment, by measuring the relative abundance of RNA 

molecules corresponding to individual genes, between conditions of interest. For 

over a decade there have been numerous publications dealing with one or other 

aspect of microarray data analysis and following the trend for data integration, there 

have been substantial efforts to incorporate different types of biological knowledge 

in the analytical process. 

Pathway based microarray analysis is an attempt to exploit gene expression data to 

gain insight into the state of a cell or an organism from a biochemical point of view. 

Wet lab biological research has led to the identification of biochemical chains of 
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reactions that take place in different organisms, to allow them to facilitate nutrients 

available in their environment and support their survival and development. This 

network of reactions is quite complicated and far from complete. Thus it has been 

organised into smaller units, the so called pathways, each one responsible for a 

defined gradual process of transformations of certain molecules into different 

chemical compounds required by the organism. Pathway based microarray analysis 

examines the expression of pre-defined sets of genes, which encode the proteins 

participating in each such chain of reactions, in order to identify the impact of 

different conditions on biochemical activity. That is, it tries to answer the question, 

which pathways need be activated and which de-activated in response to various 

stimuli, developmental stages and so on. 

The central theme of this work is the analysis of biochemical pathway behaviour 

based on the expressional behaviour of genes forming them, facilitating microarray 

data. It aims to identify the true pathways to which gene members of more than one 

pathway contribute and subsequently identify the state of activity of pathways, 

centred on the behaviour of their constituent genes. This introductory chapter 

presents an overview of the motivation, content and contribution of the thesis. 

1.2 Thesis outline 

Chapter 2 provides an overview of the background behind the work in this thesis. It 

introduces the research area in some detail along with the relevant technological 

advances that have led to its emergence. It presents some basic biological concepts 

that are necessary for understanding the motivation behind this work and the 

analytical approaches applied. This includes a discussion of the basic features of 

biological systems and their main components, that is, genes and proteins along with 

their functional associations. A discussion of biochemical pathways, of different 

types and their role, as well as their importance in biological research from a 

theoretical and practical point of view, constitutes a major part.  

Additionally, the field of bioinformatics and computational biology is explored, 

including a brief history and presentation of the main experimental technologies 

laying the foundations for its emergence and recent popularity. Given that heuristics 
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are facilitated in the methodologies presented in this thesis, a section giving an 

overview of the area and some important relevant computational techniques is 

included. 

There is an extensive part on the rationale, experimental procedure, data processing, 

applications and importance of DNA Microarrays technology. Biological databases 

are also discussed and the different types introduced with special emphasis on 

biochemical pathway and microarray data databases, which are relative to this 

research. 

Naturally, this is followed by a discussion of pathway based microarray analysis the 

relevant experimental methodologies and computational tools it encompasses. 

Following the presentation of available software tools and how they approach the 

task in hand in terms of visualisation and analytical efforts the challenges faced by 

this approach are identified. The chapter concludes with a brief discussion of the 

importance of refining the methodology and the contribution that this work aims to 

achieve. 

Chapter 3 deals with the main hypothesis on which the thesis is largely reliant and 

seeks to provide supportive evidence. It identifies the fact that a substantial number 

of genes in all organisms constitute members of a number of distinct pathways. 

There is an extensive comparative analysis of the behaviour of such genes as 

opposed to the expression of genes that participate in one unique pathway. A number 

of different approaches are implemented, including some statistical, as well as data 

mining analysis of microarray datasets, such as correlation analysis and association 

rule mining. Naturally, the methodologies and their implementation are presented 

where necessary.  

Thus, this is an exploratory and descriptive chapter facilitating computational 

analysis to explore gene expression behaviour based on large microarray datasets. It 

concludes that there is some evidence that gene members of many pathways do 

exhibit different behaviour than genes that constitute members of one and only 

biochemical pathway. 
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Following these observations, chapter 4 proposes an analytical methodology that 

seeks to identify the state of activity of distinct pathways, centred on the behaviour of 

genes forming them. There is some further discussion of the motivation behind the 

specific computational approach, which facilitates a hill climbing algorithm to 

allocate genes to pathways. The allocation seeks to discover the true pathways whose 

regulation by the biological system requires genes to exhibit the expression observed 

in a microarray experiment. The algorithm is explained and the results of its 

application to some Escherichia coli   and Saccharomyces cerevisiae are presented. 

Given the nature of hill climbing and mainly its tendency to get stack in local optima, 

chapter 5 examines alternative heuristic search approaches. In particular it presents 

the implementation of a simulated annealing and a genetic algorithm approach, to 

search for the best gene to pathway allocation, as discussed above. Besides 

examining the fitness reached by each method, since it has no biological meaning, 

additional metrics of similarity are facilitated. Namely, a similarity measure based on 

the hamming distance metric and a method to extract the probability of observing 

two allocations of a given similarity or larger are presented. Additionally, there is an 

implementation of the fuzzy adjusted rand index measure. Together these measures 

allow the comparative analysis of results from different perspectives, which is 

discussed along with produced allocations.  

In chapter 6 a slightly different methodology is discussed and implemented. The 

motivation behind it is mainly biologically driven. Since, proteins are the functional 

molecules responsible for enzymic reactions, rather than genes, the search approach 

in this chapter is altered in way that it becomes centred on enzymic positions in the 

chain of biochemical reactions. A main point here is that different genes often 

encode enzymes catalysing the same step in a pathway, while at the same time a 

particular gene may participate not only in different pathways but also in different 

steps of the same pathway. Hence, we examine the state of each such enzyme/step 

based on all the genes involved. Consequentially, we then examine the state of 

positions rather than just looking into lists of genes. 

Chapter 7 summarises the research performed in this thesis and the obtained results, 

along with some critical discussion of its outcomes. It identifies shortcomings and 
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possible improvements. The chapter concludes with some discussion of potential 

future work directions.  

1.3 Thesis contributions 

The key contributions of this thesis are below: 

1. It identified substantial variability in the expression of genes forming 

biochemical pathways, in a small but considerable proportion (~15%) of 

examined microarray datasets (Chapter 3) 

2. It identified differences in the expressional behaviour of multi- and single-

membership genes, suggesting that the expression of the former group 

represents a net effect of their contribution to all their constituent pathways 

(Chapter 3) 

3. It proposed a novel methodology to identify the state of activity of pathways, 

based on the expression of multi-membership genes, implementing a heuristic 

search approach (Chapter 4) 

4. It showed that a hill climbing, a simulated annealing and a genetic algorithm 

search approach exhibit similar performance for the examined datasets. This 

is an interesting observation given the differences of their nature (Chapter 5) 

5. It proposed and implemented a measure to estimate the similarity between 

genes to pathways allocations, based on discretised gene expression data and 

an approach to estimate the probability of observing a certain level of 

similarity or greater, purely by chance (Chapter 5) 

6. It proposed a methodology to identify the activation state of pathways and 

modules centred on the activity of enzymes responsible for distinct steps in 

the process. The expression of all genes corresponding to each step is used as 

evidence for this activity (Chapter 6) 
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Chapter 2: Background  

2.1 Introduction 

The research presented in this thesis is in the field of systems biology and more 

precisely bioinformatics, facilitating heuristic search approaches for data analysis. 

These are relevantly novel areas of research that have drawn considerable interest, 

mostly in the last two decades, partly due to the large volume of accumulated 

biological knowledge and partly due to the availability of sophisticated technology 

and computer processing power that we now have at our disposal, in the effort to 

elucidate life processes and solve important biological issues. 

This chapter provides an introduction to some basic biological concepts that are 

necessary for understanding the motivation behind this work. Additionally it deals 

with the main aspects of computational analysis of biological data and experimental 

techniques that have emerged in recent years and are relevant to this research.   

2.2 Basic biological concepts 

The following is a brief introduction to some basic biological concepts and 

mechanisms that govern living organisms. These form the conceptual basis of this 

work and are necessary for the reader to understand the biological issues this thesis 

deals with. 

2.2.1 DNA, proteins and their role 

All living organisms are formed by one or more cells, often described as the basic 

functional unit of life. Each cell carries genetic material, the DNA that can be seen as 
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the hard drive, the storage facility that carries the information needed in order for a 

cell to maintain life processes and survive. DNA stores every single instruction that 

allows the cell and consequentially the organism to grow and multiply.  

DNA molecules constitute large polymers build-up of nucleotides, which in turn 

consist of sugar residues with covalently attached nitrogenous base and a phosphate 

group. Nucleotides are linked together by phosphodiester bonds in a linear fashion 

and it is the particular sequence of bases in the linear DNA molecule that contains 

the information for life maintenance. More precisely there are four types of bases, the 

purines adenine (A) and guanine (G), and the pyrimidines cytosine (C) and thymine 

(T), that constitute the genetic ‗alphabet‘ and the particular order in which they are 

placed encodes the genetic information of an organism (Strachan & Read 2004). 

Table 2.1 The Genetic Code. The code is degenerate as a number of codons specify 

the same amino acid. In total 64 combinations of 3 bases specify all amino acids 

including the start and stop signals, for the process of transcription. 

START AUG STOP UAA, UGA, UAG 

Alanine GCU, GCC, GCA, GCG Leucine UUA, UUG, CUU, CUC, CUA, CUG 

Arginine CGU, CGC, CGA, CGG, AGA, AGG Lysine AAA, AAG 

Asparagine AAU, AAC Methionine AUG 

Aspartic 

acid 

GAU, GAC Phenylalanine UUU, UUC 

Cysteine UGU, UGC Proline CCU, CCC, CCA, CCG 

Glutamine CAA, CAG Serine UCU, UCC, UCA, UCG, AGU, AGC 

Glutamic 

acid 

GAA, GAG Threonine ACU, ACC, ACA, ACG 

Glycine GGU, GGC, GGA, GGG Tryptophan UGG 

Histidine CAU, CAC Tyrosine UAU, UAC 

Isoleucine AUU, AUC, AUA Valine GUU, GUC, GUA, GUG 
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Similarly to DNA, proteins are large polymers build-up of a linear sequence of 

repeating units, the so called amino acids. All proteins in all species are constructed 

from the same set of only 20 amino acids. However, these building blocks exhibit 

remarkable diversity in terms of their chemical properties, such as hydrophobicity, 

polarity and acidity/basicity, and the particular order in which they are placed is the 

main factor conferring a protein its structural and by extension functional properties 

(Stryer & Tymoczko 2006). It is this order of amino acids that is in fact stored in the 

order of nitrogenous bases of genes scattered within DNA molecules. In brief, a 

sequence of three bases, termed codon, encodes a particular amino acid, and thus 

provides the cell with the knowledge required to produce the proteins it needs by 

orderly arranging amino acid monomers. Table 2.1 presents the standard genetic 

code shared by most organisms. 

This brings us to what is known as the central dogma of biology, describing the flow 

of genetic information, as portrayed on Figure 2.1. According to the classical view of 

the central dogma of biology genetic information hardwired in DNA molecules is 

transcribed into transposable RNA molecules, which in turn serve as templates 

translated by ribosomes in the cytoplasm to produce polypeptide chains that fold into 

active protein molecules (Figure 2.2). It should be noted that in RNA thymine is 

replaced by uracil (U), hence the absence of T from the codons on table 2.1. 

 

Figure 2.1 The central dogma of biology. Information stored in DNA can be copied 

onto another DNA molecule, or transferred to RNA which in turn can serve for 

protein synthesis.  
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Additionally, genetic information can be passed on to a new DNA molecule through 

the process of replication so that it can be passed on to a new cell. However, once 

genetic information has been turned into a protein it cannot be transferred back to 

DNA or another protein.  

As will become apparent later on the process of DNA transcription into RNA 

molecules, which carry the message stored in a gene, so that it can be facilitated 

mainly for protein synthesis, is of great importance for microarray technology.  In 

fact it is this sequence of events that constitutes gene expression. It is important to 

mention that while generally speaking microarray analysis is often termed gene 

expression analysis, to be precise we should note that it is the whole process starting 

from a gene and finishing with a functional protein that gene expression describes. 

This not only includes transcription but also the further processing of RNA and it‘s 

translation into a protein, as well as a number of post-translational modifications of 

the resulting molecule which are necessary for the production of a functional protein 

(Seo & Lee 2004).  

 

Figure 2.2 Translation. Each codon in the RNA molecule, resulting from the 

transcription of particular gene, specifies the amino acid that comes next in the 

respective protein. The codons are read one by one in the cells ribosomes and the 

transcription mechanism eventually produces a whole polypeptide chain. 

Virtually every life process depends on proteins, which are the most abundant and 

functionally diverse molecules in any living organism. The vast majority of gene 
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expression is dedicated to protein synthesis, which are the major functional end-point 

of DNA. Proteins can be composed of one or more polypeptides and account for the 

majority of the dry weight of a cell. Their name was derived from the Greek word 

proteios, meaning ‗of the first rank‘ due to the wide range of important roles they 

have, including structural support, signalling, cell communication, transport and 

importantly catalysis which is essential for this work (Strachan & Read 2004). 

2.2.2 Biochemical Pathways  

All organisms are capable of carrying forward chemical transformations, facilitating 

nutrients available in their environment to make chemical building blocks, extracting 

and mediating the transformation of energy from one form to another, processes that 

are essential for their growth and the maintenance of life. Metabolism essentially 

refers to a linked series of chemical reactions that begins with a particular molecule 

and converts it into some other molecule or molecules in a strictly controlled fashion 

(Stryer & Tymoczko 2006).  

Protein enzymes acting as catalysts are capable of specifically binding an extremely 

wide range of molecules, determining which one of a number of potential chemical 

reactions takes place. Proteins achieve this by accelerating the speed of reactions by 

factors of a million or more. A variety of such reactions are organised into multi step, 

synchronised sequences of events referred to as pathways (Harvey & Ferrier 2010).  

Each pathway can be seen as a particular sequence of events, during which certain 

molecules are gradually modified to produce other molecules in order to 

accommodate the needs of the respective organism. At each step, the product of a 

reaction serves as the substrate for the next step of the process, until a final desired 

molecule product of a pathway is synthesised. This in turn may either be facilitated 

immediately or stored for future use. In other words, the product of a pathway may 

serve as a substrate for the initiation of another pathway. Naturally, the sum of such 

events constitutes a complicated network and can be seen as a flow of enzymatic 

activity, which has been categorised into separate units, the aforementioned 

pathways, to accommodate our intuitive needs in an effort to comprehend the 

biochemistry of living cells. 
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2.2.3 Metabolic Pathways 

Metabolic pathways are responsible for two major cellular processes, the extraction 

of energy from the environment, and the synthesis of monomers, the building blocks 

of macromolecules and their subsequent utilisation for the synthesis of 

macromolecules themselves (Stryer & Tymoczko 2006). These processes constitute a 

highly integrated network of biochemical reactions taking place in a cell, the 

metabolic network. 

Glycolysis is arguably the most studied and well characterised metabolic pathway, 

often used as an example in a variety of text books and on-line resources dealing 

with basic biochemistry. This is partly due to its universality across all living 

organisms, with enzymes involved in the catalysis of distinct reactions in the 

pathway being very similar in different species. It is one of the most ancient 

metabolic pathways and the first studied (Romano & Conway 1996). In brief, it is the 

process during which cells convert glucose, a very important carbohydrate, into 

pyruvate, producing energy. Figure 2.3 provides an overview of the main steps of 

glycolysis. 

 

 

 

 

 

 

 

 

Figure 2.3 Diagrammatic representation of Glycolysis.  

Each individual reaction requires catalysis by enzymes all of which constitute 

members of the glycolysis metabolic pathway. As discussed earlier, glycolysis also 
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constitutes part of a wider network, with which it shares a number of 

interconnections. Figure 2.4 exemplifies that, using part of the Kyoto encyclopaedia 

of genes and genomes database (KEGG 2011) representation of the entirety of the 

biochemical network and interconnections between separate pathways (Kanehisa et 

al. 2008). 

Figure 2.4 The KEGG metabolic network. Part of the KEGG representation of the 

entire metabolic network and interconnections between individual pathways. This is 

a so called reference pathway map, a generalised view that can be individualised to 

distinct organisms which naturally share some similarities while at the same time 

differ in various aspects of their metabolism. Each circle represents a particular 

chemical compound such as glucose for example, while the lines represent the steps 

required to turn one compound into another, the so called substrate into a product. 

These steps are catalysed by one or more enzymes and take place in various cellular 

compartments. From (http://www.genome.jp/kegg-bin/show_pathway?map01100) 
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2.2.4 Signalling pathways 

Another important category of pathways is the so called signalling pathways, which 

allow external signals to be passed through various cellular components, leading to a 

specific cellular response and allowing cell communication. The entire process 

consists of three stages, reception of the signal coming from outside the cell, 

transduction of the message, mostly through a sequence of changes in a number of 

different protein molecules forming the signalling pathway, and in conclusion an 

adequate cellular response (Campbell & Reece 2007). 

Protein kinases, the enzymes that catalyse phosphorylation of other proteins as well 

as phosphatases responsible for the reverse reaction, hold a major role in signal 

transduction, as they are the main compounds of signalling pathways. Each molecule 

acts on another molecule in the pathway, in a sequenced manner. Each cell may 

contain hundreds of distinct protein kinases, each one acting on different proteins, 

regulating major cellular processes like reproduction, programmed cellular death, 

also known as apoptosis and so on.  

2.2.5 Importance of biochemical pathways 

The study and understanding of pathways constitutes a topic of intensive research as 

they are of upmost importance for proper cellular function. Metabolic regulation is 

quite complex due to the integrated nature of the metabolic network and aberrations 

of the genes involved may have serious impact on cellular state, which we aim to 

elucidate. 

Abnormalities in the structure and activity of protein kinases have been implicated in 

the development of large variety of cancers (Campbell & Reece 2007). It has been 

established that kinases are involved in most ‗cancer pathways‘, with the cell cycle 

attracting special attention due to the strong relationship between cell proliferation 

and tumour development (Nair 2005; Carter et al. 2006).There is plethora of 

evidence that cell cycle kinases aberrations may lead to uncontrolled proliferation 

and cell division, some of the main characteristics of cancer development 

(Malumbres & Barbacid 2007). For example the epidermal growth factor receptor 

(EGFR) signalling system, which plays a fundamental role in the morphogenesis of a 
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diverse spectrum of organisms, has been implicated in a variety of human cancers. 

Just to mention a few, EGFR is overexpressed in 50% of epithelial cell malignancies, 

while HER-2 another receptor of the same family is highly over-expressed in 20-

30% of breast cancers (Nair 2005). 

Naturally, signalling pathways and their members are of special interest to 

therapeutics as plausible targets for cancer treatment drugs development. There is 

already substantial ‗proof of principle‘ for the clinical use of kinase inhibitors in 

cancer treatment. To mention one success story, the development of the tyrosine 

kinase inhibitor imanitib, known as Gleevec
®
, has proved highly successful in the 

treatment of patients with chronic myeloid leukaemia and the majority of newly 

diagnosed patients have been shown to achieve complete remission (O‘Brien, 

Guilhot & Larson 2003).  

Moreover, the study of kinases has great potential in prognosis as it has been shown 

that gene expression data can be used for prognostic purposes. More precisely, a 

signature from specific genes, including several kinases, was found correlated to 

several cancer types, with overexpression of the particular set of genes proving 

predictive of poor clinical outcome (Carter et al. 2006). This constitutes a good 

example of the importance of microarrays in applied medical research. 

2.2.6 MicroRNAs 

MicroRNAs (miRNAs) are a family of short RNAs, approximately 21–25-nucleotide 

long which are not translated (He & Hannon 2004). However, they have been found 

to negatively regulate gene expression at the post-transcriptional level. Although 

microarray technology, which is central in this work, does not allow the study of 

microRNAs, this section provides a very brief overview of their role, given the recent 

discovery of their implication in regulating gene expression and pathway activity.   

The founding member of the miRNA family, termed lin-4, was identified in the 

worm species C. Elegans. Studies demonstrated that the sequence of this 22 

nucleotide long RNA is partially complementary to the RNA of lin-14, encoding a 

protein important for the regulation of the transition of the worm from one 

developmental stage to another. Through direct hybridisation between lin-4 and lin-
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14, lin-4 is involved in the control of LIN-14 expression. That is, it is able to block 

the process of protein translation and hence synthesis.  

Almost at the same time with the discovery of the above phenomenon another kind 

of regulatory process was identified by other small RNAs termed siRNAs (for 

silence RNAs). In this case base pairing between a siRNA and an RNA transcript is 

followed by cleavage and degradation of the latter. It should however be noted, that 

questions have arisen regarding the distinction between the two types of small RNAs, 

as at least some examples have been identified where the two exchange mode of 

activity.   

Recent studies have shown that miRNAs take part in important biological processes 

such us development, differentiation, apoptosis and proliferation. A number of 

groups have shown that changes in the expression levels of these molecules are 

associated with cancer development. It has been proposed that they can function as 

tumour suppressors or oncogenes (Callin & Croce 2006). Given these findings and 

the fact that the human genome may encode over 1000 microRNAs, which may 

target about 60% of genes, it is not surprising that their study has become quite 

popular and may contribute to our understanding of gene and protein regulation.    

2.3 Bioinformatics 

The term Bioinformatics, first proposed by Paulien Hogeweg (Hogeweg 1978), 

gained wide spread popularity in the 90s, initially used to describe the use of 

computers for the analysis of gene sequences (Claverie 2000). Today it is broadly 

accepted as defining an interdisciplinary scientific field that blends biology, 

computer science and mathematics.  

There is a certain degree of confusion as to the distinction between bioinformatics 

and computational biology and the terms are often used interchangeably. According 

to the National Centre for Biotechnology Information (NCBI, 2011) computational 

biology is the actual process of analysing and interpreting biological data, while 

bioinformatics is the field of science in which biology, computer science, and 

information technology merge to form a single discipline. From another point of 

view bioinformatics is a sub-field within computational biology that is concerned 
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with the development and application of algorithms and statistical analysis to 

interpret biological data. It can be seen as the process of creating the tools rather than 

the process of interpreting the results, admittedly a vague distinction.   

According to the National Institute of Health of the U.S.A. (NIH) Biomedical 

Information Science and Technology Initiative Consortium (BISTI 2011) the 

following definitions apply: 

Bioinformatics: Research, development, or application of computational tools 

and approaches for expanding the use of biological, medical, behavioural or 

health data, including those to acquire, store, organise, archive, analyse, or 

visualize such data. 

 

Computational Biology: The development and application of data-analytical 

and theoretical methods, mathematical modelling and computational 

simulation techniques to the study of biological, behavioural, and social 

systems.  

Nevertheless, the emergence of bioinformatics can be attributed to the advancement 

of genetics and genomics in the 80‘s, notably to the development of DNA 

sequencing, discussed in the following section (Moore 2007). The large amounts of 

sequence data produced became unmanageable without the use of computer power 

and storage. Indicatively, the human genome alone consists of over 3 billion DNA 

base pairs. Thus, one of the fundamental aspects of bioinformatics refers to the 

organisation of the newly acquired knowledge in databases, allowing us to store and 

manage the large volume of data (Moore 2007). 

Naturally, the following step was to find useful and efficient ways to analyse and 

interpret this knowledge. Thus, today the scope of bioinformatics has expanded to 

encompass a variety of computationally intensive techniques such as data mining and 

machine learning methods applied to extract information from molecular biology 

experiments along with the process of interpreting the data (Moore 2007) .  Popular 

approaches include gene mining, sequence analysis (Vinga & Almeida 2002), gene 
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clustering (Hand & Heard 2005), protein structure (Zhang 2008) and interaction 

modelling (Skrabanek et al. 2008), just to mention a few.  

For example, BLAST (for Basic Local Alignment Search Tool) and FASTA (for 

FAST-All, referring to the fact it works on any alphabet) algorithms identify regions 

of local similarity between nucleotide or protein sequences, measuring the statistical 

significance of the match, thus, allowing us to infer functional relationships between 

them (Altschul et al. 1990; Pearson 1990). Since their development more than a 

decade ago, a number of improvements and other algorithmic approaches have been 

developed. (Vinga & Almeida 2002) provide a useful review of alignment-free 

sequence comparison methods which attempt to overcome the limitations of the 

previous approaches, mainly due to the fact that they were largely based on text 

alignment methodologies that do not account for certain biological realities. 

Importantly, microarray technology, essential in this work, is not only one of the 

major contributors to the accumulation of huge amounts of biological data, but also 

constitutes one of the major areas of bioinformatics research for more than a decade 

(Stoughton 2005). It has made it possible to study and compare entire genomes in a 

very short time span and its focus has already shifted from database management and 

search to gene discovery and characterisation, modelling gene networks, diagnostics 

and so on, as discussed in more detail in section 2.5.  

2.3.1 DNA Sequencing 

Bioinformatics in general and microarray technology itself would be unfeasible 

without the discovery of sequencing techniques which are in a way the cornerstone in 

the foundation of gene expression analysis. In fact genome sequencing is also the 

foundation of what is often referred to as ‗omics‘ sciences, including not only 

transcriptomics (e.g. microarrays) but also genomics and proteomics, the study of 

DNA and protein structure and function respectively. Given that microarray 

technology is in the centre of this work, it is useful to provide a brief discussion of 

DNA sequencing. 

In simple terms DNA sequencing refers to the process of reading the genetic code of 

an organism. While, until quite recently this used to be a laborious task, requiring 
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years to establish the nucleotide sequence of a single gene, today the entire genome 

of many organisms is readily accessible in minutes, through search of public genome 

databases. 

This became possible not so much due to ground breaking advances in molecular 

techniques, as due to the collaboration between scientists around the globe and the 

establishment of large sequencing centres that industrialised the Sanger sequencing 

method (Maxam & Gilbert 1977). In brief, DNA is synthesised on a single stranded 

template with random incorporation of modified bases that act as chain terminators. 

In this way we acquire a range of DNA fragments of varying size corresponding to 

each position of termination allowing us to read out chunks of nucleotide sequences. 

This collaborative effort made the genomes of more than thousand organisms 

available to the world scientific community (1,550 according to KEGG, 18/02/11). 

As a result the concept of Systems biology has emerged, since we can now study 

biological processes in complete cellular systems. 

2.4 Systems biology 

Traditional biology has focused on the study of individual components of living 

organisms, such as cells, organelles, genes and proteins in an effort to establish their 

properties and specific functions. This static approach to biology has apparent 

limitations as it only provides us with sparse pieces of the puzzle, only examining 

few aspects of life processes at a time. Nevertheless, the continuous accumulation of 

more and more pieces of the puzzle in conjunction with technological advances has 

gradually brought us into a new era of biological research and the foundation of 

systems biology. This novel scientific field is an interdisciplinary approach to 

biological systems, integrating traditional biological research with computer science, 

mathematics, physics and engineering in a holistic analytical approach that seeks to 

elucidate the dynamics of biological systems. It is a field still in its infancy which is 

reflected on the fact that it has yet to attain a concise definition.  Nevertheless, the 

popularity of the term has grown rapidly in recent literature, with systems biology 

institutes emerging around the globe (Ideker 2004; Hodgkinson & Webb 2007).  
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2.4.1 Overview 

Systems biology is a holistic approach to the properties of living organisms. As 

opposed to the reductionist point of view that a system can be understood by 

reducing it to its individual parts, thus a biological system can be understood in terms 

of looking into the chemical and physical properties of the molecules of which it 

consists, the holistic view can be summarised by Aristotle‘s point that ‗The whole is 

more than the sum of its parts‘. 

Systems biology‘s roots can be traced in the work of the mathematician Robert 

Weiner‘s and his book ‘Cybernetics, or Control and Communication in the Animal 

and the Machine‘, who first introduced the theory of feedback systems, that is 

systems capable of self-regulation applicable to both living organisms and machines 

(Weiner 1948). Naturally, at the time we neither possessed the knowledge nor the 

processing power of computers to be able to apply this to practical research.  

Today there has been considerable progress and our focus has drastically shifted 

towards understanding a system's structure and dynamics. Genes, proteins and their 

interconnections are merely a static roadmap, whereas we are truly interested in the 

traffic patterns and their properties (Kitano 2002b). Naturally, understanding the 

components of the system remains important. In fact, decryption of the genome, 

facilitated by advances in molecular technologies, along with the development of 

high throughput measurements, such as microarray technology, have been the 

driving force behind the emergence of systems biology. 

To gain system-level understanding of a biological system we need to decipher four 

key properties. Firstly the system‘s structures, that is genes and the nature of their 

interactions through biochemical networks. Second, we need to understand the 

behaviour of the system over time under various conditions. Third, decipher the 

control mechanisms employed by the cell to optimise its functions and avoid 

malfunctions and finally, elucidate the basic design principles that govern the 

properties of the biological system (Kitano 2002b). In this effort, gene expression 

analysis to identify co-expression of genes, and importantly identification of 

unknown genes that appear to interact with genes of known function, through 

clustering and correlation analysis plays a major role (Eisen et al. 1998). 
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While biology has always borrowed some scarce contribution from other sciences, 

notably mathematics, today this is more so than ever. Especially, in the last couple of 

decades the balance has shifted dramatically and biology has seized to be a single 

discipline, which is generally the case for most scientific disciplines. Today it is 

inconceivable to study biology in isolation, even at school level, let alone carry out 

advanced biological research without the use of computers. "Real" biology is 

increasingly carried out in front of a computer, be it so to simply retrieve a 

nucleotide sequence or produce a complex model of a gene network (Roos 2001). 

Physics, chemistry and engineering also have a wide range of contributions, for 

example in DNA sequencing, PCR technology, protein mass spectrometry, 

microarray analysis and so on. Mathematics, simple or advanced is indispensible part 

of research at every level.  

The systems biology approach, has obvious practical advantages, notably in 

therapeutics as deeper understanding of biological functions allows us to develop 

new treatments. The combination of computational, experimental and observational 

enquiry is of great interest in drug discovery and individualisation of medical 

treatment regimes. While there is still a long way to go it is widely accepted that the 

future of medicine lies in the application of systems biology to medical practice 

(Kitano 2002a).  

In a review of systems biology in drug discovery the authors identify three main 

principal approaches to the task in hand, namely the integration of distinct ‗omics‘ 

data sets, the modelling of system physiology from cell and organ response level 

information in the literature, and the use of complex human cell systems in an effort 

to understand and predict the biological activities of drugs and gene targets (Butcher, 

Berg & Kunkel 2004). These are complementary approaches that need to be 

integrated if we are to gain deeper understanding of human disease. Nevertheless, 

they have already contributed to the process of drug discovery, by accelerating 

hypothesis-driven biology, providing useful models for target validation and 

increasing our ability to interpret organism responses to drugs. Perhaps, due to its 

infancy as a field systems biology has not yet produced a major ‗success story‘. 
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Nevertheless, the intensive work and growing interest in the field is evident and we 

can be reasonably hopeful that breakthroughs will soon follow. 

2.5 Microarrays technology 

The fundamental goal of biological research is to improve our understanding of 

organisms and the underlying biological processes allowing them to facilitate the 

chemical compounds available in their environment in order to maintain life. As in 

other scientific fields biology relies heavily on subsequent rounds of hypothesis 

formulation and experimental design to test their credibility. It has been stressed that 

the development of novel highly automated, high throughput biological techniques 

have had a crucial impact on the rate at which data can be acquired. Microarray 

technology is arguably one of the best examples of highly sophisticated experimental 

methodology, which has revolutionised biological science in recent times.  

This experimental technique was conceived by Mark Schena and Ron Davis in the 

early 90‘s while studying the function of transcription factors in the flowering plant 

Arabidopsis thaliana, and soon after published in science magazine (Schena et al. 

1995). Microarrays allow us to observe transcription, the first step of gene expression 

subjected to extensive regulations by internal and external factors. In the past, more 

traditional methods to study gene expression were based on one gene per experiment 

principle. Microarray technology made it possible to study the expression levels of 

many thousands of genes from a particular cell in one single experiment. This not 

only increased the speed of experimental process but greatly reduced the cost of gene 

expression studies, making it possible to obtain genome-wide expression data and 

observe the effect of different physiological conditions by direct comparison between 

expression levels of genes or their products.  

2.5.1 Underlying concept 

Microarray technology is based upon the ability of a particular nucleic acid to 

hybridise specifically to the DNA template from which it originated, due to hydrogen 

bonds formation. It can be seen as an extension of Southern blot, the first DNA array, 

used to search for complementing sequences (Southern , Mir & Shchepinov 1999).  
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Figure 2.5 Hybridisation of nucleotide sequences. The target DNA sequence aligns 

with its complementary probe due to formation of hydrogen bonds (dashed lines) 

between the complementary base pairs, A-T and G-C.  

Most commonly, RNA isolated from different types of cells or tissue, is converted to 

cDNA (for complementary DNA) and labelled with two distinct fluorescent tags 

(such as Cy5 and Cy3). The resulting mixture is added to a microarray chip that 

carries attached an orderly arrangement of nucleic acid sequences, each representing 

a specific gene. Upon exposure of the chip to the set of labelled samples 

hybridization takes place, due to the formation of base-pairs between complementary 

nucleic acids (Figure 2.5). In particular, two hydrogen bonds are formed between A-

T base pairs and three between G-C base pairs, in the DNA duplex. Upon completion 

of that step we measure the amount of target bound to each sample. In particular we 

measure the intensity of a spot resulting from the amount of fluorophore present. The 

resulting image is used obtain a dataset consisting of raw intensity measurements for 

each individual spot representing a gene. The basic hypothesis is that the measured 

intensity level for each gene represents its relative expression level.  

2.5.2 Raw data pre-processing 

Importantly, before RNA levels can be compared appropriately, a number of 

transformations must be carried out on the data. A range of statistical treatments have 
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been proposed for data normalisation with the aim to eliminate low-quality 

measurements, select genes that are significantly differentially expressed and to 

facilitate comparisons (Quackenbush 2002). The most basic one is the total intensity 

normalisation, where the ratio of expression change for each gene is divided by the 

summation of all intensities in both channels.  

Most commonly, microarray experiments compare gene expression ratios between 

two conditions of interest, each one represented by a whole RNA, each labelled with 

a different dye, say green (G) for condition A and red (R) for B. Thus, each gene can 

be represented by a ratio, 
i

i

i
G

R
T  revealing the relative change of expression, as 

defined by the relative presence of each dye on the spot.  

 

Figure 2.6 Microarray image from (Schulze & Downward 2001). Spots appearing 

red correspond to genes more actively transcribed under the condition labelled with 

red dye, while the opposite is true for green spots. Yellow spots correspond to genes 

of similar expression under both conditions.   

This is due to the fact that red and green labelled RNA molecules, corresponding to 

different genes, compete between each other to bind the respective complementary 

oligonucleotide sequences, often termed probes, on each spot. Whichever one is 

present in the mixture in greater abundance will also win the competition and be 

present on the spot in larger quantities, upon completion of the hybridisation. 
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Scanning of the array, using two different wavelengths, corresponding to each dye, 

provides relative signal intensities and thus ratios of mRNA abundance for each 

individual gene. Figure 2.6 shows an example of a microarray image. 

However, ratios have a disadvantage, especially from the point of view of graphical 

representation, since they treat up- and down-regulation differently. For example an 

increase of expression by a factor of 2 would be represented by a ratio of 2, while 

down- regulation by the same factor would be represented by a ratio of 0.5. To deal 

with that issue, most commonly, we use the base 2 logarithm, producing continuous 

spectrum of values. For the example discussed here, increased expression by a factor 

of two is represented by log2 (2) = 1, while decrease by the same factor by log2 (1/2) 

= -1. Figure 2.7 provides a brief overview of the main step of microarray technology 

preceding the final analytical process. 

 

 

Figure 2.7 Overview of the major experimental steps of DNA Microarrays.  From 

http://www.genome.gov/10000533,31/01/2011 
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2.5.3 Microarray platforms 

There is a wide range of DNA microarray platforms including one- and two-channel 

formats, cDNA and oligonucleotide microarrays, in-house spotted microarrays, and 

commercially developed microarrays. The first widely used microarrays were based 

on the use of PCR-amplified cDNA fragments serving as probes, deposited in a 

matrix pattern of spots on a treated glass surface (Šášik, Woelk & Corbeil 2004).  

The next microarray technology to emerge involved in situ synthesized 

oligonucleotide arrays using photolithographic technology pioneered by Affymetrix 

Company (Santa Clara, CA, USA) GeneChips (Lipshutz et al. 1999) which have 

become the industry standard and advances in the field are often measured against 

this technology. The popularity of the platform is due to the high density of the 

arrays, the facilitation of quality control and high reproducibility. The preparation 

process implements photolithography where oligonucleotides are synthesized in light 

directed manner, directly onto the chip, in 3‘ to 5‘ direction. In particular, a glass 

wafer is appropriately modified with photolabile protecting groups which prevent 

DNA base binding to its surface. In order to anchor a DNA base to the chip, with the 

use of a robot, a beam of light passing through a photolithographic mask eliminates 

the photolabile protecting groups at specific X, Y co-ordinates. At this point the 

surface of the chip is flooded with the appropriate mononucleotide, which is also 

photoprotected by a photolabile group at its 5‘ end, resulting in anchorage of the 

nucleotide to the surface of the wafer at the exact positions where the light beams 

eliminated the protecting groups in the preceding step. Light passing through a 

second photomask de-protects selectively different positions on the substrate, so that 

a new 5‘ proteced deoxynucleoside can be added. Affymetrix use 25-mers 

oligonucleotides multiple probes to estimate the abundance of each target transcript. 

Importantly, this approach is not based on competitive hybridisation, thus, it reveals 

the abundance of a particular transcript from a particular cell or tissue sample, using 

a single channel/dye format. To compare two samples, two separate microarrays 

must be produced. 

Another approach is the in situ synthesis of probes, using inject printing. During the 

delivery process, each sample is loaded into a miniature nozzle controlled by a 
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robotic system to ensure that it is spotted at an individual location, with the desired 

X, Y co-ordinates. Upon delivery of a sample the nozzle is washed and loaded with 

the next sample of interest. This technology is facilitated by Agilent (Palo Alto, CA, 

USA) and has the advantage of using longer 60-mer oligonucleotides as probes, 

allowing the use of only one probe per target (Hardiman 2004). Similarly to the 

original cDNA arrays Agilent implements competitive hybridisation using two 

distinct dyes. 

Pre synthesis of oligonucleotides or cDNAs has the important advantage that the 

sequences eventually placed on the array can be exactly those desired. This strategy 

is implemented on the CodeLink
TM 

Bioarray platform from Amersham Biosciences 

(Piscataway, NJ, USA). The oligonucleotides are immobilized on the slide surface 

following their synthesis through covalent attachment. An advantage here is that the 

hydrophilic gel surface reduces non specific binding, hence minimizing background 

noise (Hardiman 2004). This methodology also uses a single channel approach. 

Furthermore, Expression Array System from Applied Biosystems (Foster City, CA, 

USA) uses standard phosphoramidite chemistry to synthesise 60-mer 

oligonucleotides, which are validated by mass spectrometry prior to deposition on a 

nylon microarray substrate and subsequently mounted on a glass support (Hardiman 

2004). Illumina chips also use standard oligonucleotide synthesis. However, Illumina 

facilitates beaded oligonucleotide arrays comprised of thousands of microwells 

(Šášik, Woelk & Corbeil 2004). Each microwell contains a single bead carrying 

more than 10
5
 50-mer oligonucleotides probes targeting a unique gene. Importantly, 

beads that carry the same probe are scattered randomly across the microarray, to deal 

with variable signal across the chip. 

It is important to note that regardless of the platform, the raw data comes in the same 

form, that is, a scanned image. 

2.5.4 Applications 

Microarray technology has become an indispensible tool for biological research, as 

evident in the huge number of scientific papers published in that area and the 

growing availability of microarray data. Gene expression analysis has been 

facilitated for a wide range of applications, notably for the identification of genes 
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related to particular phenotypes, often referred to as biomarkers (Chu et al. 2005), 

drug discovery and development (Debouck & Goodfellow 1999), study of 

biochemical pathways (Wu et al. 2007), prognosis and diagnostics (Dai et al. 2005; 

Carter et al. 2006), therapeutics (Gerhold, Jensen & Gullans 2002) and so on. An 

informative review of the main features of microarrays technology and its 

applications in biology can be found in (Stoughton 2005). 

A number of distinct strategies to analyse and exploit microarray data have been 

proposed. One of the most basic analytical methodologies emerging from the start, 

still popular to date, is the application of various clustering techniques to the 

expression profiles of genes (Kerr et al. 2008). In cluster analysis of microarray data, 

we wish to partition genes into groups, clusters, based on expression measurements. 

In this way we obtain classes of genes that show highly similar expression patterns, 

while being disjoint with genes in other classes. This is largely based on the ‗guilt by 

association‘ notion, which assumes that genes with similar expression patterns are 

functionally related to each other (Brazhnik, de la Fuente & Mendes 2002).  

Hierarchical and partitional clustering methods represent the two basic approaches to 

clustering (Jain, Murty & Flynn 1999). In the first case each gene is initially placed 

in a distinct cluster, followed by successive merging of clusters together until a 

stopping criterion is satisfied. This process results in a dendrogram representing the 

nested grouping of patterns and similarity levels at which groupings change. It is one 

of the most popular clustering techniques in microarray studies, introduced soon after 

the development of the methodology (Eisen et al. 1998). In contrast, partitional 

clustering produces a single partition of the data instead of a dendrogram, which 

optimises a chosen measure of clustering quality (Hand & Heard 2005). A popular 

example here is the k-means clustering algorithm, which iteratively moves 

observations between clusters in an effort to minimise the average squared distance 

between observations and their cluster centroid (MacQueen 1967). While the second 

is less computationally expensive than hierarchical clustering and more suitable for 

large datasets, it requires the choice of the number of desired output clusters, which 

in reality is usually unknown, and tends to produce distinct clusters at every 
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application. An extensive review of clustering methodologies applied to gene 

expression data is provided in (Hand & Heard 2005). 

As aforementioned, given that the function of a number of genes has been 

experimentally determined clustering can be useful in elucidating the role of 

unknown genes that appear in the same cluster and generally in providing the 

researchers with interesting targets for further analysis (Eisen et al. 1998). In the 

same context, (Yano et al. 2006) have proposed a methodology for identifying genes 

whose differential expression is related to a particular phenotype, using a set of 

microarray experiments associated with the trait of interest and a reference dataset.  

Classification of microarray data is another strategy that has gained wide spread 

popularity. In contrast to clustering, an unsupervised learning technique, 

classification is a supervised learning method, as here we have a priori knowledge of 

the class that each experiment belongs to. This may be a certain disease state, 

environmental condition or developmental stage. The goal is to teach a classifier to 

distinguish between such states or phenotypes of interest, with obvious applications 

to medical research (Quackenbush 2006). A number of complicated artificial 

intelligence approaches have been applied in this area of research, such as neural 

networks and support vector machines with variable success (Furey et al. 2000; 

Ringnér & Peterson 2003). 

2.6 Heuristics 

The accumulation of biological data has presented us with new opportunities to gain 

insights into biological processes, but at the same time it has also presented us with 

an increasingly complicated range of problems, to which there are often no simple 

solutions. Making sense of the amount and complexity of biological data we have at 

our disposal constitutes a difficult task. This is where heuristics come in handy.  

Heuristic approaches to analyse biological data are quite popular, in a number of 

areas, notably in the analysis of microarray data. Here heuristics are largely 

employed for clustering of genes, based on expression profiles and classification 

discussed in section 2.5.3.  Another important area of interest is the construction of 

genetic network models from microarray data in order to reveal the regulation rules 
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behind the gene expression profiles. While these networks are phenomenological and 

simplified, as they do not directly represent the proteins and metabolites involved in 

cell functions, they are a logical way of describing phenomena based on gene 

expression data (Brazhnik, de la Fuente & Mendes 2002).  

Given that the work presented here facilitates heuristic methods, to analyse gene 

expression data and propose solutions to biologically driven questions, a brief 

overview of such methods and some important, relevant concepts is included in this 

section. 

2.6.1 Overview 

The term heuristics, from the Greek word "heuriskein" meaning "to discover", refers 

to a wide range of problem solving approaches, which derive an approximate 

solution to a problem in a faster or more economical way than a mathematically strict 

algorithm. A heuristic can be seen as a rule of thumb that may help us to solve a 

problem. A good example is the left-hand rule for solving a maze, which states that 

by holding one hand in contact with one wall we are guaranteed to reach an exit. 

Heuristics apply to problems where exhaustive search for an exact solution is 

impractical, that is, problems that have such a wide range of possible solutions that 

even using the currently available computer processing power does not allow us to 

examine them all within a reasonable time frame.  

Perhaps the most basic example is the Boolean satisfiability problem, where we wish 

to find the appropriate assignments to individual variables in a Boolean formula that 

will make it evaluate to TRUE (Michalewicz & Fogel 2004). A plausible solution for 

this problem can be represented as a binary string where ones correspond to TRUE 

and zeros to FALSE. Naturally, the number of potential solutions to such a problem 

depends on the length of the string. Given that we are presented with two choices of 

values for each variable, for a string of length n there are 2
n 

plausible solutions, 

corresponding to all combinations of assignment of values at each position of the 

string. Hence, as the size of the problem increases the number of plausible solutions 

follows suit at an exponential rate. For a binary string of 100 variables, there are 2
100
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such solutions, a number so huge that it is impossible to examine each and everyone 

within the lifetime of the universe. 

The purpose of Heuristics is to deal with such problems, by speeding up the search 

process and finding a solution, that may not be the exact solution to the problem in 

hand, but is a good approximation, at least good enough to satisfy our needs for the 

task in hand.  

2.6.2 Basic concepts 

In general, all algorithmic approaches to solving problems consist of three basic 

components, the representation, the objective and the evaluation function 

(Michalewicz & Fogel 2004). First we need to represent candidate solutions in a 

manner that is consistent with the problem and allows computational manipulation. 

In the satisfiability problem, discussed above, a fundamental representation 

corresponds to a binary string. Notably, the chosen representation for any problem 

implies the size of the search space, meaning the range of possible solutions, which 

is of upmost importance in algorithmic search. 

Additionally, we need an objective, a definition of the goal we seek to achieve, 

which in the above discussed problem is to make the statement of Boolean variables 

evaluate to TRUE. Finally, we need an evaluation function, in order to be able to 

evaluate the worth of a solution and compare it to the worth of alternative solutions. 

This is often a mapping between a solution and its quality. 

In the example here, the value of an approximate solution, FALSE, does not give us 

any indication of how close we are to reaching our goal. It does not allow us to 

compare alternative solutions and choose an appropriate direction for subsequent 

solutions in the search space. This is an important point, as in modelling a problem it 

is useful to design an evaluation function that will direct us towards better alternative 

solutions. 

The traveling salesman problem, one of the most studied problems in computational 

mathematics, constitutes a useful example here (Michalewicz & Fogel 2004). In its 

most basic form, the goal is to find the shortest route visiting a number of cities and 
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returning to the point of departure, without repetition. Figure 2.8 graphically 

represents a sample TSP problem of 4 cities. Here the most basic representation 

coming to mind is a string of natural numbers from 1 to n, where each number 

represents a city and the order of numbers a potential route. In essence, the size of 

the search space is equal to n!, corresponding to the number of all possible 

permutations. However, taking into account that in the basic form of the problem the 

distance between two cities is the same in either direction and that the circuit is the 

same regardless of the starting city, the search space is reduced to (n-1)!̸ 2. Here we 

can evaluate each solution to the problem by summing the distance between each city 

and the following one in the route. Hence, we can compare a solution to a previous 

one and see if we are going in the right direction. This is an important point in 

algorithmic search approaches in the field of heuristics. 

 

 Figure 2.8 An example of 4 cities TSP problem. 

2.6.3 Stochastic local search algorithms  

There is a wide range of heuristic search algorithms whose purpose is to find an 

optimum solution to a problem in a given search space. Stochastic algorithms are a 

type of heuristic search methods that examine random solutions until reaching a time 

limit or criterion. This section is an overview of some basic choices relevant to this 

work. As aforementioned the idea is to find approximate solutions to problems where 

exhaustive search is infeasible. The underlying strategy in the case of local search, 

where we concentrate on a solution and its local neighbourhood is the following: 

1. Choose a solution from the available search space and estimate its fitness. 
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2. Transform it in some way reaching a new solution and evaluate the new 

solutions fitness.  

3. If the new solution turns out to be worse than the previous one it is discarded, 

if however it turns out to be better it is kept as the current solution. 

4. The process at steps 2 and 3 is repeated until no improvement occurs or until 

chosen criteria are satisfied (e.g. a given number of iterations performed) 

Hill climbing belongs to the category of local search algorithms, as it operates using 

a single current state and moves continually to neighbours of that state in a direction 

that increases the fitness of the corresponding a state (Russell & Norvig 2003). In the 

case of the traveling salesman problem, where a particular solution is represented as 

a string, each position corresponding to a city, the basic method to proceed is to swap 

a pair of cities in the string and evaluate the quality of the resulting route. Thus, we 

introduce a small change, moving to a neighbouring solution that differs in only two 

positions (i.e. cities) from the preceding string. If the new configuration is of better 

quality, that is, the overall length of the route is shorter, the route is kept to serve as 

the new current solution otherwise it is discarded. While this method needs not 

remember the route followed and is not computationally intensive, it tends to get 

stack in local optima. That is, local solutions which are better than other solutions in 

the surrounding neighbourhood, but do not constitute the best global solution.  

Figure 2.9 serves as an example to demonstrate the concept of local optima and 

search space. It represents one dimensional state space landscape, where the aim is to 

find the highest point or global maximum. A hill climbing algorithm starting at the 

position indicated with a circle will evaluate the height of its immediate neighbours, 

and move uphill to the right until it reaches point C. From there on it will get stuck as 

no surrounding position is higher. This point is a local maximum, such as A, B and 

D, however, only B constitutes the global maximum, the highest point overall. This 

hill climbing example is analogous to a person trying to climb a hill in the fog. They 

feel around themselves until they find a point higher than they are at the moment and 

proceed until no such point is found. The height of the hills can be seen as the fitness 
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when plotting the fitness space. Naturally, depending on the individual problem we 

may be looking for a global minimum, which follows a similar rationale. 

 

Figure 2.9 One-dimensional state space landscape. Points A, C, and D are only local 

maxima while B is the global maximum. 

One common solution to the tendency of hill climbing to get stack in local maxima is 

to restart the search at various random positions and eventually choose the best of all 

solutions. Another way to deal with this is implementing a simulated annealing 

algorithm (Kirkpatrick , Gelatt & Vecchi 1983). It is quite similar to hill climbing, 

but here a solution of worse fitness may be accepted, in a controlled manner. It 

borrows its name from the process of annealing in metallurgy, where metals are 

initially heated at very high temperatures and then allowed to gradually cool down. 

At high temperatures the atoms wander around randomly, from time to time adopting 

states of higher energy. The chance of this occurring gradually decreases as 

temperature drops. This process allows misplaced atoms to adopt more 

thermodynamically favourable positions and hardens metals. 

Simulated annealing incorporates the notion of temperature, through a parameter T, 

which defines the probability of accepting a solution of worse fitness. This parameter 

is initially set high and follows a scheduled gradual decrease as the algorithm 

progresses. Hence, after a certain number of iterations this probability becomes so 

small that only solutions of better fitness are accepted, as in the case of Hill climbing. 
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Genetic algorithms represent another case of local stochastic search methodology 

that follows the rationale of natural selection, first proposed by John Holland 

(Holland 1975). In nature individuals with traits that make them successful in their 

environment, have increased chances of survival and production of offspring. 

Consequentially, overtime the characteristics of such individuals show increased 

spread in the general population. In a fashion that mimics this process genetic 

algorithms start with a set of random solutions termed individuals which as a whole 

constitute a population. Individuals are usually represented as binary strings, or in 

some cases as strings of another finite alphabet (Russell & Norvig 2003), and their 

fitness can be evaluated through an appropriately chosen fitness function. Given a 

starting population, a change is introduced to randomly selected individuals forming 

it, leading to production of a new collection of individuals, increasing diversity. The 

individuals constituting the new population are selected and preserved based on their 

fitness. The process is repeated for a chosen number of iterations or until a desired 

fitness is reached. 

Typically, the changes introduced to individuals at each iteration fall into two basic 

categories, crossover and mutation. In a crossover, mimicking biology, where two 

chromosomes may exchange parts during meiosis, two binary strings exchange parts 

at a particular positions giving birth to two new chromosomes. Each of the new 

chromosomes, typically referred to as daughter chromosomes, consists of parts of the 

initial ones. In the basic case of one point crossover, the new chromosomal parts 

come from either side of the position of exchange, as shown on Figure 2.10. 

A mutation is most commonly implemented as a single change in a binary string at a 

particular position, as shown on Figure 2.11. This process mimics the biological 

process of a mutation, during which a change occurs in a single base in the 

nucleotide sequence of a genome. 

In the simplest case once a new generation is introduced the fittest individuals are 

preserved. The number of such individuals, that is the size of the population is 

chosen based on the problem in hand. However, in order to maintain diversity, it is a 

common strategy for some individuals, even of low fitness, to be passed to the next 
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generation at each step of the process. One very popular method to do this is the so 

called roulette-wheel selection. 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 One point crossover. The figure exemplifies the exchange of parts 

between two parent chromosomes, at the position of the dashed line, to produce two 

daughter chromosomes, each one consisting of a part of each parent chromosome. 

This is a one point crossover, the simplest type. In this example the exchange takes 

place in the middle, but generally crossover can occur at any available position. 

 

 

 

 

 

 

 

Figure 2.11 The genetic operator of mutation, giving birth to a new, daughter 

chromosome, from an existing parent chromosome. 

In this approach, every individual is assigned a probability of being selected which is 

directly proportional to its fitness, thus the higher the fitness the most likely the 

individual is to be preserved. This is analogous to a roulette-wheel, in the sense that a 

proportion of the wheel is assigned to each individual based on its fitness. The higher 
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the fitness the larger the proportion and thus the greater chance of randomly selecting 

the individual upon turning the wheel. Naturally, the method allows for individuals 

of lower fitness to be occasionally chosen. 

Hill climbing, simulated annealing and genetic algorithms along with other search 

techniques are also referred to as metaheuristic methods, as they seek to optimise a 

problem through iterative search, facilitating an appropriate measure of quality, 

without prior expert knowledge regarding the problem in hand. 

2.7 Biological Databases 

The importance of public databases in spreading knowledge and providing raw 

material for data mining has already become apparent in the previous sections. What 

has often started as a simple collection of data regarding the research topic of a 

certain group has today become indispensible tool for biological research. The 

wealth and diversity of freely available information would be difficult to conceive 

only a decade ago. In fact, it is hard to imagine of any contemporary research effort 

that does not facilitate some type of database to a larger or lesser extent. 

The importance of biological databases is reflected in their popularity and the rate at 

which established databases have grown and new ones have emerged in recent years. 

Indicatively, the 2005 release of the Nucleic Acids Research online Molecular 

Biology Database Collection (NAR, 2011) includes 719 databases, an increase of 

171 over the previous year (Galperin 2005). In comparison, the 2010 release of the 

same collection contains 1230 carefully selected databases covering various
 
aspects 

of molecular and cell biology, an increase of 5% over the last year (Cochrane & 

Galperin 2010). 

Databases can be roughly categorised according to the type of information stored in 

them. Table 2.2 provides an overview of the categories of biological databases 

according to the Nucleic Acids Research online Molecular Biology Database 

Collection. Importantly, this categorisation is only a rough guide as number of 

databases store data that can be assigned to more than one of these categories. For 

the scope of this work metabolic and signalling pathway databases along with 

microarray data databases are the most relevant and will be briefly discussed. 
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Table 2.2 2011 NAR Database Summary Paper Category List 

Nucleotide Sequence Databases 

RNA sequence databases  

Protein sequence databases  

Structure Databases  

Genomics Databases (non-vertebrate)  

Metabolic and Signaling Pathways  

Human and other Vertebrate Genomes  

Human Genes and Diseases  

Microarray Data and other Gene Expression Databases  

Proteomics Resources  

Other Molecular Biology Databases  

Organelle databases  

Plant databases  

Immunological databases  

2.7.1 Metabolic and Signalling pathways databases 

Pathway databases provide a collection of metabolic and regulatory pathways, 

including the genes and proteins involved along with chemical compounds 

participating in the respective reactions, which can be seen as the wiring diagrams of 

genes and molecules.  The KEGG database (Kanehisa et al. 2008) which plays a 

prominent role in this research is a characteristic example of database that stores 

information which makes it assignable to more than one of the categories on Table 

2.2. It is a general genomics database, storing information about individual genes and 

a number of completed genomes in its GENES section, while at the same time a 

pathway database, with graphical representation of cellular processes included in the 

PATHWAY section. Importantly these sections are linked providing information 

about the way genomic information is related with higher order functional 

information, that is, pathways. Figure 2.12 provides a snapshot of the KEGG 

database home page. 
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Figure 2.12 KEGG homepage (KEGG 2011).  

MetaCyc (Caspi et al. 2010) is another example of a popular metabolic-pathway 

database that describes more than 1000 pathways. An important characteristic of 

MetaCyc is that it only deals with pathways that have been determined 

experimentally through wet lab research. While this approach imposes some 

limitation on the amount of available data, on the positive side, it confers accuracy 

and reliability to the available information. Notably, MetaCyc provides a graphical 

user interface with a plethora of options and a number of applications including 

pathway analysis tool. 
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In fact, MetaCyc is part of a larger database, named BioCyc (Karp et al. 2005) which 

uses Pathway Tools software
 
and MetaCyc as a reference to construct predicted 

metabolic networks. It holds a collection of 653 organism-specific
 
Pathway/Genome 

Databases (14/07/10), each one containing
 

the full genome and the predicted 

metabolic network of one organism. 

Finally, Reactome is another pathway database of importance relevant to this work, 

dealing with human pathways and processes (Croft et al. 2011). Importantly, the 

database is manually curated and peer-reviewed by an expert team of biologists and 

has gained widespread popularity. The core unit of the Reactome data model is the 

reaction, hence the name. Naturally, reactions are grouped into pathways 

representing a network of interconnecting processes. The data model generalizes the 

concept of a reaction to include the transport of a molecule from one compartment to 

another and the formation of complexes besides the classical biochemical 

transformations. Hence, pathways in Reactome include classic metabolism as well as 

signalling, transcriptional regulation, apoptosis and so on.  

All pathways are cross-referenced to proteins, genes and small chemical compounds 

in relevant databases, primary research literature and GO controlled vocabularies. 

Besides an intuitive useful visualisation of such pathways, also allowing navigation 

and zooming in and out of processes, the database provides tools for pathway based 

analysis of microarray and other datasets. The user can supply a list of entities, such 

as genes and expression data to identify over expression in pathways. 

2.7.2 Microarray Data Databases 

Since the introduction of microarray technology it has become a widely used tool for 

the generation of gene expression data. This has been accompanied by an apparent 

growing demand for any publication to make the analysed dataset available to the 

wider research community. Naturally, a number of databases have been created to 

satisfy this need, with 69 listed in Nucleic Acids Research online Molecular Biology 

Database Collection (20/02/11). They include the National Centre for Biotechnology 

Information (NCBI) Gene Expression Omnibus database (Barrett et al. 2009) (Figure 
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2.13) and ArrayExpress (Parkinson et al. 2008), which have emerged as the main 

public repositories.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 GEO homepage (GEO 2011).   

Today, a variety of journals require that all authors using microarray data analysis in 

their research submit a complete dataset to a public repository in order to publish. As 

of 2011 GEO stores over half a million distinct microarray samples, meaning results 

of distinct gene expression experiments for a wide range of organisms from yeast to 

humans. It should be noted that the growing demand for publicly available 
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microarray data has also stimulated the need to set some general standards regarding 

the format and the information accompanying each dataset, to allow subsequent 

analysis by different researchers. For example the Microarray Gene Expression Data 

Society (MGED 2011) advocates open access to genomic datasets and works towards 

developing standards for data quality, annotation and exchange. MIAME, which 

stands for the Minimal Information About a Microarray Experiment (Brazma et al. 

2001), is designed to help authors, who submit microarray data, ensure that the data 

meets some minimum requirements, allowing other researchers to interpret the 

results of the experiment unambiguously and potentially to reproduce the 

experiment. 

2.8 Pathway based microarray analysis 

The huge wealth of information accumulated in recent times in distinct fields of 

biological knowledge along with the expanding influence of systems biology on 

contemporary research approaches have led to growing interest in data integration 

(Hwang et al. 2005; Bourguignon et al. 2010). Microarrays have for some time now 

been producing lists of differentially expressed genes, under experimental conditions 

of interest. Statistical analysis, clustering and classification, discussed in section 

2.5.3, have been some of the basic choices of analytical approaches to facilitate 

expression data. There is a general notion that such approaches have not been able to 

leave up to the initial enthusiasm, often producing cryptic results (Werner 2008).  It 

was soon realised that there is a need to move beyond, and come up with novel 

analytical methodologies to efficiently analyse global gene expression (Altman & 

Raychaudhuri 2001).   

One such approach is to look at differentially expressed genes in terms of predefined 

lists, related to biological functions. For example gene-ontologies (GO), that is, an 

effort for clear and relatively simple gene classification according to the functional 

properties of their protein products (Sidhu et al. 2007), have been quite popular. A 

comprehensive review of GO based microarray analysis approaches can be found in 

(Ochs et al. 2007). 
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Pathway based microarray data analysis is a similar methodology, that aims to 

integrate microarray data analysis with biochemical pathway knowledge. Rather than 

concentrating on the often subtle change occurring in the expression of individual 

genes, gene expression analysis is facilitated to identify coordinated changes 

occurring in the expression of sets of genes, forming biochemical pathways 

(Cavalieri et al. 2007). This is a sensible choice given that an expression increase of 

20% in genes encoding enzymes of a metabolic pathway may have a significant 

effect on the flux through the pathway, which may be more important than a huge 

increase in the expression of a single gene (Subramanian et al. 2005). Furthermore, 

as aforementioned deregulation of signalling cascades has major involvement in 

pathogenesis, notably in cancer development. Thus, differential expression analysis, 

in terms of pathways and regulatory networks has drawn considerable interest in 

biological and bioinformatics research (Keller et al. 2009). It holds promising 

potential in deciphering the functional state of a cell at the level of the underlying 

biochemistry.  

The development of pathway databases, discussed in section 2.6.1, providing a 

collection of the components of metabolic and regulatory pathways, has been of 

upmost importance in this line of research. Due to the high rate of growth of relevant 

literature that needs to be constantly assimilated, academic efforts in the area of 

pathway based microarray analysis rely heavily on pathway databases (Werner 

2008). 

2.8.1 Available software 

In (Kurhekar et al. 2002) the authors have proposed an interesting method for the 

analysis and visualisation of microarray data in metabolic and regulatory pathways in 

order to elucidate the effect of stimuli on these genetic networks. They combine gene 

expression data series with metabolic pathway data from KEGG for a number of 

organisms to score pathways according to three distinct criteria, namely activity, co-

regulation and cascade effects. In brief, these refer to the proportion of differentially 

expressed genes in a pathway, the degree of correlation of gene expression per 

pathway and the degree of activation of genes along reaction chains per pathway, 

respectively. 
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Eu.Gene Analyzer (Figure 2.14) is a stand-alone application that allows microarray 

data analysis in the context of biological pathways and any other functional grouping 

of genes, such as gene-ontologies. This tool can be used to visualize expression data 

on metabolic pathways and to evaluate which metabolic pathways are most affected 

by transcriptional changes in whole-genome expression experiments (Cavalieri et al. 

2007).  

The scoring of pathways, in view of the effect of the experimental conditions on their 

activity, is based on the application of two different statistical approaches, the fisher 

exact test (FET) and gene set enrichment analysis. Regarding FET the software 

estimates the probability of observing as many or more differentially expressed genes 

in a pathway of given size, purely by chance, given the null hypothesis that the 

number of regulated genes in a pathway is random subset of regulated genes 

observed in the experiment as a whole. 

Gene set enrichment analysis (GSEA, Figure 2.15) itself is a popular approach to 

analyse microarray data at the level of gene sets, be it sets of genes belonging to 

experimentally defined biochemical pathways, genes of the same chromosomal 

location or genes of similar ontology (Subramanian et al. 2005). The method uses a 

list L, where genes are ranked according to the degree of differential expression they 

show in a collection of microarray datasets corresponding to two different 

experimental conditions, and examines whether members of any gene set tend to 

occur toward the top or bottom of list L, thus showing up or down regulation. 

Application of the method has produced promising results, for example revealing 

reduced expression of genes involved in oxidative phosphorylation in diabetics, 

which has been independently validated by in vivo functional studies (Petersen et al. 

2004). 

GSCope constitutes another example of popular software for pathway expression 

analysis (Toyoda , Mochizuki & Konagaya 2003). It provides a nice visualisation 

allowing the user to look at pathways from different levels, zooming in a more 

detailed view or zooming out to obtain an overview when appropriate. Other 

reference examples of similar software tools include GenMapp (Dahlquist et al. 
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2002), Cytoscape (Shannon et al. 2003), Pathfinder (Goesmann et al. 2002) and 

GeneNet (Ananko et al. 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14 A snapshot of Eu.Gene Analyser. A software tool developed for scoring 

gene sets, such as pathways and other functional groups. Each set is scored according 

to the proportion of differentially expressed genes it contains, in relation to other sets 

and the global expression of genes in the microarray dataset. 

Overall, in most cases of such tools, a pathway database is superimposed onto a 

single microarray experiment in order to visualise the expression of individual genes 
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forming the pathway in a collective view. Despite the large variety of methods they 

all take into account the expression of all the genes in a pathway, thus all methods 

are based on some type of averaging. However, it is important to note that genes in a 

biochemical pathway often show quite variable behaviour in terms of RNA 

production. Making sense of pathway activity based on expression data does not 

constitute a straightforward, simple task and a significant level of reluctance by the 

biological community to facilitate relevant tools has been reported (Saraiya, Chris 

North & Duca 2005). 
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 Figure 2.15 GSEA software tool. Snapshot of GSEA software tool for the 

identification of gene sets, significantly enriched in differentially expressed genes. 

 

Furthermore, it is not uncommon to observe simultaneous up- and down-regulation 

of closely related genes, in the same pathway, in the same experiment, as discussed 
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in some detail in chapter 3. Naturally, identifying the state of activity of pathways 

exhibiting such behaviour is not a trivial task and requires further elaboration. 

2.9 Conclusions 

Visualisation is very useful, allowing the domain expert to gain insights into 

available data. It has been explored in some detail in the context of pathway based 

microarray analysis. However, biologists have expressed concerns regarding the 

advantages offered by available visualisation tools and a significant level of 

reluctance in facilitating them in their research, partly due to their complexity 

(Saraiya, Chris North & Duca 2005). Furthermore, visualisation alone does not 

interpret the data in hand. In that sense combining and intertwining visualisation and 

analytical methods can be very beneficial. In the analysis of biochemical pathway 

behaviour, centred on gene expression data, there is still considerable room left for 

speculation, and deciphering pathway behaviour remains a challenging task. 

Additionally, it is often difficult for biologists to adopt to the current approaches to 

analysing expression data, which rely heavily on mathematics and complicated 

computational methodologies. Traditionally, biology has been an experimental 

science, mainly wet lab based, and it would be greatly beneficial to find ways to 

provide the researcher with simple and clear insight into the microarray data in hand. 

This constitutes the main motivation behind the research presented in this thesis. It is 

an effort to add some contribution to pathway based microarray analysis and assist 

the biologist to interpret gene expression data with greater clarity and confidence. 

The analytical approach is centred on the collective expressional behaviour of all 

gene members of pathways in order to identify those truly associated with the 

observed pathway states, as discussed in the following chapter.  
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Chapter 3: Central hypothesis  

3.1 Introduction 

Gene expression analysis using microarray technology has been accompanied by the 

development of a large variety of analytical methodologies that attempt to exploit our 

ability to monitor the global response of gene activity to various experimental 

conditions. As previously discussed, following the popularity of the systems 

approach to biological research, gene expression analysis has not escaped the trend 

for data integration. There is an on-going effort to combine distinct experimental 

techniques in a holistic analytical approach, allowing us to arrange pieces of the 

puzzle that biological knowledge is and obtain a clearer picture of the behaviour of 

living systems.  

Pathway based microarray analysis is an important effort to observe the behaviour of 

genes forming defined biochemical pathways and thus draw meaningful conclusions 

regarding the state of a cell or an organism. This chapter presents a discussion of the 

basic research hypothesis underlying this work and an attempt to validate it 

examining the behaviour of genes that constitute members of distinct biochemical 

pathways in large datasets of microarray experiments. The analysis, presented here, 

incorporates the notion of single- and multiple-membership, in respect to the 

participation of a gene in one or more biochemical pathways respectively. We 

facilitate different approaches to explore the behaviour of these types of genes, 

including expression frequency, correlation analysis and association rule mining. 



 

  3: Central hypothesis 

70 

 

3.1.1 Rationale and Motivation 

A biochemical pathway can be seen as a collection of genes whose protein products 

collaborate in a highly organised fashion to produce a desired outcome. The entire 

collection of genes, members of distinct pathways, forms a complicated, highly 

integrated network. To cover our intuitive needs we break down this network into 

smaller parts, namely pathways, consisting of genes with close functional 

relationships that are responsible for a particular, well-defined cellular task. For 

example we can assume the following hypothetical pathway where a cell needs to 

produce proteins A, B, C, D and E, which in turn catalyse five steps of a biochemical 

process starting from an initial chemical substrate and leading to the production of a 

chemical compound required by the organism (Figure 3.1). 

Figure 3.1 Hypothetical biochemical pathway. Enzyme A catalyses the conversion 

of compound 1 into compound 2, which is then transformed into compound 3 with 

the contribution of the enzymic activity of B and so on. 

 

A parallel would be a production line in a car factory or a house building project 

where each molecule represents a certain step in the process. Different people 

involved in the project have different skills required to fulfil their tasks at different 

stages of the process. Some are needed to dig, others to lay the foundations of the 

house, others to paint or fit the electrical wiring, with the ultimate aim to build a 

functional house. In a similar fashion different proteins encoded by the genes in a 

pathway, have their individual tasks which they need to perform in a coordinated 

fashion for the pathway as a whole to be functional. In this analogy the organism can 

be seen as a city, where building, renovation and demolition projects constantly take 

place at different sites. 
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Ideally, in pathway based microarray analysis we would expect that activation of a 

pathway would allow us to observe an increase in the activity of genes forming the 

pathway in question and vice versa, following the above rationale. However, in 

practice we often observe quite variable behaviour in terms of expression, for gene 

members of the same pathway, with some showing up-regulation, others down-

regulation and others stable expression at the same time, in the same experiment. 

Naturally, such observations raise issues and confer pathway based microarray 

analysis a tricky, non-trivial analytical methodology. It would be greatly beneficial 

for a biologist to find analytical approaches that aid him in better interpreting such 

contradictory results in the effort to elucidate pathway states using microarray data. 

3.1.2 Common issues related to variable expression of genes in a pathway 

There are a number of reasons discussed in available literature that provide some 

justification of the observed discrepancy in the expression of closely related genes 

forming a pathway. Above all, genes are characterised by large diversity, given that 

genes that are members of the same pathway may encode proteins of very different 

functionality, with some being transcription factors acting in the cell nucleus to 

facilitate the expression of other genes, while others transmembrane proteins (Stryer 

& Tymoczko 2006). Thus it is not surprising to observe that they respond differently 

in terms of how their corresponding RNA levels are affected in various conditions.  

Previous work in the field has already targeted this issue and suggested a plausible 

explanation (Panteris et al. 2007). In brief, there is a flow of enzymatic activity 

taking place in an organism as a whole and in each of its pathways which, as already 

mentioned, consists of a network of biochemical reactions. In this collection of 

reactions there are rate determining steps, a common notion in chemistry (Zumdahl 

2005), that describes the fact that the slowest step in a reaction is the one to 

determine its speed. Consequentially, it is likely that while certain genes in a 

pathway are important for the flow, probably encoding structural proteins, others are 

rate controllers, for example encoding enzymes and signalling molecules. The latter 

ones are likely to be more drastically affected by changes in the experimental 

conditions, in terms of RNA production rates. Hence their intensity values are more 

representative of the pathway‘s state.  
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Additionally, while the term gene expression is widely used as reference to DNA 

microarrays technology, due to the popularity of the technique, this use of the term is 

not entirely correct. To be more precise, in the case of protein encoding genes, gene 

expression describes the entire process starting with the transcription of a gene onto 

an mRNA molecule and finishing with a functional protein molecule. During this 

process there are a number of intermediate regulatory stages, including the 

translation of the mRNA molecule into a protein, while the rates of protein 

maturation and degradation also have a severe effect on the activity of a protein 

(Quadroni & James 1999).  

One must also take into account the variety of post-translational modifications, such 

as phosphorylation, methylation and so on, which can regulate the function of 

proteins. Such modifications modulate the activity of most eukaryotic proteins and 

can turn a protein from an active into an inactive state and vice versa, affect their 

cellular location and their dynamic interactions (Mann & Jensen 2003; Seo & Lee 

2004). Consequentially, gene expression alone may often be insufficient evidence of 

gene functionality, in terms of the abundance and, by extension, state of activity of 

its protein product (Greenbaum et al. 2003).  

In addition, microarray technology itself is accompanied by a number of limitations, 

as it involves numerous error-prone experimental steps and requires the physical 

disruption of cells to gain access to their gene expression patterns (Russo , Zegar & 

Giordano 2003). The presence of noise may to distort any analytical approach 

facilitating microarray data. It should be noted, however, that popular beliefs 

regarding the extent to which noise is present in microarray data have been recently 

questioned (Klebanov & Yakovlev 2007).  

3.2 Single- and Multi-membership genes  

While considerations regarding the regulation of genes and microarrays technology 

discussed in the previous section may provide some plausible reasons for the 

observed discrepancy in the expression of genes belonging to the same biochemical 

pathway, we identify an additional issue of importance that to our knowledge has 
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been overlooked and can provide deeper insight into the collective behaviour of 

pathways. 

 

Figure 3.2 Number of E.coli genes of various membership degrees in KEGG 

metabolic pathways. 

Figure 3.3 Number of E.coli single- and multi-membership genes per KEGG 

metabolic pathway. 
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In particular, a closer look at the Kyoto Encyclopaedia of Genes and Genomes 

Pathway database reveals that a number of genes in an organism constitute members 

of two or more biochemical pathways. Figure 3.2 graphically portrays the pathway 

membership of Escherichia coli metabolic genes, according KEGG (30/11/2010). 

Evidently, more than a third (35%) of the 849 unique Escherichia coli genes, present 

in KEGG metabolic pathways, are members of at least two biochemical pathways. 

Figure 3.3 is also quite revealing, representing the number of genes present in each 

of the Escherichia coli KEGG metabolic pathways. Genes in black colour are unique 

members of the pathway in hand while genes in grey are members of two or more 

biochemical pathways. 

 

Figure 3.4 Number of E.coli genes of various membership degrees in all KEGG 

pathways. 

 
On average around 40% of the genes in each path are unique members of that path, 

while more than 60% of the genes, constitute a part of at least one other pathway. In 

some extreme cases, pathways consist solely of genes of the latter category. 

Hereafter, we shall refer to such genes as multi-membership genes to distinct them 

from genes, unique members of one and only pathway, to which we shall refer as 

single-membership.  

Notably, besides metabolic pathways, KEGG contains a number of other types of 

pathways. These include signalling pathways for environmental information 

processing, pathways for genetic information processing and various cellular 
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processes. When the entire collection of pathways is taken into account the number 

of unique genes taking part in them as well as the number of genes shared by the 

totality of the KEGG pathways grows even further. This information is summarised 

on Figures 3.4 and 3.5. 

 

Figure 3.5 Number of E.coli single- and multi-membership genes per KEGG 

biochemical pathway. 

 
Naturally, this phenomenon is not confined to Escherichia coli. In fact it applies to 

virtually all organisms whose genomes are currently stored in the KEGG database. 

To look into another characteristic example, Saccharomyces cerevisiae, the well-

known budding yeast, which constitutes another popular experimental subject, shows 

similarly high presence of multi-membership genes in its pathways. On average 56% 

of the genes in each metabolic and 58% in the totality of KEGG pathways, 

respectively, are members of at least one more biochemical pathway. Figures 3.6 to 

3.9 visually represent the data, similarly to Escherichia coli discussed above. 
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Figure 3.6 Number of S.cerevisiae genes of various membership degrees in KEGG 

metabolic pathways. 

 
 

 

Figure 3.7 Number of S.cerevisiae single- and multi-membership genes per KEGG 

metabolic pathway. 
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Figure 3.8 Number of S.cerevisiae genes of various membership degrees in all 

KEGG pathways. 

 

 

Figure 3.9 Number of S.cerevisiae single- and multi-membership genes per KEGG 

biochemical pathway. 
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For organisms higher in the evolutionary chain, with more complicated biochemical 

networks and larger genomes, the overlap of genes in distinct pathways grows 

significantly. Indicatively, KEGG contains 84 metabolic pathways of a total 216 

pathways for Homo sapiens (30/11/2010). Figures 3.10 and 3.12 exhibit the various 

degrees of human gene membership, for metabolic and, biochemical pathways 

respectively.    

The number of human genes allocated to pathways is 2169, significantly higher than 

in the previous examples, and the same is true for the 1458 unique genes allocated to 

Homo sapiens metabolic pathways. Figures 3.11 and 3.13 provide a visual 

representation of the number of single- and multi-membership genes present in each 

pathway, for metabolic pathways and the entire collection of KEGG pathways 

respectively. In the case of Homo sapiens each pathway contains a much higher 

proportion of genes shared by other pathways, than for the other discussed 

organisms. 

  

 

Figure 3.10 Number of H.sapiens genes of various membership degrees in KEGG 

metabolic pathways. 
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Figure 3.11 Number of single- and multi-membership H.sapiens genes per KEGG 

metabolic pathway. 

 

Figure 3.12 Number of H.sapiens genes of various membership degrees in all KEGG 

pathways. 
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Figure 3.13 Number of single- and multi-membership H.sapiens genes per KEGG 

biochemical pathway. 

In particular, in the case of the entire collection of Homo sapiens KEGG pathways 

the average percentage of multi-membership genes in each pathway is 80%. 
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3.3 Hypothesis 

The preceding section has established that the lists of genes present in the 

biochemical pathways of sequenced organisms, stored in the KEGG pathway 

database, are characterised by significant overlaps, due to the presence of multi-

membership genes. This observation has some interesting implications for pathway 

based microarray analysis. Namely, at any particular instance in time, the same gene 

may be potentially suppressed or stimulated to produce proteins that fulfil two or 

more distinct functions.  

For example let‘s assume for the case of the hypothetical pathway on Figure 3.1 

discussed earlier, that proteins B, D and E are also members of one or more other 

pathways. In such a setting it may well be that under certain conditions the pathway 

is activated, while at the same time the other pathway or pathways in which the 

genes participate are severely repressed. It would then be quite likely to observe 

down regulation of some of the genes, even though the pathway we are looking at is 

in fact stimulated. 

Similarly, in a situation where the hypothetical pathway is not affected by the 

experimental conditions, but the other pathways in which the genes participate are 

activated or repressed, we may observe differential expression of genes B, D and E 

that is not related to the activity of that particular pathway. If we were to examine it 

in isolation we might be driven towards the false conclusion that the pathway is 

activated or perhaps observe up-regulation of some and down-regulation of other 

genes, which would look contradictory and make it tricky to draw a meaningful 

conclusion regarding its state of activity. 

In the analogy of the production line discussed earlier, it would be similar to 

observing a rapid increase in the activity of some workers but reduction in the 

activity of others. If this was our measure of establishing the state of productivity of 

a factory or to investigate if a new building project has started, as we do for 

biochemical pathways based on the activity of the genes forming them, we would 

probably reach the wrong or no conclusion at all. 
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Following the above rationale, we have established a plausible hypothesis that the 

expression exhibited by multi-membership genes represents the net effect of their 

contribution to each one of their constituent pathways. For example an up-regulated 

gene that constitutes a member of two pathways may be in such a state of expression 

due to its contribution to either or both of these pathways. The biological system 

regulates and controls the activity of its genes in a way that they contribute to the 

function of the biochemical network it governs in a manner that satisfies its needs in 

varying conditions. 

In that sense, observing contradicting expression values for gene members of well-

defined pathways is not surprising. In fact, if we were to directly observe and study 

the activity of the proteins encoded by the genes in a pathway we may not encounter 

any discrepancy. However, microarrays do not give us that information. Rather they 

can only tell us that a gene is more or less actively transcribed. While it has been 

shown that there is in some cases a correlation between the values of gene expression 

and the activity of the respective proteins, it is not always indicative on its own (Gygi 

et al. 1999). The proteins remain the functional molecules in a living cell. The 

expression of a gene that encodes a protein that can eventually be facilitated in 

various cellular processes does not reveal to us anything about this latter stage. To go 

back to the analogy of a house building project, microarrays serve as the information 

provided by an employment agency, telling as that on a certain day, twice as many 

painters where required in the area, without saying anything about the projects they 

are working on. It can be that work has started on a new house, or that work has 

started on two or more new houses, but it can also be that a house building project 

has been completed but at the same time a new bigger project has started.  

3.4 Expression frequencies 

In an effort to support our hypothesis we have performed comparative analysis of the 

frequency of expression of single- and multi-membership genes in large number of 

unrelated microarray experiments. For this purpose we facilitated data obtained from 

GEO, which consists of log2 transformed intensity ratios from more than 5000 

microarray experiments on Saccharomyces cerevisiae. In cases of duplicate genes on 

the same chip intensity values have been averaged. For the normalised data values 
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above 1 and below -1 standard deviation were considered as evidence of positive and 

negative regulation respectively.  

We examined the number of experimental instances where each unique single- and 

multi-membership gene appears differentially expressed and the mean value 

corresponding to the totality of KEGG genes in each group. Following this approach 

we observed a mean value of 708 in about 5000 experiments, which corresponds to 

about 13.6% for genes that are members of one and only pathway. For genes that are 

members of two or more pathways the mean increases to 859, which corresponds to 

about 16.5%, thus, 2.9% higher than in the previous group. Table 3.1 below 

exemplifies the rationale. 

Table 3.1 Average expression of hypothetical genes A and B, In 6 

experiments. Ones represent up-regulation, minus ones down-

regulation and zeros stable expression of the respective gene. Based on 

the table we can estimate the average expression of the group 

consisting of genes A and B.  

Experiment 1 2 3 4 5 6 Average 

Gene A 1 0 0 1 -1 0 3/6 

Gene B 1 -1 1 1 0 0 4/6 

Total Mean  0.583 

 

Notably, a two sample t-test reveals that the proportions of expressed single- and 

multi- membership genes per experiment in the microarray dataset are different with 

a very low p-value of about 6.6×10
-9

, which is highly significant.  

Interestingly, the difference is more apparent when we only examine experiments 

with at least 5% of Saccharomyces cerevisiae pathway genes expressed, thus 

applying a threshold of expressed genes to incorporate an experiment in the analysis. 

This criterion is met by a subset of 3553 experiments in our dataset, where the 

average single-membership gene expression is 19.1% while the average multi-
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membership gene expression reaches 23.1% which corresponds to a difference of 

4%. Again, single-membership gene expression appears significantly less frequent 

than that of multi-membership genes with a two sample t-test producing a p-value of 

5.1×10
-9

. 

Moreover, the difference increases further when we consider genes with higher 

degree of membership, meaning genes constituting members of at least three 

biochemical pathways, gene members of at least four biochemical pathways and so 

on, as exemplified on Figure 3.14.   

 

Figure 3.14 Average percentage of differential expression, for different membership 

degree thresholds. For each threshold the plot shows the average percentage of 

expression for genes of membership equal to the specific threshold or higher. 

In agreement with our hypothesis, as the degree of minimum gene membership 

increases the average expression follows suit. Genes that are members of three or 

more pathways are clearly more frequently expressed than genes that are members of 



 

  3: Central hypothesis 

85 

 

only two distinct pathways. Similarly genes that are members of four or more 

pathways are more frequently expressed than gene members of two or more 

pathways and so on. 

If we examine the exact degree of membership in relation to the average expression 

of genes, we obtain the results on Figure 3.15. Apparently, for the case of genes with 

6
th

 and 9
th

 degree of membership there is a deviation from the general pattern, 

however these only concerns 6 and 1 gene respectively and thus is not representative.  

 

Figure 3.15 Percentage of average differential expression for genes of distinct 

membership degree bands. 

Looking into these from another perspective we can examine the proportion of 

single-membership genes expressed in each microarray experiment in respect to the 

proportion of multi-membership genes expressed in the same experiment. Figure 

3.16 shows the number of expressed single-membership genes in each experiment as 

proportion of the total number of single-membership genes in comparison to the 
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number of regulated multi-membership genes as proportion of the total number of 

multi-membership genes on the platform. Again, we observe that in the majority of 

experiments the proportion of differentially expressed multi-membership genes is 

higher. In contrast, in just 20% of the experiments the proportion of differentially 

expressed single-membership genes is only marginally higher than the one of multi- 

membership genes.  

 

Figure 3.16 Percentage of regulated single- and multi-membership genes. Number of 

expressed single- and multi-membership genes, as proportion of the total number of 

single- and multi-membership genes respectively. 

To further strengthen our hypothesis we also look into individual pathways and 

examine the average proportion of expressed single- and multi-membership genes 

per pathway, in the dataset. The results of this analysis are exhibited on Table 3.2. 

Overall, the average expression of multi-membership genes per pathway seems to 

surpass the expression of single-membership genes both in numbers and instances. In 
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a total of 46 pathways which contain both unique and multi-membership genes, 29 

exhibit higher expression of the first as opposed to 17 of the latter group, while the 

average difference is 5.4 and 3.1 respectively. A two-sample t-test rejects the null 

hypothesis that the average expressions for the two groups come from normal 

distributions of equal means. 

Table 3.2 Average proportion of expressed single- and multi-membership genes per 

Saccharomyces cerevisiae KEGG pathway. 

KEGG 

Path ID 

Singles

% 

Multi 

% 

KEGG 

Path ID 

Singles 

% 

Multi

% 

KEGG 

Path ID 

Singles 

% 

Multi 

% 

10 5.4 13.9 561 15.2 13.2 460 17.7 13.6 

20 12.5 13.1 564 11.9 20.6 480 14.3 16.2 

30 17.1 10.6 600 22.8 16.2 510 17.4 15.6 

40 7.9 10.3 590 9.9 18.4 514 10.6 13.9 

51 10.0 13.2 592 7.2 13.6 563 8.4 24.6 

500 6.9 6.9 240 6.6 13.5 740 9.1 4.8 

620 11.2 18.3 260 5.5 12.3 750 7.0 1.5 

562 12.2 13.9 270 18.1 14.1 760 3.3 17.7 

190 10.1 8.0 280 3.2 2.4 770 9.9 4.7 

680 11.5 7.8 300 3.3 5.4 785 5.8 5.9 

910 12.1 18.0 310 4.3 8.5 790 7.9 5.8 

920 11.6 11.2 330 7.6 14.1 670 6.6 9. 

61 8.8 12.9 340 9.8 14.9 900 17.2 15.2 

71 13.3 16.9 350 4.9 5.0 980 9.6 14.0 

72 8.8 11.8 380 8.0 5.3    

100 2.7 13.4 410 4.9 13.4    
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As already mentioned, there is some apparent variability and in some cases a 

multiple membership gene may show less frequent expression than a single- 

membership one. This is not surprising given the nature of the data.  In fact there are 

a number of reasons, discussed in section 3.1.2, that could explain why genes may 

show variable expression, including different levels of regulation, gene diversity and 

microarray limitations themselves. Additionally, one should also take into account 

that the analysis is based on randomly selected experiments and that some genes 

even though single-membership may be in pathways that are frequently regulated, 

while other multi-membership genes may be taking part in pathways less frequently 

regulated in the data in hand.  

Importantly, the varying experimental approaches and research goals behind 

individual microarray experiments in the analysed dataset are likely to introduce 

some bias as far as the regulation of distinct biochemical pathways is concerned. For 

example, the glycolysis and gluconeogenesis pathway constitutes a popular choice of 

analysis. Consequentially, we would expect to observe relatively high differential 

expression of genes in these paths. 

Indeed, ranking the KEGG pathways according to the average proportion of 

expressed genes per experiment reveals that the KEGG Glycolysis/Gluconeogenesis 

pathway is the 21
st
 most highly ranked out of 69 Saccharomyces cerevisiae 

metabolic pathways. Figure 3.17 exhibits the Saccharomyces cerevisiae KEGG 

metabolic pathways, in descending order, from the one with the highest average 

proportion of expressed genes per pathway to the one with the lowest average 

proportion of expressed genes per pathway, in the analysed dataset. The calculation 

is based on estimating the proportion of expressed genes forming a pathway per 

experiment, and averaging over all experiments. 

Alternatively, given that a threshold of even 20% of differentially expressed genes is 

reasonable evidence to consider a pathway affected by the experimental conditions 

(Subramanian et al. 2005), to apply a more stringent constrain we look at the average 

instances in our dataset where at least 30% of the genes in each path appear regulated 

(Figure 3.18). 



 

  3: Central hypothesis 

89 

 

 

Figure 3.17 Average expression of Saccharomyces cerevisiae KEGG genes per 

pathway. Pathways are ranked from the one with highest proportion of expressed 

genes (top) to the one with lowest (bottom). 

Again, as Figure 3.18 shows, pathways exhibit substantial diversity, with some cases 

like the fatty acid elongation in mitochondria appearing with more than 30% of genes 

expressed in only 0.002% of the experiments, while others like the Taurine and 
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Hypotaurine metabolism pathway showing above 30% expressed genes in 42.76% of 

the experiments. 

 

Figure 3.18 Instances of over 30% expressed Saccharomyces cerevisiae genes per 

pathway. Pathways are displayed in a sorted arrangement, from the one with most 

cases of 30% or more of its genes expressed (top) to the one with least such cases. 
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The KEGG Glycolysis/Gluconeogenesis pathway remains quite highly ranked, at 

position 26 out of 69 metabolic pathways. Moreover, if we consider the fact that the 

first highest ranking few pathways consist of only one or two genes which can 

explain why they frequently surpass the threshold of 1 expressed gene, the 

Glycolysis/ Gluconeogenesis pathway ranks even higher. 

Overall, the result indicates that in spite of the above discussed issues, on average, 

multi-membership genes show more frequent differential expression than genes that 

are members of one and only pathway. 

3.5 Contradicting expression values 

According to our rationale, observing contradictions in the state of expression of 

multi-membership genes is largely due to the fact that the biological system regulates 

their expression to cover the needs of all their constituent pathways. Given that for 

genes working in more than one pathway, there will be instances where some of 

these paths may be activated while others supressed, we expect to observe the 

occurrence of contradicting gene expression at higher rate for multi-membership 

genes forming a pathway than in the case of their single-membership counterparts. 

Indeed, we observed higher rate of contradicting gene behaviour in the groups of 

multi-membership genes than the ones of single-membership genes in each pathway, 

in the analysed Saccharomyces cerevisiae dataset. On average, for all pathways and 

experiments, single-membership genes show 7.7% rate of variable expression in the 

same pathway, in contrast to 13.9% for multi-membership genes. Figure 3.19 

summarises the result per pathway, only for pathways that contain genes of both 

single- and multi-membership nature, allowing a comparison.  

With only a few exceptions, cases of at least one gene contradicting the expression of 

the rest in the pathway are more frequent for genes that participate in more than one 

pathway. As Figure 3.19 reveals the difference in the number of such occurrences is 

often quite evident.  
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Figure 3.19 Contradicting Saccharomyces cerevisiae gene expressions per pathway. 

These are the instances where a gene in a pathway contradicts the behaviour of the 

rest of the genes forming the pathway in question. 

3.6 Statistical analysis 

Given the presence of multi-membership genes and the hypothesis established in the 

previous section, correlation analysis seems an appealing approach to further study 

the behaviour of such genes. Since each gene is likely to have a particular 

contribution to the activity of a pathway, that may be relatively steady, we can 

examine that contribution as a percentage of the total activity of the pathway.  
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We estimate the correlation between the expressions in terms of percentage for all 

single-membership genes in a pathway and for all multi-membership genes in the 

same pathway (Pavlidis, Payne & Swift 2008). Naturally, observing higher 

correlation for single-membership genes as they only contribute to the activity of the 

pathway in question and thus exhibit more consistent expression may provide 

evidence supporting our rationale. As previously discussed, unlike single-

membership genes, multi-membership genes can participate in the functionality of 

any combination of the pathways they are members of, at any particular time. Thus, 

unlike single-membership genes, multi-membership genes‘ intensity values, as 

extracted from a microarray slide, represent a net effect. The biological system may 

require activation of certain pathways and regulate the production of a protein part of 

their network in a way that its quantity increases. At the same time it may require 

deactivation of other pathways in which the same protein participates. The resulting 

balance may affect the expression observed on the microarray leading to less 

consistent readings for groups of proteins part of a biochemical pathway, encoded by 

multi-membership genes, when each pathway is examined in isolation from the rest.  

For example in a pathway consisting of genes A, B and C that say contribute 20%, 

50% and 30% to the overall pathway activity, we can add the log2 ratios for genes A, 

B and C to get an estimate of that total activity of that path, and then examine the 

percentage of contribution for each gene in various microarray experiments. Ideally, 

we would want to obtain values close to the percentages above in each experiment 

where the pathway is activated. The obtained values should be more consistent in the 

case of single-membership genes than in the case of multi-membership genes. 

To examine this we initially identified 19 experiments (GSM99081 to 83, 

GSM99108 to 112, and GSM99171 and GSM99172) on Escherichia coli,  from 

microarray data available at Gene Expression omnibus (GEO), platform GPL3503 

that contain a large number of expressed Urea Cycle genes (01/09/2008). The KEGG 

Urea Cycle pathway is a good candidate for our analytical approach as it consists of 

16 single-membership and 12 multi-membership genes, reasonable numbers to allow 

meaningful comparison. We divide the intensities, separately for the group of single- 

and the group of multi-membership genes, per experiment by their sum, to obtain a 
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measure of the contribution of each gene to the behaviour of the pathway. We then 

compare the correlation between the obtained contribution values of the 12 multi-

membership genes and the 16 single-membership genes, throughout the 19 

experiments. For both cases we acquire a set of 171 correlation values, and perform a 

two sample t-test which reveals that the values are significantly different with a p-

value of 1.3×10
-12

. Furthermore, in the case of single-membership genes the 

correlation values are higher with 86.5% of the values being above the level of 

significant correlation at p=1%. In contrast, for the multi-membership genes only 

41.5% of the values exceed the threshold of significance at 1%. The assumption that 

multi-membership genes expression is the net effect of their contribution to their 

constituent pathways is in agreement with these findings. Single-membership genes 

apparently show more consistent behaviour as they only contribute to the 

functionality of the KEGG Urea Cycle pathway. 

As KEGG is constantly updated it currently holds the Urea Cycle path in a larger 

pathway termed Arginine and Proline metabolism (01/02/2011) that contains more 

genes subsequently identified and added to the updated KEGG. The pathway consists 

of a total of 43 genes, 21 of which are unique members of the pathway in question, 

while 22 are multi-membership genes. We performed an analysis of the correlation 

of expression values for these new subsets of genes based on GEO platform 

GPL3503, consisting of 140 experiments on Escherichia coli. 

We observed that the correlations of expression between each couple of the 140 

experiments were higher in the case of single-membership genes than in the case of 

multi-membership genes. A two sample t-test revealed that the correlation values for 

these two subsets of genes in the KEGG Arginine and Proline metabolism pathway 

where significantly different, with a p-value of 2.4×10
-12

.  

Figure 3.20 graphically represents the correlation values for single- and multi-

membership genes, for all the combinations of the 140 experiments by two. 

Interestingly, correlations for multi-membership genes have a tendency for 

significant negative values, which is in agreement with the observation that they 

show contradictive behaviour. We may ascribe this behaviour to their contribution to 

pathways that may have opposing activity under certain experimental conditions. In 
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particular, the percentage of correlations for single-membership genes below -0.5 is 

only about 6% as opposed to close to 13% for multi-membership genes. 

 

Figure 3.20 Correlation between expression values. The values correspond to 

Escherichia coli gene couples in the KEGG Arginine and Proline metabolism 

pathway in a subset of 140 experiments (GPL3503 from GEO).   

We performed a similar analysis of the Oxidative phosphorylation KEGG pathway, 

based on experiments where at least 50% of the genes in the path show differential 

expression for a threshold of one standard deviation of intensity value. This criterion 

is satisfied by 28 experiments, allowing for 378 comparisons, where we observed a 

mean correlation of 0.30 for single-membership genes, as opposed to only 0.07 for 

multi-membership genes, thus more than 4 times lower value. A two sample t-test 

showed that the correlation values for all experiments were significantly different 

with a p-value of 1.3×10
-5

. In about 12% of the cases for the first group of genes the 

correlation was significant at p-value of 0.01, while this was true for only about 4% 

of the latter group. 

We performed the same comparative analysis for all 140 experiments without 

applying a threshold of expressed genes in the pathway. Naturally, we obtained 

lower correlation values, but the pattern was the same with single-membership genes 
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showing an average correlation of 0.050 as opposed to only 0.001 for multi-

membership genes. In this case a two sample t-test revealed that the 9730 correlation 

values for each group are significantly different with p-value of 1.6×10
-8

. 

3.7 Association rule mining 

Association rule mining (ARM) is a very popular data mining methodology that was 

first proposed in the 90‘s for determining consumer purchasing patterns based on 

databases of consumer transactions (Agrawal 1993). These prove very useful to help 

managers identify items that are likely to be bought at the same store visit. In 

essence, an association rule reveals the probability that a customer that bought items 

X and Y will also buy item Z. Since its introduction it has been applied to discover 

useful information in many areas, including gene expression data. 

In brief, an association rule is an expression of the form LHSRHS, where LHS 

stands for left hand set and RHS for right handset of items (Hipp, Guntzer & 

Gholamreza 2000). The two sets are disjoint and the expression implies that given 

the occurrence of LHS, RHS is also likely to occur. Each association rule is 

characterised by two statistical measures, the support and confidence. For example 

for the rule XYZ, support 30% and confidence 80% implies that whenever X and 

Y occur, Z also occurs in 80% of the cases, while all three occur in 30% of all cases. 

In this example we can infer that there is indeed some significant association 

between the co-occurrence of X and Y with Z. 

3.7.1 Association rule mining in gene expression data 

Given the popularity of association rule mining it was soon realised that the 

methodology can be facilitated for the analysis of gene expression data in various 

contexts. To mention a few examples, ARM can be used to determine how the 

expression of a certain gene may affect the expression of other genes. The underlying 

rationale is that identifying a gene whose expression determines the expression of 

other genes, with high probability, implies that the gene is likely to belong to the 

same functional group (Creighton & Hanash 2003). Additionally, ARM can be 

facilitated to identify genes that are expressed as a result of a particular cellular 
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condition, for example genes that are expressed in certain disease condition, but 

remain silent in a healthy cell. 

Due to the widespread application of ARM, currently there are a number of proposed 

variants of association rule mining approaches that can be roughly classified into 

categories according to the type of data they can handle. In brief the most popular 

types include ARM for the analysis of Boolean, nominal and quantitative data.   

Given that we use microarray data, where a chosen threshold of standard deviation is 

used to discretise the state of a gene to stable, up- or down-regulated, we have 

facilitated an approach to extract association rules from ordinal data, described in 

(Chen & Weng 2008). Unlike nominal variables such as colours for example, where 

there are a number of unique possible states to which a variable can belong, in 

ordinal data the states are ordered. A multiple choice questionnaire where the 

possible answers include ―good‖, ―very good‖, ―medium‖ and ―bad‖ is a 

characteristic example. This is the so called Likert scale, initially introduced by 

Renis Likert in the field of psychology (Likert 1932). Clearly, ―very good‖ is a better 

match to ―good‖ than to ―medium‖ while it is the worst match to ―bad‖. Similarly, in 

discretised gene expression data, up-regulated may not match stable, but is still a 

much worse match to down-regulated.  

3.7.2 Definitions 

Let G = {g1,g2,…,gn} be a set of all unique genes in our dataset, and a value q that is 

a single ordinal value that can be equal to 1, -1 and 0, if the gene is up-, down-

regulated or stable, respectively. We work with a similarity matrix as exhibited on 

table 3.3.  

Assume that we have a single gene ai = (gi,qi) and a single gene bj=(hj,rj) and a 

similarity matrix Simi,j, as the one on Table 3.3, to represent the similarity between qi 

and ri, where sim(i,j) denotes the similarity between i and j. The degree to which ai 

matches bi is defined by equation (3.1). 

),(),sup( jiji basimba         for gj =hj

 

(3.1) 
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For example if we have the expression of gene a1 = (g1,1) and of gene b1=(hj,1), the 

degree of 1))1,(),1,sup((),sup( 1111  hgba , if g1=h1. 

Table 3.3  Expression similarity matrix. 

expression -1 0 1 

-1 1 0.5 0 

0  1 0.5 

1   1 

 

Assume that we have a single gene expression set A = {(g1,q1),(g2,q2),…,(gn,qm)} and 

a gene expression set B = {(h1,r1),(h2,r2),…,(hn,rm)}, where we can find i1, i2,…, such 

that aij matches bj for 1 jn. Let sup(A,B) denote the degree to which A matches B 

be defined as shown in equation (3.2).  





n

j

ji baBA
j

1

),sup(),sup(  (3.2) 

For example, assume that A = {(g1,1), (g2,1), (g3,0)} and B = {(h1,1), (h2,0), (h3,1)} 

and the similarity matrix on Table 3.3. Then assume that g1=h1, g2=h2 and g3=h3, 

which  simply means that gene g1 is the same as gene h1, with an expression value of 

1 in both cases, gene g2 the same as gene h2 with expression value of 1 and 0 

respectively and so on. Then the degree of sup(A,B) = 10.50.5=0.25. 

Assume that we have a large dataset D consisting of a number of microarray 

experimental results in the form of N rows by M columns matrix, where each row 

represents a gene and each column represents an experiment. Let Ai be the ith 

column in D, where Ai = {(g1,q1),(g2,q2),…,(gn,qn)}. Then if we have a single dataset 

of gene expression data B = {(h1,r1),(h2,r2),…,(hm,rm)}, where mn and bj=( hj,rj), 

the support for B in D is defined as shown on equation (3.3). 

D

BA

B
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(3.3) 
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where D  denotes the experiment number (column) in the dataset. 

For example assume the hypothetical matrix on Table 3.4 representing gene 

expression data for 3 genes based on 4 experiments.  

Table 3.4 Hypothetical example of expressional behaviour of 3 genes in 4 

experiments. Ones represent up-regulation, minus ones down-regulation and zeros 

lack of differential expression. 

Gene\experiment 1 2 3 4 

1 0 0 1 0 

2 1 0 -1 1 

3 1 1 -1 1 

 

Given this matrix and a set B = {(g1,0),(g2,1),(g3,1)}, the degree of support for B, 

based on D, is calculated as follows:                                          

625.045.24)111005.015.01111()(sup BD
 

Then we can calculate the confidence of a rule XYZ based on the support of the 

item sets on the left and right hand side as follows: 

)sup()sup()( XYXYZZXYconf 

 

(3.4) 

For example, for the matrix above, the confidence of a rule {(g1,0),(g2,1)} 

{(g3,1)} is calculated as follows: 


2,1)})(1,0),{(sup(

)3,1)}(2,1),(1,0),{(sup(
3,1)}){(2,1)}(,0),1({(

gg

ggg
gggconf  

1625.0625.0
4)1105.05.0111(

4)111005.015.01111(





  

Thus, in this example, when gene 1 is stable and gene 2 up-regulated, we expect gene 

3 to be up-regulated with a confidence equal to 1.  
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3.7.3 Application  

We apply association rule mining to sets of genes forming biochemical pathways. In 

particular we examine sets of single- and multi-membership genes, members of the 

same pathway, with the aim of observing differences in their behaviour, in an effort 

to validate our hypothesis.  

In the case of using ARM to analyse microarray data we would prefer not to exclude 

rare occurrences of cases of gene expression values. For example, genes X and Y 

may occur up-regulated in only 1% of the instances but gene Y may only occur up-

regulated when gene X is up-regulated. In this example, the rule stating that when X 

is up-regulated Y is also up-regulated would be characterised by very low support 

but at the same time confidence of 1. As we are interested in such observations, we 

do not follow the approach described in (Chen & Weng 2008), where the authors 

start with single item sets, apply a support threshold, and then use the item sets with 

sufficient support to add an additional item to build larger item sets and continue the 

same cycle until reaching a desired size for these item sets. Rather we exhaustively 

search and calculate the confidence for all possible item sets, regardless of their 

corresponding support values, that is, all existent combinations of expression values 

present on our dataset for genes of interest. However, we do not consider 

combinations of expression that never occur, that is, if gene X and Y are never up-

regulated together we do not attempt to extract the confidence of the rule when X is 

up-regulated Y is also up regulated and vice versa.   

Naturally, exhaustive search is computationally intensive and not applicable to large 

gene sets due to time constraints. It is however applicable to smaller sets of genes 

forming pathways, which were examined here.  

First, we applied our association rule mining approach to obtain the rules produced 

by single- and multi-membership Escherichia coli genes, separately, in the 

Phenylalanine metabolism pathway based on GEO platform GPL3503. Naturally, not 

applying a threshold for the support of each rule, we end up with a very large number 

of such rules. It is interesting to observe this number for the group of single- and 

multi-membership genes, at different confidence threshold levels, as shown on 

Figure 3.21. 
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Figure 3.21 Number of association rules produced by single- and multi-membership 

Escherichia coli genes in the Phenylalanine metabolism pathway (GPL3503).  

Given a confidence threshold between 0.50 and 0.95 (by 0.05), Figure 3.21 shows 

the number of rules where one gene implies all the rest. The much larger number of 

rules for multi-membership genes at low threshold levels is not surprising. We have 

shown that these genes are expressed more often on average as they are more likely 

to be functional due to their membership in many pathways. In other words, the 

biological system is more likely to facilitate a multi-membership gene at a given any 

time, as such genes have wider functionality. At high confidence threshold values the 

opposite is true as single-membership genes are more consistent in terms of 

expression and thus more likely to produce rules of high confidence.  

If we examine all rules where one gene implies another one or more genes, for any 

given confidence above zero, we get 148243 rules for multi-membership genes with 

a mean of 0.27, and only 14962 for single-membership genes with a mean 

confidence of 0.46. 
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Figure 3.22 represents the mean confidence of rules produced at different confidence 

thresholds, revealing the higher values produced by single-membership genes. 

 

Figure 3.22 Mean Escherichia coli genes association rule confidence for rules of 

confidence above different thresholds (GPL3503). 

One however might argue that the two extra multi-membership genes in the 

pnenylalanine pathway justify the hughely larger number of association rules  

produced by this group of genes, thus we performed the same analysis for the 

Glutathione metabolism pathway. This pathway is an ideal candidate for our 

analytical approach as it consists of exactly the same number of single- and multi-

membership genes, nine in each case. This is also a number that allow us to 

exaustivily search for association rules correspondng to all possible combinations of 

genes and expression states in the dataset.  
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Our analysis produced 157896 in the case of single-membership genes and 562204, 

350% more rules for multi-membership genes. In contrast, the mean confidence is 

higher in the first case, equal to 0.49 with standard deviation of 0.27, as opposed to 

mean of 0.38  and standard deviation of 0.22 in the latter case.  

As Figure 3.23 reveals, increasing the threshold of confidence, the number of rules 

produced by multi-membership genes drops at a high rate, until for confidence above 

0.8 it becomes single-membership genes that produce more rules. Additionally, for 

confidence of 1 the latter genes produce 256 rules as opposed to 0 for the former 

group. 

 

Figure 3.23 Number of association rules where one gene implies the behavior of the 

rest in the Glutathione metabolism pathway.  

Multi-membership genes in the Glutathione metabolism KEGG pathway produce 

large number of rules of low confidence values, while at confidence threshold above 

about 0.8, single-membership genes produce more rules. As far as the mean 

confidence is concerned, single-membership genes produce rules of higher mean 

confidence at all thresholds, as exhibited on Figure 3.24. 
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Figure 3.24 Mean confidence of rules produced by single- and multi-membership 

genes in the Glutathione metabolism pathway, for increasing minimum threshold.   

To examine another case of a pathway with very small number of genes, we look 

into the D-alanine metabolism pathway. This path consists of only four genes 

according to KEGG, two of which are single- and two multi-membership genes. The 

data produces 12 and 10 association rules, with mean confidence of 0.58 and 0.54 

respectively. Even though the number of genes is too small to allow as to draw clear 

conclusions it is interesting to observe that for the same very small number of only 2 

genes, single-membership genes produce more rules, but still of higher average 

confidence. 

3.8 Conclusions 

Overall, four distinct approaches were facilitated to look into the relative behaviour 

of single- and multi-membership genes in terms of differential expression. The 

analysis is based on large datasets of randomly selected microarray experiments 

compiled from GEO.  

Examining the frequency of differential expression we identify a clear tendency for 

genes that KEGG places in two or more pathways to be more frequently expressed 
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on average than genes that constitute members of one and only pathway. This 

tendency shows a strong increase as we consider genes with higher degree of 

membership. Namely genes that are members of three or more pathways show higher 

frequency of activation and deactivation than genes that are members of one and 

genes that are members of two pathways. Moreover, we observe a positive 

correlation between the degree of membership and the average expression of genes 

belonging to each membership band. 

This is a sensible result, since multi-membership genes are multitask genes, whose 

protein products are involved in more than one cellular process. As the biological 

system regulates the function of its genes, and subsequently its protein arsenal, to 

adapt to changing environmental conditions, it is more likely to require the 

contribution of multi-task genes than single-membership genes, at any given 

instance. 

We also observed that multi-membership genes in a pathway appear to contradict 

each other‘s behaviour more often than unique members of one and only pathway 

and a tendency for the latter group of genes to show higher correlation in terms of 

pathway contribution and expression values, than their multi-membership 

counterparts. We expect such behaviour as multi-membership genes are facilitated by 

the biological system in a number of different pathways, sometimes in opposing state 

of activation. Here the differences are less apparent but as discussed in the relevant 

section, we cannot expect perfect results for a number of reasons. In brief, 

microarrays can be noisy, gene activity is regulated at many levels, besides 

transcription, and different pathways are facilitated at varying degrees by the 

biological system. Importantly, the choice of experimental question by the various 

researchers supplying GEO with microarray data is likely to introduce some bias to 

pathway activation. For example, glycolysis and gluconeogenesis constitute a very 

popular choice of study, as these are well known pathways present in almost every 

organism. Thus it is not surprising to observe that genes in these paths are some of 

the most frequently differentially expressed genes in the dataset in hand. 

Additionally, we observe that single–membership genes produce more consistent 

association rules, characterised by higher confidence values. Multi-membership 
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genes on the other hand tend to produce more rules of lower confidence. In 

conclusion our analysis provides evidence which strengthens the hypothesis that the 

expression of genes that constitute members of various pathways represents a net 

effect and is regulated by the biological system in a way that meets the needs of all 

their constituent pathways. Hence, it would be greatly beneficial to develop a 

methodology to identify the pathways to whose activity multi-membership genes 

truly contribute which is the central aim of this work.  
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Chapter 4: Pathway based microarray 

analysis methodology, facilitating hill 

climbing search 

4.1 Introduction 

We have established that Pathway based microarray analysis constitutes an area of 

substantial interest in the effort to gain deeper insight into the behaviour of 

biochemical pathways and evaluate the state of an organism from a biochemical 

perspective based on gene expression data.  

In chapter 2 we provided an overview of this analytical and visualisation approach 

and a list of currently available software tools for this type of analysis. Following 

that, in chapter 3, we discussed our basic hypothesis, that the expression of genes, 

which are members of more than one pathway, represents a net effect of their 

contribution to all their constituent pathways, as the biological system regulates their 

activity to fulfil its needs in a balanced manner. 

Here we present our initial approach to analyse microarray data in terms of 

pathways, implementing a hill climbing algorithm and facilitating the idea of gene to 

pathway allocation, in an effort to add some contribution to the general methodology 

and assists a biologist to draw meaningful conclusions from available data. The 

motivation directing our approach is briefly exemplified followed by presentation of 



   

  4: Pathway based microarray analysis methodology, facilitating hill climbing search 

108 

 

the rationale we follow in this work with some adequate examples. Then we proceed 

to discuss the methodology and algorithms in some detail. 

The results section contains a detailed analysis of the results produced by the 

methodology on popular microarray datasets, in relation to the publications 

accompanying the data. We comment on the convergence of the algorithm and the 

consistency of the produced results, in separate runs of the scripts, along with a 

discussion of the effect of the processing on the probabilities of observing the 

expression of genes per pathway in hand. Finally, we discuss our conclusions 

regarding the results and the potential of the methodology.  

4.2 Motivation 

It has been shown that gene members of the same biochemical pathway do not 

always show consistent behaviour in terms of RNA production. While ideally we 

would expect to observe expression that reflects the state of a pathway, meaning up-

regulation when the pathway is activated and down-regulation when the pathway is 

supressed, this is often not the case. In a number of microarray experiments there is 

an evident contradiction in the state of differential expression of genes belonging to 

the same biochemical pathway. More precisely, in these experiments we observe 

substantial number of up-regulated and down-regulated genes, in the same pathway. 

In a dataset consisting of 2135 randomly selected microarray experiments on 

Saccharomyces cerevisiae, on average 25 pathways exhibit at least one gene of 

expression contradicting the rest in each experiment. In some cases up to 81 

pathways exhibit contradictions in the expression of their genes, a number almost 

equal to the totality of pathways in this organism. 

To study this in more detail, we identified instances where a substantial number of 

the genes forming a biochemical pathway show differential expression. In particular 

we chose a 30% threshold, which as aforementioned is widely considered a valid 

indication of the pathway in hand being affected by the experimental conditions.  
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Figure 4.1 Proportion of genes of contradicting behaviour per pathway, in the subset 

of instances, where at least 30% of all genes in a path exhibit differential expression. 

The arrow indicates the pentose phosphate pathway, commented in the text. 

Following this, we examined the instances, within this subset of experiments, where 

there is a considerable level of contradiction in the expression of genes, excluding 6 

KEGG pathways that consist of 1 to 3 genes only. In particular we identified the 

proportion of cases within the subset, where at least 30% and 40% of the genes in the 
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pathway exhibit differential expression in opposing direction to the rest of the 

expressed genes in the pathway. 

As Figure 4.1 reveals this holds true in a considerable proportion of the microarray 

experiments where each pathway exhibits a large number of expressed genes, in the 

dataset in hand. For example, regarding the pentose phosphate pathway, indicated 

with the arrow on Figure 4.1, in more than 40% of the cases where significant 

number of genes appear differentially expressed, at least 30% of these genes show 

contradicting behaviour. Furthermore, in about 20% of these cases this is true for 

even higher proportion of genes, with at least 40% of them being in disagreement. 

Evidently, in a number of instances, which represent a considerable proportion of 

microarray experiments in the dataset, the direction of differential expression of the 

majority of expressed genes does not allow as to draw a safe conclusion regarding 

the state of activation of a biochemical pathway. That is, both stimulated and 

suppressed genes are present in the same pathway in substantial and in some cases 

even the same numbers.  

These are the cases that we are interested in, since elucidating the state of activation 

of these pathways is not trivial. Such microarray datasets constitute ideal candidates 

for our analytical approach that aims towards identifying the true state of activation 

of the totality of biochemical paths in a given experiment. 

4.3 Rationale 

We assume that given a certain pathway and a certain state, e.g. activation, proteins 

forming the pathway follow the trend of increased activation, which should be 

reflected on the expression of genes encoding them. That is, the respective genes 

produce more RNA for the synthesis of the protein they encode, which in turn 

contributes to the pathway function. Thus, we attempt to ascribe any observed down-

regulation of genes in this pathway to decreased activity of other pathways of which 

these genes are also members, which in turn require less of the protein product of the 

genes in question. We assume that the net effect of the contribution of these genes to 

pathways of contradicting behaviour may be responsible for the contradicting 

intensity values extracted from the microarray chip.  



   

  4: Pathway based microarray analysis methodology, facilitating hill climbing search 

111 

 

In order to exemplify our line of thought we facilitated Escherichia coli data from 

(Khodursky et al. 2000) available as experiment GSM513 at Gene Expression 

Omnibus. The experiment examines the cell response in terms of global gene 

expression to addition of excess tryptophan in the growth medium.  

Table 4.1 Log2 ratios of tryptophan metabolism 

genes, for experiment GSM513. 

Gene 

Symbol 

Log2 ratio Gene 

Symbol 

Log2 ratio 

'atoB'       1.12 'trpS'       5.85 

'yqeF'     -1.81 'katE'     -0.44 

'fadB'       2.63 'katG'      1.41 

'sucA'      1.82 'tynA'    -0.79 

'tnaA'      1.47   

  

Naturally, we expect the cell to intensify the process of the amino acid degradation. 

Indeed, in agreement with the observations of the authors, the addition of tryptophan 

is followed by up-regulation of the tryptophan metabolism pathway, as present in 

Kyoto Encyclopaedia of Genes and Genomes database. Most of the tryptophan 

metabolism genes show subtle to substantial up-regulation with the exception of gene 

yqeF which shows significant down-regulation, as highlighted in Table 4.1. 

However, according to KEGG gene yqeF is also member of other biochemical 

pathways, which may be responsible for its behaviour. 

In another example, the Pentose Phosphate pathway in the diauxic shift experiments 

(DeRisi, Iyer & Brown 1997) discussed in the Results section (4.5) six genes 

included in the pathway show up-regulation while another six show down-regulation 

(Figure 4.2). Thus looking at the pathway in isolation is clearly not sufficient for us 

to be able to make an informative guess about its state of activity. However, an 
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examination of the pathway membership of the genes reveals that most up-regulated 

genes are unique members of the Pentose Phosphate pathway, while all down-

regulated genes are involved in other pathways, in most cases the Purine metabolism 

pathway. Given that Purine metabolism is severely down-regulated, as discussed in 

the publication accompanying the data, this pathway may well be responsible for the 

observed state of expression of the latter group of genes. Such observations offer 

strong evidence that taking the multi-membership nature of genes into account is a 

sensible choice that may be beneficial to pathway based microarray analysis. 

4.4 Methods 

To render data analysis more comprehensive, each microarray dataset is trimmed to 

only include genes contained in KEGG pathways. We apply discretisation, that is, 

the state of expression of each gene is defined as up-regulated, down-regulated or 

stable, based on a chosen set of thresholds.  

4.4.1 Hill climbing 

We facilitate a hill climbing algorithm (Michalewicz & Fogel 2004) that changes the 

possible multi-membership gene configuration. This is an optimization algorithm 

based on an iterative local search for a solution to a problem. A small change is 

introduced at each step of the process and the produced solution evaluated. If it is 

established that a change has led to a better solution to the problem in hand it is 

retained, otherwise it is discarded. The process is usually repeated until no better 

solution can be obtained.  

In our implementation, we are essentially changing the allocation of multi-

membership genes to their constituent pathways to identify the pathways that are 

more influential as far as the expression of each gene is concerned. Assigning a gene 

to a pathway, suggests that the biological system requires this gene‘s involvement in 

the function of that pathway, and that the state of differential expression of that gene 

is due to its involvement in the activity of the pathway in hand. In contrast, removing 

a gene from a pathway suggests that the state of expression of that gene, be it up- or 

down-regulation, is not due to its involvement in the activity of that pathway, in the 

particular experiment.  
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For example, removing a down-regulated gene from a pathway implies that the 

reduced production of RNA by the gene is not related to the contribution of its 

protein product to that particular pathway. Consequentially it also suggests that some 

other of the genes‘ constituent pathways require less of its contribution and in that 

sense affects its expression in a negative manner.  

Importantly, given that a gene member of one or more biochemical pathways 

exhibits differential expression, we assume that the gene is contributing to the 

activity of at least one these pathways. In agreement with this assumption, we do not 

consider as valid a configuration where a differentially expressed gene has not been 

assigned to at least one of its constituent pathways. 

4.4.2 Algorithm 

We will first define some notation that is used within our methods and algorithms. 

Let P be an N row by M column binary matrix, PB NxM . Let pij (the element in the 

ith row and jth column of matrix P) = 1 if gene i is a member of pathway j, and Pij = 

0 if gene i is not a member of pathway j. Therefore P represents a snapshot of KEGG 

membership of genes to pathways for a given species and does not change. 

Let A  B NxM be a binary matrix such that P-A  B NxM . A represents a potential 

allocation of genes to pathways and will be used by our method, see algorithm 4.1. 

Here a ij = 1 if gene i is allocated to pathway j and a ij = 0 if gene i is not allocated to 

pathway j.  

The restriction P-A  B NxM means that A can define pathways to have less genes than 

originally in P, but can never have genes that contradict P, i.e. we do not allow 

allocations that would be contrary to that in KEGG. 

Let us assume that we have a single set of gene expression data (one experiment) for 

the N genes called G. We score an allocation on how much each pathway is down or 

up regulated according to equations (4.1) to (4.3), note that the constant c is a 

threshold parameter. 
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X (i) has a value of +1, -1 or 0 if gene i is up-, down-regulated or stable respectively. 

F(A) is our fitness function, which we aim to maximise by changing the allocation of 

multi-membership genes to their corresponding pathways. We use equation (4.3) to 

define if gene i is a member of pathway j, which is true if aij=1, and if that is the case 

to define if the gene is up-, down-regulated or stable. The value of ∑H(aij) reveals 

the difference between the numbers of up- and down-regulated genes in pathway j. 

Thus, the more genes of similar expression are allocated to pathway j the greater the 

absolute value of ∑H(aij) becomes for that pathway. 

We have explored the effect of three different starting genes to pathways allocations 

on the subsequent performance of the algorithm, each one characterised by different 

properties. Algorithm 4.1 presents the main body of the algorithm, in pseudocode, 

which performs the hill climbing search for the fittest genes to pathways allocation. 

Algorithm 4.2 represents the preliminary step of setting up the starting gene 

configuration. 

In the case of single-membership starting allocation, only the single-membership 

genes are assigned to pathways. In the case of full membership, multi-membership 

genes are assigned to all possible pathways they belong to. In the case of directed 

membership, we allocate single-membership genes to their corresponding pathways, 

and then go through the pathways that are still empty, to check if they would contain 

more up- or down-regulated genes upon full allocation. If the full allocation contains 
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more up-regulated genes, we randomly assign one of the up-regulated genes to the 

corresponding pathway in the starting allocation. If on the other hand the full 

allocation contains more down-regulated genes we randomly assign one of the down-

regulated genes to the pathway, in the starting allocation.  

ALGORITHM 4.1: SEARCH ALGORITHM 

1) Input: a = list of gene IDs coupled with their pathway IDs 

2) Input: b = Expression vector of log2 ratios (only KEGG 

pathways genes) 

3) Input: c = threshold for up-/down-regulated genes 

 Input: allocation_type = one of {single, multiple, directed} 

4) Remove all genes between +c and –c 

5) If allocation_type = single then allocate single-membership 

genes to their pathways (thus create A) 

6) Elseif allocation_type = multiple then allocate all genes to 

all the pathways they are members of (thus create A = P) 

7) Elseif allocation_type = directed then Call Algorithm 4.2  

8) Get fitness F(A), set F_old = F(A) 

9) For j = 1: number of iterations 

10) Save gene configuration 

11) Use P to randomly choose a gene (i) with multi-   

membership and randomly choose one of  the pathways(j) it 

belongs to 

12) If according to A gene (i) is already present in the 

pathway (j) then remove the gene, i.e. set aij = 0 

13) Else if not present, place it in the pathway, i.e. set     

aij = 1 

14) End if 

15) If upon completion of steps (10) to (14) the gene is not 

assigned to at least one pathway, randomly choose a 

pathway and assign the gene to it 

16) Estimate fitness F(A) 

17) If F(A) > F_old set F_old = F(A)  

18) Else if F(A) < F_old restore gene configuration (from step 

(10))  

19) End for 

20) Output: A = Matrix representing genes to pathway allocation 
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ALGORITHM 4.2: SET DIRECTED STARTING ALLOCATION 

1) Allocate single-membership genes to their pathways creating 

A 

2) Set Q =  a list of pathways that do not contain single- 

membership genes 

3) For k = 1: length of Q 

4) 
If  



N

i

iQk
aH

1

 > 0 Then 

5) Let x = a random up-regulated gene from path  

way Qk 

6) Set 1
kxQa  

7) End if 

8) 
If  



N

i

iQk
aH

1

 < 0 Then 

9) Let x = a random down-regulated gene from  

pathway Qk 

10) Set 1
kxQa  

11) End if 

12) End for 

 

It is important to note that each starting allocation has different properties. In the case 

of single-membership starting allocation, the presence of a single-membership gene 

in a pathway will direct the algorithm to fill that pathway with genes of similar 

behaviour. Hence, if a pathway initially contains a down-regulated single- 

membership gene, the algorithm will keep assigning more down-regulated genes to 

it. This is a sensible choice, because principally the behaviour of a single- 

membership gene can be only attributed to its involvement in that particular pathway. 

Thus it constitutes some strong evidence of the pathway‘s behaviour. It is worth 

noting that in chapter 3 we established that single-membership genes show more 

consistent behaviour and that observing contradicting expression in this group of 

genes is rarer than in the case of genes that are members of many pathways. 
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Starting from full membership allocation may also be beneficial in a different 

manner. Assigning all differentially expressed genes to a pathway will influence the 

hill climbing search to remove genes contradicting the expression of the majority 

from the path, leading towards a solution where the path is filled with up-regulated 

genes if they are present in greater numbers or down-regulated genes if the opposite 

is true. This also makes sense, as if for example, upon full allocation a certain 

pathway contains more up-regulated genes, this can be seen as some indication, 

although not a definitive one, that the pathway is likely to be up-regulated and vice 

versa.   

However, there are cases where pathways do not contain single-membership genes or 

none of them show differential expression, to direct the subsequent filling of the 

pathway. To target such instances, we have implemented what we refer to as directed 

membership allocation. Here, the state of expression of single-membership genes 

directs the allocation of genes to the pathways that contain them, while the full 

allocation directs the filling up of pathways which do not contain single-membership 

genes. In essence this approach is a combination of the single and full membership 

starting allocations, where the behaviour of single-membership genes is taken into 

consideration first, while the expression of the majority is considered in pathways 

where this is not possible due to the lack of expressed single-membership genes. The 

choice of giving priority to single-membership genes is based on our hypothesis that 

these genes are generally more reliable indicators of pathway behaviour in agreement 

with the analysis presented in Chapter 3.  

4.4.3 Comparison of Allocations 

The allocation of a gene to its constituent pathways may be represented as a binary 

string. Here each position represents a pathway and 1 indicates allocation while 0 

indicates that the gene is not allocated to the pathway. Consequentially, the 

Hamming Distance (Hamm below) measure (Hamming 1950) constitutes an ideal 

approach to identify the similarity between two allocations of the same gene. Given 

two binary strings of equal length, this metric considers the number of positions at 

which the strings differ. Table 4.2 exemplifies the gene representation we use and the 

hamming distance between two allocations of a gene. 
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In our implementation we divide the observed Hamming distance for two binary 

strings representing the allocations of a multi-membership gene to its constituent 

pathways by the length of the binary string. Then we add the results for all 

differentially expressed multi-membership genes and divide the sum by the number 

of such genes. 

In mathematical terms, let D,E  B NxM be binary matrices such that P-D   B NxM and 

P-E  B NxM , i.e D and E are allocations of genes. Let the similarity between D and E 

be:  

S(D,E) = 
NM

1




N

i

ii EDHammM
1

)),((  (4.4) 

where Di is the ith row of D. 

Table 4.2: Hamming distance between two gene allocations of gene YBR263W. 

The two allocations of gene YBR263W a member of 4 pathways differ at two 

positions, 3 and 4, for one carbon pool and methane metabolism respectively. 

Thus, the hamming distance between them is 2, or 2/4=0.5 (50%) as proportion of 

the length of the string. 

 Glycine, 

metabolism 

Cyanoamino 

acid metabolism 

One carbon 

pool by folate 

Methane 

metabolism 

Allocation 1 0 1 0 0 

Allocation 2 0 1 1 1 

4.5 Results  

This section provides a detailed discussion of the results produced by the application 

of the hill climbing search method to certain microarray datasets and an overview of 

the convergence of our algorithm. Following that there is a discussion of the 

consistency of the produced allocations. The section concludes with a comparison of 

our allocations to the original full membership allocations, using a standard statistical 

approach.  
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4.5.1 Data processing 

We have applied our methodology to process data from diauxic shift experiments on 

Saccharomyces cerevisiae (DeRisi, Iyer & Brown 1997), using a threshold log2 ratio 

value of 1 and -1, to consider a gene up- and down-regulated respectively, as 

suggested by the authors.  

This is a popular dataset, considered a golden standard for the analysis of the global 

gene expression response of Saccharomyces cerevisiae during diauxic shift, 

consisting of 7 time points for which the accompanying publication provides an 

informative analysis of the state of biochemical pathways. For time points 1 to 5 

there is no substantial change in the expression of most genes. Following that, at time 

point 6 there is an evident change in the expression of a large number of genes 

present in Saccharomyces cerevisiae KEGG pathways, thus we have chosen to use 

this time point for analysis to demonstrate the utility of our algorithm. The results 

discussed here are based on twenty runs of the algorithm, from each starting 

allocation and a choice of the configuration exhibiting the best fitness. 

In the experiment in question, yeast cells inoculated in glucose rich medium turn to 

aerobic utilisation of ethanol produced during fermentation, upon exhaustion of the 

available sugar. It is worth noting that KEGG includes both glycolysis and 

gluconeogenesis in one single pathway, as they share a number of common genes 

and a substantial part of each process is effectively a reversal of the other. 

Nevertheless, some genes are unique to glycolysis while others to gluconeogenesis 

and the two are never functional simultaneously, thus the two pathways have been 

separated to improve the efficiency of our analysis.  

Figure 4.2 corresponds to changes occurring in the expression of genes following the 

diauxic shift and represents the pathway state observed when all multi-membership 

genes are considered active in all pathways they participate in, according to 

commonly used visualisation approaches. Evidently, most pathways contain both up- 

and down-regulated genes. Pathways including glycolysis, gluconeogenesis, the 

pentose phosphate pathway and pyruvate metabolism contain similar numbers of 

both up- and down-regulated genes, which makes it difficult to infer their state of 

activity.  
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As Figure 4.3 reveals, processing of the data with our hill climbing method changes 

the picture substantially. As expected, upon depletion of glucose the glycolysis 

pathway lacks fuel and is subsequently suppressed. Naturally, expression is now 

shifted in favor of the gluconeogenesis pathway. 

 

Figure 4.2 Pathway gene expression based on full allocation of genes to pathways. 

The figure shows the expression of all genes for a set of chosen pathways. 

 

Figure 4.3 Pathway gene expression upon processing of the dataset. The figure 

reveals the allocation of genes for the same pathways, upon processing with the hill 

climbing method. 
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Thus, our method has correctly reallocated all down-regulated genes in the 

gluconeogenesis pathway to glycolysis where they also participate. Rather than 

towards pyruvate, reactions flow towards the biosynthetic precursor glucose-6-

biphosphate which is channeled accordingly to supply the TCA cycle and 

gluconeogenesis. 

The pyruvate metabolism pathway is now clearly activated, containing only up-

regulated genes. At the same time amino acid metabolic pathways including the 

valine, leucine, isoleucine and methionine biosynthetic pathways are clearly 

repressed, in agreement with (Grosu et al. 2002). This is to be expected given the 

caloric restriction as the production of methionine is costly from a metabolic point of 

view, while valine, leucine and isoleucine are the most abundant amino acids in the 

cell.  

The unique up-regulated gene in the valine, leucine and isoleucine biosynthetic 

pathways, LEU4, has been reallocated to the pyruvate metabolism KEGG pathway of 

which it is also a member, a pathway positively affected during the diauxic shift in 

agreement with our conclusion, as well as (DeRisi, Iyer & Brown 1997) and (Grosu 

et al. 2002).     

For the unique down-regulated gene ALD6 in the beta-alanine pathway, which 

(Grosu et al. 2002) consider one of the 15 most positively affected pathways by the 

diauxic shift, our method implies that the observed down-regulation may well be due 

to involvement of the gene in other pathways. ALD 6 is a member of 13 distinct 

pathways, in fact a gene with the highest degree of membership in Saccharomyces 

cerevisiae according to KEGG, as shown on Table 4.3. Hence, the observed down-

regulation may be due to its involvement in glycolysis pathway, or the metabolism of 

various amino acids which are suppressed.  

Overall, here the algorithm has been able to allocate genes to pathways in a way that 

allows us to infer the state of individual pathways with increased certainty removing 

contradictions from the final results. Pathways are now mostly filled with genes of 

similar expression, which we consider to be the most indicative of a pathway‘s state. 
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Table 4.3 Saccharomyces cerevisiae KEGG 

Biochemical Pathways containing gene ALD6 

Glycolysis / Gluconeogenesis 

Pentose and glucuronate interconversions 

Fatty acid metabolism 

Valine, leucine and isoleucine degradation 

Lysine degradation 

Arginine and proline metabolism 

Histidine metabolism 

Tryptophan metabolism 

beta-Alanine metabolism 

Glycerolipid metabolism 

Pyruvate metabolism 

Propanoate metabolism 

Limonene and pinene degradation 

 

To further investigate the results of data processing with our methodology we have 

applied it to Escherichia coli K-12 data from GEO available as experiment GSM513. 

Escherichia coli cells were grown in tryptophan enriched medium, leading to 

increased activity of the tryptophan metabolism pathway. Most tryptophan 

metabolism genes show subtle to substantial up-regulation except from yqeF which 

shows significant down-regulation, as noted in section 4.2 on Table 4.1. 

These include the valine, leucine, isoleucine and lysine degradation pathways, that is, 

pathways responsible for the degradation of amino acids other than tryptophan. It is 

biologically meaningful to observe decline in the activity of such pathways given 

that the cell is presented with excess tryptophan to cover its nutritional needs. In 

agreement with this rationale our method has removed the down-regulated gene from 

the latter pathway, ascribing its behaviour to the activity of other amino acid 

degradation pathways.  
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In conclusion in the discussed experiments, our method produces results that are 

consistent with the findings of the publications accompanying the data, while 

reducing the number of genes per pathway showing contradicting expression and 

thus allowing us to infer the state of these pathways with higher degree of 

confidence.  

The ability of this kind of approach to produce such consistent results and to 

substantially increase gene expression agreement per pathway seems interesting in 

itself. It adds some further evidence to the initial hypothesis that multi-membership 

gene expression represents a net effect, in the sense that the biological system 

regulates the expression of these genes to accommodate its need through the 

adequate function of the pathways they participate in. 

4.5.2 Convergence 

To examine the performance of the algorithm we looked into the convergence 

exhibited by it upon application to experiment GSM513, discussed in the preceding 

section. The result is graphically portrayed on Figure 4.4, where the solid line 

represents the convergence, starting from full membership, the dashed line starting 

from single membership and the dotted line starting from directed membership initial 

allocation. Each line represents the average performance of the search based on 20 

separate runs of the algorithm. 

Evidently, the full-membership allocation shows slightly faster convergence, 

however the directed membership allocation while slower seems capable of 

outperforming the other starting allocations in terms of fitness. Nevertheless, all three 

starting allocations show quite similar behaviour, with only small variability in the 

average final fitness and no significant effect on the overall picture produced by the 

processing of the data with our method. 
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Figure 4.4 Algorithm Convergence. Each line shows the mean fitness for 20 runs of 

the algorithm on data from GSM513. 

4.5.3 Consistency of Results 

We have examined the consistency of the allocations produced by 20 separate runs of 

the algorithm, on the data in GSM513. The analysis was performed for all starting 

allocations, including the full, single and directed starting configurations, for 1000, 

5000 and 10000 iterations. 

This allows us to perform (n-1)×n/2 comparisons, hence for n = 20 runs, we perform 

190 comparisons for each configuration. Figures on Table 4.4 reveal that the 

algorithm produces sufficiently consistent results. Especially in the case of directed 

membership, for 5000 iterations, the two most distinct configurations produced by 

our method are still 94% similar. 
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Table 4.4. Comparison of results produced by 20 

separate runs of the hill climbing algorithm for each 

separate starting point.  

Membership  Full  Single  Directed  

1000 

Iterations 

Max 97.4 92.6 94.9 

Min 86.7 72.8 88.1 

Mean 92.6 83.6 91.1 

5000 

Iterations 

Max 98.2 93.8 99.9 

Min 87.82 78.5 94.0 

Mean 93.4 86.3 96.9 

10000 

Iterations 

Max 97.6 97.7 99.7 

Min 88.7 86.9 92.8 

Mean 93.5 92.7 96.8 

4.5.4 Comparison of Allocations 

In pathway based microarray analysis, to validate data quality and establish the 

impact of the experimental conditions on the activity of pathways, it is common 

practice to estimate the probability per pathway of obtaining the results in hand by 

chance. For example in (Cavalieri et al. 2007) the authors describe Eu.Gene 

software, discussed in section 2.7.1, which calculates a p value for each pathway, 

revealing the probability of having obtained the results in hand by randomly picking 

genes and placing them in biochemical pathways. We have applied a similar 

approach to compare the results produced by our method to the standard full 

membership allocation. In order to achieve that, we have facilitated a microarray 

dataset, which can be downloaded from GEO and includes experiments for GEO 

platform 17. We run the algorithm, starting from directed membership, described in 

the Algorithm section 4.3.2, for the entire series of microarray experiments 

corresponding to GEO General Platform 17. We have excluded from our analysis 

microarray experiments that do not contain genes of fluctuating expression. This is 

often observed in cases of time series experiments, where at time point 1 (0 min) 
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RNA levels in the examined cell/tissue have not been yet affected by the 

experimental conditions.  

As a measure for the comparison we have chosen the probability score, NBH (for 

Normal approximation to the Binomial distribution), described in (Swift et al. 2004), 

implemented to examine the quality of gene clustering results. The score is based on 

the hypothesis that, if a cluster of certain size contains the observed number of genes 

from a defined functional group of a certain size then the chance of this occurring 

randomly follows a binomial distribution. The p-value estimated based on this 

approach reveals the probability of observing a given number of genes or higher in a 

cluster, that belong to a particular functional group, purely by chance, given the 

overall number of genes and the overall number of genes in the cluster and the 

functional group.  

In our implementation a cluster corresponds to a pathway, hence, given the overall 

number of genes and the overall number of differentially expressed genes in the 

experiment under consideration, the NBH statistic reveals the probability of 

obtaining the observed number of affected genes in a pathway or higher, purely by 

chance. Here the null hypothesis is that the relative changes in gene expressions in 

the pathway are a random subset of those observed in the experiment as a whole. For 

each experiment and each of the pathways containing regulated genes, we obtain this 

probability for full membership gene allocation and the allocation produced by our 

method using directed membership (see Algorithm section 4.3.2). 

An issue that may arise here concerns what we define as the overall number of 

affected genes and overall number of examined genes, in any experimental data. One 

alternative that comes to mind straight away is to simply establish the sum of values 

above up-regulation and below down-regulation thresholds on the array of interest, 

and consider this to be the overall number of affected genes. In that case the overall 

number of genes is equal to the number of values/genes on the array that are also 

contained in KEGG biochemical pathways. 

Figure 4.5 reveals the mean of NBH values per pathway and experiment, for the 

standard full allocation (solid line) and the directed membership (dotted line) 
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allocation produced by our method, applying this rationale. The mean NBH values 

for the two allocations exhibit very significant correlation of 0.99 with a p-value of 

1.376×10
-036

.  

 

Figure 4.5 Mean NBH values per experiment (for all pathways containing genes of 

fluctuating expression), for standard allocation and the one produced by our 

methodology. As overall number of genes, we consider the intersection of genes 

between KEGG and each microarray. As affected we consider the number of genes 

contained in this intersection that show expression levels above or below the chosen 

thresholds. 

However, given that as discussed previously, many genes are members of more than 

one biochemical pathway, if we simply add the number of regulated genes per 

pathway, we will come up with a greater number of overall affected genes per 

experiment, given that there are duplicates, since the same gene may appear in 

different pathways. 
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Figure 4.6 Mean NBH values per experiment (for all pathways containing genes of 

fluctuating expression), for standard allocation and the one produced by our 

methodology. The overall number of genes is equal to the sum of the sizes of all 

Escherichia coli biochemical pathways. The number of affected genes is equal to the 

sum of affected genes per pathway. 

Similarly, if we add the sizes of all examined pathways, we will end up with a 

greater number of genes than the intersection between KEGG genes and the 

examined microarray. We have also applied this rationale to obtain the result on 

Figure 4.6. Again the mean NBH values exhibit highly significant correlation equal 

to 0.99, with a p-value of 6.4×10
-58

. 

In both cases it is evident that there isn‘t any substantial change as far as the NBH 

probability is concerned, when comparing standard full membership allocation to the 

allocation of genes produced by our algorithm. Hence, the proposed data processing 

approach does not affect the probabilities of obtaining the observed allocation in a 
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positive or negative manner. However, while results seem equally valid, we have 

added an intuitional, biologically meaningful step to the data processing course. 

4.6 Conclusions 

The analytical method described here is used to identify the overriding behaviour of 

pathways given the up- and down-regulation of their constituent genes, observed in a 

microarray experiment. Given that many genes are members of more than one 

biochemical pathway, we have used Escherichia coli and Saccharomyces cerevisiae 

microarray data to allocate each of the affected genes to pathways, by maximising 

the number of genes that show similar behaviour, in each individual pathway. In 

doing this,  we attempt to maximise pathway coverage, allocating as many genes as 

possible to a pathway, while at the same time minimise the number of contradictions, 

meaning the number of genes that show up- and down-regulation in the same 

biochemical pathway, in the same experiment. 

We have shown that our method is able to effectively allocate multi-membership 

genes to their corresponding pathways in accordance with the underlying trend of 

gene regulation in that pathway and produce pathway categorised results that are 

biologically meaningful. By manipulating the pathway membership of the genes to 

follow underlying trends we can interpret microarray results centred on the behaviour 

of the biochemical pathways. We have also shown that the produced configurations 

are consistent, by comparing the results produced by subsequent runs of our 

algorithms. Additionally we have explored and compared different starting 

configurations, and discuss their advantages and disadvantages. 

The methodology presented in this chapter is of potential interest, as it may assist a 

biologist to infer the state of individual biochemical pathways, based on microarray 

data. Given that the multi-membership pathway nature of genes has not been 

extensively considered in currently used tools for pathway based microarray analysis, 

this method suggests an interesting innovative approach. 
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Chapter 5: Pathway analysis using 

simulated annealing and a genetic 

algorithm 

 

5.1 Introduction 

We have proposed a methodology that takes into account the expression of all genes 

in a given organism, that are members of biochemical pathways, and the consensus 

of gene expression per pathway in order to identify the underlying pathway 

expression changes caused by the biological system through regulation of the 

expression of their constituent genes (Pavlidis, Payne & Swift 2008). Unlike other 

approaches where genes are treated as stable or differentially expressed (Cavalieri et 

al. 2007), our methodology considers the state of expression of individual genes in 

terms of up- or down-regulation and attempts to ascribe any observed inconsistencies 

in gene expression in a pathway, to the involvement of some of its genes in the 

activity of other pathways of which they are also members.  

In the previous chapter, we implemented a hill climbing (HC) search approach which 

was able to produce consistent results, in agreement with the publications 

accompanying the data in question, presented and discussed in chapter 4. However, 

given the tendency of the hill climbing search to get trapped in local maxima, we 
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proceeded further, applying a simulated annealing (SA) (Kirkpatrick , Gelatt & 

Vecchi 1983) and a genetic algorithm (GA) search technique in order to explore the 

performance of each one on the same and some additional microarray experiments.  

Importantly, the differences in the final fitness reached by each of these methods do 

not have a straightforward biological meaning. Consequentially, we shifted our 

efforts towards exploring the similarity of the produced results, in conjunction with 

their corresponding fitness, by using two complimentary approaches. In particular, 

we developed a methodology for estimating the similarity of two gene allocations 

based on the hamming distance measure and the probability of observing any given 

hamming distance, or smaller, purely by chance. This approach directly reveals the 

similarity between two genes to pathways allocations. Additionally, we adopted the 

fuzzy adjusted rand index (FARI) metric (Brouwer 2009), widely used measure of 

agreement for categorical data. In this case we observe for each distinct pair of 

genes, if two allocations have placed them in the same pathways or in different ones. 

The greater the agreement, the greater the value we obtain.  

In this chapter we present a more detailed discussion of the applied methodologies 

and proceed to present and discuss the performance of the three search algorithms. 

Interestingly, according to both implemented similarity metrics, results produced by 

all methods appeared highly consistent. While the simulated annealing search was 

able, in some cases, to reach slightly higher fitness values the difference was 

statistically insignificant.  

5.2 Methods 

Following the general methodology discussed in chapter 4, all microarray datasets 

were trimmed to only include genes present in KEGG pathways. For example, 

KEGG contains 1384 Escherichia coli pathway genes out of a total of 4288 protein-

coding genes (Blattner et al. 1997), for the harmless laboratory strain K12 MG1655. 

As discussed, we applied discretisation of genes into three categories, namely up-, 

down-regulated and stable, based on an adequately chosen threshold and processed 

each experiment with a hill climbing, a simulated annealing and a genetic algorithm, 
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to alter the possible allocation of multi-membership genes to their constituent 

pathways.  

We assume that a differentially expressed gene is regulated by the biological system 

to contribute to the activity of at least one of the pathways it is a member of. Thus, 

any configuration that satisfies this criterion is considered valid, while an allocation 

where a differentially expressed multi-membership gene has not been assigned to any 

of its constituent pathways is rejected. Our goal was to identify, for each such gene, 

the pathways whose activity requires the observed behaviour of the gene in question. 

Allocation of a gene to one of its constituent pathways suggests that the biological 

system has adjusted the expression of that gene in the given manner to satisfy the 

activity of that pathway. Naturally, not allocating a gene to a pathway suggests its 

expression is not related to its involvement in the activity of this particular pathway. 

Here we proceed to present the search methods we used to extend our analysis, 

namely simulated annealing and a genetic algorithm, followed by discussion of our 

adaption of the hamming distance metric and a methodology of calculating the 

probability of observing it purely by chance. Furthermore, we discuss our 

implementation of the fuzzy adjusted rand index metric, to analyse similarity 

between genes to pathways allocations produced by our methods.   

5.2.1 Simulated Annealing 

In contrast to hill climbing, simulated annealing may occasionally accept a solution 

of worse fitness in the initial stages of the process, depending on a probability which 

is defined by gradually decreasing parameter T, termed temperature. As T decreases 

the probability drops and it becomes less and less likely for a solution of lower 

fitness to be accepted. Allowing for worse configurations to be adopted in the 

context of the described process, allows simulated annealing to escape local maxima 

and minima. 

In our application of the method, we have chosen a starting temperature T = 1 and a 

final temperature T = 0.01 as appropriate for 10000 iterations which have proven 

sufficient for the algorithm to converge. At step 17) of the hill climbing algorithm 

(Algorithm 4.1), described in chapter 4, section 4.3.1, the simulated annealing 
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approach accepts an allocation of lower fitness with a probability which can be 

estimated based on equations (5.1) to (5.3). 

tT

F

t eP



  (5.1) 

1 tt TT  (5.2) 

R

TTR

e

)log()log( 0

  (5.3) 

Here tP  is the probability of accepting an allocation of lower fitness at the current 

iteration t, -ΔF is the difference between the current fitness and the one of the 

allocation at the previous iteration, tT  is the current temperature and RT the 

temperature at the last iteration, λ is a constant, representing the cooling factor and R 

the number of iterations for the search to complete. 

5.2.2 Genetic Algorithm 

In a genetic algorithm, as discussed in section 2.6.3, candidate solutions are 

represented by the so called chromosomes, in analogy to chromosomes storing 

genetic information in living cells. Most commonly, from a computational point of 

view, a chromosome consists of a binary string of ones and zeros, where each bit 

constitutes a gene. At every iteration of the algorithm the totality of binary strings, 

which constitute the population, ‗evolves‘ to give birth to a new population. The 

individuals constituting the new population are selected and preserved based on their 

fitness. 

In our implementation of a genetic algorithm search approach to identify the 

pathways responsible for the behaviour of multi-membership genes, each 

chromosome represents an allocation of genes to pathways. As discussed in chapter 

4, a binary string represents the allocation of each multi-membership gene to its 

constituent pathways. Each position for a particular gene corresponds to a pathway, 

with 1 suggesting that gene exhibits the observed differential expression due to its 
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contribution to that path. On the other hand 0 suggests that the observed gene 

expression is not due to the contribution of the gene to the particular pathway.  

ALGORITHM 5.1: GENETIC ALGORITHM 

1) INPUT: a = list of gene IDs coupled with their pathway 

IDs, b = expression vector of log2 ratios, c = threshold 

for up-/down-regulated genes 

2) Remove all genes between +c and –c 

3) Create S random Parent chromosomes 

4) Get fitness F of each Parent chromosome 

5) For i = 1:number of generations 

6)    For j = 1:number of individuals in Parent 

7) Call mutation Algorithm with input Parentj  

8) End for 

9) Create a random list List of (number of Mutated) 

10)    For j = 1:(number of Mutated)/2  

11) Call crossover Algorithm with input Mutated(List(j)), 

Mutated(List(j+1))  

12) End for 

13) Get the fitness of each Mutated and Crossover chromosome 

14) Use roulette-wheel selection to select S chromosomes 

15) Set Parent =  selected S chromosomes  

16) End for 

17) OUTPUT: Best Individual and Fitness 

 

At each generation, individuals are subjected to crossovers and mutations, changing 

the allocation of multi-membership genes to their constituent pathways. From the 

produced offspring we preserve the fittest individuals to serve as our current parent 

generation and repeat the process for a chosen number of iterations, in order to reach 

the best possible fitness. 

Algorithm 5.1 represents the main body of the genetic algorithm, Algorithm 5.2 

describes the crossover process, while algorithm 5.3 the mutation process, called at 

steps 7 and 11 of the main genetic Algorithm 5.1, respectively. Within Algorithm 5.2 

the operator C = [A1,A2,…,Ax,Bx+1,Bx+2,…BN] concatenates the lists A and B 
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preserving order and sets C to be the result. A generation consisting of a hundred 

individuals proved sufficient to reach the maximum possible fitness over about four 

hundred generations.  

 

ALGORITHM 5.2: CROSSOVER ALGORITHM 

1) INPUT: Parent A and Parent B 

2) Choose a random number x between 1 and length of Parent A 

3) Set Crossover A = [A1,A2,…,Ax,Bx+1,Bx+2,…BN] 

4) Set Crossover B = [B1,B2,…,Bx,Ax+1,Ax+2,…AN] 

5) OUTPUT: Crossover A, Crossover B 

    

ALGORITHM 5.3: MUTATION ALGORITHM 

1) INPUT: Individual 

2) Create Mutated equal to Individual    

3) For k = 1:length of Mutated 

4) Produce a random number a between 0 and 1 

5) If a<1/length(Mutatedk) randomly choose a position x in 

Mutatedk 

6) If according to Mutated gene (k) is already in path (x) 

remove it, i.e. set Mutatedkx=0 

7) Else if gene (k) is not allocated to path (x) place it 

in the path, i.e.  set Mutatedkx=1 

8) If upon completion of steps (4) to (7) the gene is not 

assigned to at least one pathway, repeat steps (4) to 

(7) 

9) End if 

10) End for 

11) OUTPUT: Mutated Individual 

5.2.3 Hamming Distance and probabilities 

To obtain a more meaningful interpretation of the observed hamming distances, we 

developed a methodology to estimate the probability of obtaining any hamming 

distance between two allocations produced by our methods, purely by chance. In 

particular, for any given multi-membership gene, we first estimate the probability of 

observing each possible hamming distance between pairs of allocations. The 
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methodology is based on estimating the number of all possible valid binary strings 

representing the allocation of a multi-membership gene to the pathways it is a 

member of, according to the KEGG database.  

Table 5.1 Hamming Distances between two allocations of a gene member of 

two pathways. The table reveals all possible combinations of two allocations for 

a multi-membership gene, participating in two distinct biochemical pathways, 

with the corresponding hamming distance between the binary strings 

representing these allocations. A string of zeros is considered invalid allocation, 

as we assume that a differentially expressed gene is contributing to the activity 

of at least one of its member pathways. 

 

Allocation 1 

Allocation 2 

01 10 11 

01  0 2 1 

10 2 0 1 

11 1 1 0 

 

In the simplest case of a differentially expressed gene that is a member of only two 

pathways, its allocation is represented by a string of two binary digits. As already 

discussed in chapter 4, section 4.3.1, only solutions where the gene has been 

allocated to at least one of the pathways, of which it is a member, are considered 

valid. Therefore, we do not consider a string consisting solely of zeros as an 

acceptable, valid allocation. The square matrix on Table 5.1 represents all valid 

combinations of allocations, for a gene, member of two biochemical pathways, 

giving rise to all possible hamming distances.  

The probability of observing any of the hamming distances on Table 5.1 is equal to 

the number of combinations giving birth to each of the possible hamming distances, 

namely 0, 1 and 2, divided by the overall number of possible combinations, equal to 

9 in this example. Following this rationale, in the simplest case of a gene member of 

two pathways we obtain the probabilities shown on Table 5.2. 
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Table 5.2 Probability of obtaining any hamming distance between two allocations 

of a gene member of two pathways. Given the number of possible combinations 

(Table 5.1) of allocations for a gene member of two pathways, and the hamming 

distance between them, this table shows the probability of obtaining each possible 

hamming distance, purely by chance. 

Hamming Dist. 0 1 2 

Probability  0.333 (3/9) 0.444 (4/9) 0.222 (2/9) 

 

For a gene that is a member of any possible number of pathways, the number of such 

combinations for any given hamming distance between 0 and r can be estimated 

according Table 5.3. Here n is the number of pathways the gene is a member of and r 

is the hamming distance between two allocations. As Equation (5.4) demonstrates, 

we can summate from 1 to n in order to get the number of possible combinations 

corresponding to all possible hamming distances. 

 

In the context of this text, we work with allocations of more than one expressed 

multi-membership genes to their pathways. This however, does not constitute a 

problem and the hamming distance probabilities can still be estimated following the 

above discussed rationale. In the simplest case of two genes, members of two 

pathways each, we can estimate the probability of obtaining all possible hamming 

Table 5.3: Number of combinations of pairs of allocations of hamming distance 

between 0 and r. Using the equations on the table we can estimate the number of all 

possible combinations of allocations, represented as binary strings, of hamming 

distance from 1 to r. 
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distances using Table 5.2 and applying simple addition and multiplication of the 

values as shown on Table 5.4. 
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(5.4) 

 

 

Table 5.4: Combined Hamming distance and probability for a pair of genes, members 

of two pathways. The table exemplifies how to estimate the combined hamming 

distance for two multi-membership genes, members of two distinct biochemical 

pathways each, along with the respective combined probability. Here again, we assume 

that any configuration, where each gene is allocated to at least one pathway is valid and 

that each one is equally likely to occur by chance.  

Hamming/ 

Probability 
0/0.333 1/0.444 2/0.222 

 

0/0.333 

0(0+0)/ 

0.111(0.333x0.333) 

1(1+0)/ 

0.148(0.444x0.333) 

2(2+0)/ 

0.074(0.222x0.333) 

 

1/0.444 

1(0+1)/ 

0.148(0.333x0.444) 

2(1+1)/ 

0.197(0.444x0.444) 

3(2+1)/ 

0.987(0.222x0.444) 

 

2/0.222 

2(0+2)/ 

0.074(0.333x0.222) 

3(1+2)/ 

0.987(0.444x0.222) 

4(2+2)/ 

0.049(0.222x0.222) 

 

Each pair of hamming distances is added to obtain the combined hamming distance, 

while each pairs‘ corresponding probability is multiplied to obtain the probability of 

observing the combined hamming distance in question. For any number of N genes 

we can obtain the corresponding values using an N dimensional matrix like the one 
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table 5.4. As the number of genes grows this becomes computationally expensive, 

however the problem is circumvented, as each gene can be added at a sequential step, 

through a process of merging and expanding the matrix. For example merging the 

data for the two genes represented on Table 5.4, gives rise to the matrix on Table 5.5. 

Finally, for any observed hamming distance between two subsequent runs of our 

search algorithms, for a given microarray experiment, we can calculate the 

probability of observing the hamming distance in hand or smaller through simple 

addition of probabilities. For example, using table 5.5, the probability of observing a 

hamming distance of 2 or smaller is equal to the sum of the probability of observing 

a hamming distance of 0, 1 and 2, that is, 0.111+0.296+0.345=0.752. 

Table 5.5 Compact Hamming distance and probability for two genes, members of 

two pathways each. Table 5.5 is produced by merging Table 5.4, to only show each 

possible hamming distance and the corresponding probability of observing it by 

chance, for a set of two expressed multi-membership genes. Each gene is a member 

of two distinct biochemical pathways. 

Hamming Distance 0 1 2 3 4 

Probability  0.111 0.296 0.345 0.197 0.049 

5.2.4 Fuzzy Adjusted Rand Index 

The adjusted rand index (ARI) is a common quantitative measure of cluster 

similarity, widely accepted to possess the most desirable properties in the case of 

comparing crisp partitions. It has been recently extended to fuzzy clustering giving 

the fuzzy adjusted rand index (FARI) (Brouwer 2009). For each pair of elements 

FARI examines if both clustering arrangements have placed the pair in the same or 

different clusters. Unlike in the case of ARI where each element can only be placed 

in one cluster, here an element can be placed in a number of clusters, hence fuzzy 

ARI. We have adopted FARI, as defined in (Brouwer 2009), to compare allocations 

of multi-membership genes produced by separate runs of our algorithms on the same 

microarray dataset, given that each arrangement may place a gene in one or more 
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pathways. For our purposes clusters correspond to pathways, assuming equal weights 

for the contribution of a gene to all its member pathways.  

While the hamming distance between two multi-membership gene allocations reveals 

biological similarity, answering the question of how similar two allocations are the 

fuzzy adjusted rand index examines if each pair of genes is placed together or in 

different pathways by subsequent runs of our algorithms.  

Interestingly, we have discovered that upon processing of microarray data with our 

methods we sometimes observe that two allocations exhibiting the same fitness differ 

in terms of hamming distance. This result can occur in cases where groups of genes 

are placed together but in different pathways by separate runs of our scripts. In 

particular for allocations of the same or very similar fitness, accompanied by 

significant hamming distance, high FARI value can reveal the occurrence of the 

above described phenomenon. 

5.3 Results 

In this section we present a comparison of the results produced by the three search 

algorithms, upon their application on set of microarray experiments. The comparison 

is first performed in terms of fitness values reached by each method and the number 

of iterations required for the algorithms to converge. Following that, we analyse the 

performance of the scripts based on application of the FARI metric, the hamming 

distance measure and the accompanying probability of observing it, along with some 

correlation analysis. 

5.3.1 Methods’ Performance 

In order to examine and compare the performance of the three search algorithms the 

dataset consisting of 46 microarray experiments from GEO platform GPL17 was 

subjected to processing by each one of them. The resulting mean fitness reached by 

the implementation of each algorithm in twenty separate runs is shown on Figure 5.1. 

Interestingly, all methods exhibit quite similar behaviour in terms of the fitness 

accompanying the produced allocations. In most cases the simulated annealing 

approach is able to reach only marginally higher fitness values. However, the 
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difference is subtle with a two sample t-test revealing no significant difference 

between the values corresponding to each search methodology. This result is 

summarised on Table 5.6, which shows the mean of the minimum, maximum and 

mean fitness reached for the entire set of 46 experiments, upon twenty separate runs 

of each method.  

Figure 5.1 Mean fitness reached by each method, per experiment for GPL17. The 

figure reveals the mean fitness reached by method per experiment, for 46 

experiments corresponding to platform GPL17 from GEO, in twenty separate runs of 

each method. 

Table 5.6 Mean of the minimum, maximum and mean fitness reached by each 

method. The table summarises the fitness reached by the each method for GPL17. 

Hill Climbing Simulated Annealing Genetic Algorithm 

Max. Min. Mean Max. Min. Mean Max. Min. Mean 

357.5 354.0 356.1 359.0 355.0 357.4 357.8 353.9 356.1 

 

The Convergence of each optimisation method for a subset of four microarray 

experiments is visually portrayed on Figure 5.2. The experiments were chosen based 
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on the mean fitness reached by twenty separate runs of each search approach, in 

order to exemplify the entire range of fitness values reached for GPL17. 

Figure 5.2 Convergence. The solid, dashed and dotted lines correspond to the mean 

hill climbing, simulated annealing and genetic algorithm fitness, upon 20 runs. 

Experiments roughly cover the range of fitness values reached in all experiments. 

GSM539 and GSM516 where the experiments with the least and most possible 

allocation positions, respectively, while GSM518 and GSM526 are equally distanced 

from the two extremes. The reached fitness follows suit. 

In particular the mean fitness values reached for each experiment where sorted in 

ascending order. GSM539 corresponds to the lower mean fitness reached for an 

experiment in the dataset, GSM516 to the highest mean fitness and GSM526 and 

GSM518 to values equally distanced from these two extremes. Evidently, the genetic 
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algorithm approach is slower than the other methods, requiring a significantly larger 

number of fitness calls to converge, a common issue associated with evolutionary 

algorithms (Davarynejad, Akbarzadeh-T & Pariz 2007). 

The hill climbing and simulated annealing methods are roughly equally efficient, 

with the hill climbing being slightly faster, while the simulated annealing able to 

reach slightly higher fitness values, in experiments with large number of expressed 

multi-membership genes and thus larger search space. Naturally, as the search space 

grows larger, due to a larger number of expressed multi-membership genes and 

growing number of constituent pathways to which such genes can be assigned, the 

algorithms require more iterations to converge. Figure 5.3 graphically portrays the 

mean number of iterations required for the algorithms to converge for the 

experiments in the dataset.  

 

Figure 5.3 Mean convergence per experiment and method. The hill climbing method 

(solid line) is the fastest, closely followed by the simulated annealing (dashed line) 

approach, while the genetic algorithm (dotted line) proves significantly slower. 
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Figure 5.4 represents the same data, this time in an ordered fashion. In particular, 

experiments are sorted according to the number of expressed genes, from the 

experiment with the least number of differentially expressed multi-membership 

genes to the one with the largest number of such genes. 

 

Figure 5.4 Mean convergence per experiment, according to search space size. 

Experiments are represented in an ordered fashion, from the one with least expressed 

multi-membership genes, and smallest search space to the one with most expressed 

multi-membership genes and largest search space. 

As expected, the mean fitness value also shows an increase as the number of possible 

allocations of genes to pathways grows, as shown on Figure 5.5. The correlation 

values are highly significant, equal to 0.96, 0.97 and 0.97 for the hill climbing, 

simulated annealing and genetic algorithm respectively. The number of allocations of 

genes to pathways is determined by the number of expressed genes and the number 

of pathways in which the expressed multi-membership genes participate. 
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On the contrary, there is no significant correlation between the number of genes to 

pathways allocations and the mean hamming distance between allocations produced 

by subsequent runs of the three search algorithms, as exhibited on Figure 5.6. 

 

Figure 5.5 Mean fitness per experiment and method, according to search space. The 

hill climbing fitness values are represented with a solid line, the simulated annealing 

dashed and the genetic algorithm dotted line. As the size of the search space grows, 

following the number of possible genes to pathways allocations, all methods are able 

to reach higher fitness values and are virtually indistinguishable. 

Here we look into the hamming distance between allocations of genes produced by 

each method separately. Interestingly, in this case we observe quite small correlation 

values of -0.27, -0.47 and -0.36 for the hill climbing, the simulated annealing and 

genetic algorithm respectively. Hence, allocations produced for experiments with 

greater number of expressed multi-membership genes, accompanied by a larger 

search space, do not appear less consistent and vice versa.  
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The same is true for the observed FARI‘s, where the size of the search space does not 

seem to exhibit influence on the consistency of the produced allocations, as shown 

on Figure 5.7. 

 

Figure 5.6 Mean hamming distance between allocations per experiment, according 

to search space. Experiments are ordered according to the number of possible genes 

to pathways allocations.  

The correlation between the mean FARI value per experiment and the number of 

possible multi-membership gene to pathway allocations is -0.08, 0.05 and 0.03 for 

the hill climbing, simulated annealing and the genetic algorithm respectively. 

Nevertheless, FARI values themselves appear extremely high for allocations 

produced by separate runs of each of the search techniques, as summarised on Table 

5.7.  

The minimum FARI observed is 0.902, and the values remain high regardless of the 

observed variation in hamming distance. For example the mean FARI for pairs of 

allocations of hamming distance above 1 standard deviation is 0.964, 0.962 and 

0.963 for the hill climbing, simulated annealing and genetic algorithm respectively. 



                        

                    5: Pathway analysis using simulated annealing and a genetic algorithm 

147 

 

Figure 5.7 Mean FARI between allocations per experiment, according to number of 

possible genes to pathways allocations. For the FARI values between allocations 

produced by subsequent runs of each method there is no correlation whatsoever with 

the size of the search space (number of possible multi-membership genes‘ 

allocations). 

Based on this observation we can assume with sufficient degree of confidence that in 

cases of pairs of allocations, exhibiting substantial hamming distance, and at the 

same time high FARI values, groups of genes have still been allocated together, in 

the same pathway, thus the FARI values are high. However, the pathways have been 

swapped in the two allocations, explaining the higher hamming distance values. 

Nevertheless, facilitating the probability measure described in section 5.2.3 reveals 

that observing the hamming distances presented here, between subsequent 

allocations of genes to pathways by our methods, are of extremely low probability to 

have occurred by chance. Table 5.8 exhibits the minimum, maximum and mean 

probability of observing a certain hamming distance or smaller one for each method. 
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Table 5.7 FARI statistics between allocations produced separate runs of each search 

method. The table summarises the minimum, maximum and mean Fuzzy Adjusted 

Rand Indexes between allocations produced by twenty separate runs of the hill 

climbing, simulated annealing and genetic algorithm search approaches. 

 Maximum Minimum Mean Standard Deviation 

Hill Climbing 1.000 0.928 0.978 0.012 

Simulated 

Annealing 

1.000 0.902 0.976 0.013 

Genetic Algorithm 1.000 0.926 0.977 0.011 

 

 

Table 5.8 Probability of observed hamming distance. The table summarises the 

minimum, maximum and mean probability between allocations produced by twenty 

separate runs of the algorithms on GPL17 data. 

 Maximum Minimum Mean Standard Deviation 

Hill Climbing 1.92×10
-12

 3.67×10
-123

 9.31×10
-16

 4.23×10
-14

 

Simulated 

Annealing 

9.40×10
-12

 2.25×10
-114

 4.65×10
-15

 2.07×10
-13

 

Genetic Algorithm 2.01×10
-13

 4.08×10
-116

 1.06×10
-16

 4.42×10
-15

 

 

Once again, looking into the mean probability of observing any hamming distance or 

smaller, per experiment, and the size of the search space, as graphically portrayed on 

Figure 5.8, we establish an insignificant correlation value of -0.22. 

Additionally, while the methods seem to reach similar values of fitness, we 

investigated how similar the allocations are in terms of FARIs and hamming 

distance, between the different search aproaches. Regarding FARIs we observed that 

the values remain equaly high, when we compare the results from each pair of 

methods, with a mean above 0.974 in all cases, as shown on table 5.9. Thus all 
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methods seem quite consistent in placing groups of genes in the same pathways, as 

we previously observed for consequitive runs of each method separately. 

 

 

Figure 5.8 Mean Hamming distance probability according to search space size. The 

probability of observing a given hamming distance or smaller, per experiment is 

ploted against the possible number of gene to pathway allocations. The mean is 

based on comparisson of the results produced by 20 separate runs of each method. 

 

Table 5.9 FARI statistics between allocations produced by the three search methods. 

The values are based on 20 separate runs of each script. However, this time we 

examine the similarity between results produced by each pair of methodologies, 

namely hill climbing and simulated annealing, hill climbing and the genetic 

algorithm, and simulated annealing and the genetic algorithm. 

 Maximum Minimum Mean Standard Deviation 

HC versus SA 1.000 0.900 0.9742 0.012 

HC versus GA 1.000 0.923 0.977 0.013 

SA versus GA 1.000 0.895 0.975 0.011 
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Figure 5.9 Mean Hamming distance between allocations for each pair of methods 

according to search space size. The probability of observing a given hamming 

distance or smaller, per experiment for each pair of search algorithms is ploted 

against the possible number of gene to pathway allocations, i.e. size of search space. 

The mean is based on comparisson of the results produced by 20 separate runs of 

each method. 

The picture does not change when we examine the hamming distance measure and 

the acompanying probability of obtaining it by chance. Here, once again we observe 

that the values are small, with no coreltion to the size of the search space as revealed 

on Figure 5.9. 

The accompanying probability of observing each hamming distance or smaller is 

similarly low, with a mean of 1.52×10
-11

, 5.16×10
-17

 and 2.23×10
-13

, for the hill 

climbing versus simulated annealing, hill climbing versus the genetic algorithm and 

simulated annealing versus the genetic algorithm produced gene configurations. 
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5.4 Conclusions  

We have shown that our algorithms can effectively assign multi-membership genes 

to their constituent pathways, increasing the level of agreement, in terms of the 

direction of expression per pathway.  

As discussed in the results section the allocations produced by separate runs of the 

search algorithms are highly consistent for all methods, in terms of FARIs and 

hamming distances. Moreover, the probabilities of obtaining two allocations of a 

given or smaller hamming distance are extremely low in all cases. 

Interestingly, we have observed minimal variation in the performance of the three 

search approaches, namely the hill climbing, simulated annealing and genetic 

algorithm. All methods produce highly consistent results and reach roughly equal 

fitness values, although the simulated annealing approach does seem slightly 

superior. Furthermore, the consistency of the produced allocations, between methods, 

in terms of Hamming distance and FARI values does not show any correlation to the 

size of the search space, as defined by the number of possible genes to pathways 

allocations in each experiment. 

A related issue that may be resolved following this approach is the observed 

swapping of piles of genes between pathways, by subsequent runs of the search 

algorithms. As discussed in the results section, in certain cases, allocations exhibiting 

the same fitness and extremely high FARI values exhibit relatively significant 

hamming distance. Given the nature of the metrics it appears that groups of genes 

allocated to different pathways, are still placed together by separate applications of 

the methods described here. There is room for further investigation in that respect.   
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Chapter 6: Pathway based microarray 

analysis centred on enzyme compounds 

 

6.1 Introduction 

We formulated the hypothesis that taking into account the multi-membership nature 

of genes and the collective expression data for the totality of genes involved in 

biochemical processes may help us improve the analysis of microarray data in the 

context of pathways (Pavlidis, Payne & Swift 2008). We applied heuristic search to 

acquire an educated guess regarding the state of individual pathways, by maximising 

the agreement in terms of differential expression of genes per pathway.  

Here we proceed further in an effort to improve and refine this methodology, using 

the Glycolysis/Gluconeogenesis KEGG pathway as a model and proof of concept. 

This is one of the most ancient metabolic pathways, present in most organisms, and 

has been studied in great detail (Romano & Conway 1996). 

The discussed analytical approach considers the fact that a number of genes may 

potentially act not only in distinct pathways as defined by the KEGG database but 

also in separate chains of events. Hence, we take into consideration the position in 

the chain of enzymic events where a gene can participate, as in a number of cases 

different genes encode the same protein responsible for the catalysis of a particular 
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reaction. Additionally, we take into account isoenzymes, that is, distinct enzymes 

encoded by different genes capable of catalysing the same reaction.  

Finally, we consider that pathways consist of smaller sub-networks or modules, 

which represent chains of events, leading to gradual alteration of a substrate into a 

desired product. In principal, we expect genes forming a module to agree in terms of 

expression, showing consistent up- or down-regulation in case of activation or 

repression of the module, respectively. We facilitate these observations to further 

develop the methodology discussed in chapters 4 and 5, in the effort to assist 

identification of the correct chain of events taking place in a pathway, allowing the 

biologist to infer the state of individual pathways. 

6.2 Rationale 

The rationale behind this work can be exemplified in Figure 6.1, showing a snapshot 

of the Saccharomyces cerevisiae KEGG glycolysis/gluconeogenesis pathway. 

Rectangles represent positions where genes and their enzyme products are required 

for the catalysis of a particular step in the chain of enzymic reactions. The number in 

each rectangle represents the so called enzyme commission (EC) number, a 

numerical classification of enzymes based on the type of reactions they catalyse 

(Webb 1992). Importantly, in cases where two or more enzymes catalyse the same 

reaction they are given the same EC number. Chemical compounds, that is, the 

substrates and products of these reactions, are represented by the circles on the 

diagram. Arrows indicate the direction of each reaction.  

As it can be inferred from Figure 6.1, some enzymes can only catalyse a reaction 

towards one direction, such as EC 2.7.1.11 for 6-phosphofructokinase that catalyses 

the conversion of β-D-fructose-6P into β -D-fructose-1,6P2. In contrast, many 

enzymes are able to catalyse a reaction in both directions, such as the case of EC 

4.1.2.13. This commission number corresponds to fructose-bisphosphate aldolase, an 

enzyme capable of catalysing the interconversions between β -D-fructose-1,6P2 and 

Glyceraldehyde-3P.  
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Figure 6.1 The KEGG Glycolysis and Gluconeogenesis modules and their 

interconnectivity (http://www.genome.jp/kegg-bin/show_pathway?sce00010). 

Rectangles represent positions where enzymes with the corresponding commission 

numbers are needed for catalysis. White rectangles represent enzymes unique to 

gluconeogenesis, light grey rectangles enzymes unique to glycolysis and dark grey 

rectangles enzymes involved in both modules. 

Additionally, certain enzymes can catalyse more than one biochemical reaction, like 

for example EC 5.3.1.9, responsible for the interconversions between β-D-fructose-

1,6P, α-D-Glucose-6P and β-D-Glucose-6P. 
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Importantly, we should note that there is not always a one to one relationship 

between genes and an enzyme compounds, corresponding to each rectangle on the 

diagram. This is exemplified on Table 6.1 which reveals all the experimentally 

identified enzyme encoding genes, whose products are involved in the catalysis of 

the respective reaction, for each commission number on Figure 6.1. 

Table 6.1 Genes, encoding enzymes, 

corresponding to each commission number on 

Figure 6.1 

EC number Gene Symbol 

    1.2.1.12 TDH1 TDH2 TDH3 

    2.7.1.1 HXK1 HXK2 GLK1 

    2.7.1.40 CDK19 PYK2 

    2.7.2.3 PGK1 

    3.1.3.11 FBP1 

    4.1.1.49 PCK1 

    4.1.2.13 FBA1 

    4.2.1.11 ENO1 ENO2 ERR1 ERR3 

    5.3.1.1 TPI1 

    5.3.1.9 PGI1 

    5.4.2.1 GPM1 GPM2 YKR043C 

 

Evidently, a number of distinct genes may encode proteins whose enzymatic activity 

can carry forward the same reaction. Such genes and the corresponding proteins may 

be active simultaneously or potentially become active or supressed under different 

environmental conditions and/or during various stages of the cell cycle and 

development of an organism. 

To mention just a few characteristic examples, EC:1.2.1.12 represents genes TDH1 

TDH2 and TDH3 which encode isoenzymes that show variable activity in different 

stages of the cell cycle (Delgado et al. 2001). In another example, EC 2.7.1.40 



                          

            6: Pathway based microarray analysis centred on enzyme compounds 

156 

 

corresponds to CDK19 and PYK2, both encoding pyruvate kinase which catalyses 

the conversion of phosphoenolpyruvate to pyruvate (Boles et al. 1997). 

Following these observations it becomes evident that the enzyme compounds taking 

place in the network of biochemical reactions in a pathway are the true indicators of 

the activity of that path, rather than the genes themselves. In fact, this is common 

knowledge and one of the main reasons for the widespread interest in studying 

protein activity directly whenever possible. In chapter 3 there was an extensive 

discussion of the fact that there are a number of regulatory stages during which a 

living system controls the activity of the protein arsenal it possesses, besides the 

process of transcription. 

Nevertheless, since microarray technology only allows as to monitor transcription 

rates and we may often not have the luxury to observe protein function directly, it 

remains beneficial to find ways of exploiting gene expression data efficiently. Thus, 

we have opted for basing our search algorithms on enzyme compounds rather than 

only genes, while still facilitating microarray data in a more indirect manner. Instead 

of simply maximising the agreement of gene expression per pathway we have 

modified our methodology to maximise the agreement of enzymes, which in turn is 

based on the behaviour of the genes responsible for their synthesis.  

Hence, we look for agreement between the positions represented by the rectangles on 

Figure 6.1, which in turn provide evidence for the state of the biochemical reactions, 

catalysed by the enzymes represented be these rectangles. This is a more biologically 

sensible choice as in the general effort to detect positive or negative regulation of a 

pathway we are more interested in establishing an increase or decrease in the rate of 

the reactions involved than just identifying up and down regulated genes in general. 

That is, the expression of a unique gene member of a group encoding the same 

enzyme or isoenzymes is not a clear indication of what is happening at that particular 

position of the pathway, without considering the expression of the rest of the genes.  

To clarify this we can look at a few relevant examples. It has been suggested that 

yeast may switch between using HXK1, HXK2 and GLK1 glycolytic gene products 

depending on the carbon source used for growth (Herrero et al. 1995). 
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Consequentially, over expression of any of the three constitutes plausible indication 

of positive regulation, while parallel decreased expression of another may simply 

indicate a switch from using one gene or enzyme to another and does not necessarily 

imply decrease of the reaction rate. Hence, in a hypothetical instance where HXK1 

and HXK2 are up-regulated, while GLK1 down-regulated, the position/enzyme may 

be activated, despite the state of differential expression of the latter gene. 

In another example, EC:2.7.6.1 in the Pentose phosphate pathway corresponds to five 

homologous genes encoding phosphoribosyl diphosphate (PRPP) synthase. It has 

been shown that different combinations of the products of these genes, namely PRS1, 

PRS2, PRS3, PRS4 and PRS5, can result in formation of active PRPP synthase that 

can catalyse the interconversion between D-ribose 5-phosphate and 5-phospho-d-

ribosyl α-1-diphosphate (Hove-Jensen 2004). Thus, a similar rationale can be applied 

as for the case of EC:2.7.1.1 discussed above.  

Importantly, here we use KEGG modules rather than pathways to elucidate the state 

of the organism from a biochemical point of view. While KEGG includes glycolysis 

and gluconeogenesis in a single pathway due to the large number of genes shared by 

both, they are not simply the reverse of each other, but rather constitute two distinct 

modules. The Glycolysis KEGG module M00001 gradually breaks down glucose to 

pyruvate, producing energy during the process. In contrast, the gluconeogenesis 

module M00003 is responsible for the synthesis of glucose from precursors such as 

pyruvate.  

Working with KEGG modules rather than pathways can be seen as zooming in the 

whole picture to work with shorter more compact chains of enzymic events, 

responsible for a specific biochemical outcome. In a way a module is a pathway 

within a pathway where we expect to observe consistent activity between its 

members which should be reflected on the genes encoding the respective enzymes. 

On Figure 6.1, light grey rectangles represent enzymes unique to glycolysis, white 

rectangles enzymes unique to gluconeogenesis and dark grey rectangles enzymes 

shared by both modules. While, the cell keeps its regulatory networks functional, in a 

similar way to an engine when switched on, glycolysis and gluconeogenesis act 
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against each other and are not activated together as this would lead to a futile cycle 

(Champe, Harvey & Ferrier 2004).  

In the methodology discussed here, we account for the observations discussed above. 

Each gene is treated as a member of the corresponding catalytic position (EC) in a 

module and pathway, and a member of the module and pathway itself. An EC 

position appearing more than once is considered as a distinct step of the pathway. In 

that sense a gene like PGI1 for EC 5.3.1.9 is a multiple membership gene of the 

glycolysis module itself, capable of catalysing the inter conversion between both 

alpha-D-Glucose-6P and beta-D-Glucose-6P, and alpha-D-Glucose-6P and beta-D-

Fructose-6P. Up-regulation of a gene like FBP1 in EC 3.1.3.11, only present in the 

gluconeogenesis module in this setting, can only be ascribed to its contribution to 

that module. In contrast differential expression of TDH1 in EC 1.2.1.12 may be due 

to its involvement in either the glycolysis or gluconeogenesis module. 

6.3 Methods 

Given that this work is currently confined to the Glycolysis/Gluconeogenesis KEGG 

pathway the membership of some genes in other pathways, which may be related to 

their expression state is not considered. To account for this omission, this work is 

mainly centred on experiments for which the accompanying literature provides clear 

analysis of the experimental conditions and the state of the glycolysis and 

gluconeogenesis pathways. Thus, we know that the conditions, such as for example 

addition of glucose, have a strong direct effect on this path and the accompanying 

publications confirm activation or repression of the pathway.  

Additionally, a further constrain is applied, on principal facilitating experiments for 

which statistical analysis by both Eu.Gene (Cavalieri et al. 2007) and the method 

described by (Swift et al. 2004) and previously implemented in (Pavlidis, Payne & 

Swift 2008) reveal very significant enrichment of the pathway in hand in 

differentially expressed genes (p<0.01). Given that we work on some time series data 

where, particularly at the initial stages the cells have not yet responded to the 

environmental perturbations, we comment on the instances where the above 

restrictions do not apply. 
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For the datasets in question, we attempt to maximise the agreement of expression per 

module rather than the entire pathway. Furthermore, we base this maximisation on 

EC positions rather than the genes. Thus, a gene is first allocated to a catalytic 

position, each one corresponding to an EC rectangle for a particular module, as 

shown on Figure 6.1, which is then examined to infer the state of a pathway. The 

proportion of EC positions in a path to which at least one gene has been assigned 

constitutes the pathway coverage.  

Given the size of the search space, an exhaustive search is not an adequate approach 

for large networks such as the entire metabolic network of an organism. Thus, we 

have once again opted for applying a hill climbing algorithm (Michalewicz & Fogel 

2004) that changes the possible multi-membership gene allocation to EC positions 

and modules. In this way we attempt to elucidate which particular reaction in which 

module may require activation or repression of the gene in hand. Assigning a gene to 

an EC position, in a module, suggests that the state of differential expression of that 

particular gene is due to its involvement in that reaction. On the other hand, not 

assigning a gene to a certain EC position implies that the observed up- or down-

regulation is not a consequence of the contribution of the enzyme product of the gene 

to the respective reaction. 

6.3.1 Algorithm 

The following mathematical notation is used within our methods and algorithm. Let 

N1 represent the number of unique genes, let N2 be the EC position identifier (e.g. 

4.2.1.0 might be ID 7) where EC position identifiers that appear more than once have 

their own ID, and N3 the number of modules. 

We define a list of 5-tuples B where each 5-tuple Bi represents gene gi, enzyme (EC) 

ei encoded by the gene, module mi in which the gene and the corresponding enzyme 

participate, the expression xi of the gene and the state of allocation li of the gene to 

the particular enzyme and module. In Equation (6.1), bi represents an instance of a 5-

tuple and xi has a value of +1, -1 or 0 if gene i is up-, down-regulated or stable 

respectively, based on a threshold parameter t (Equation (6.2)). li=1 if gene gi is 

allocated to EC position ei in module mi, and li=0 otherwise. 
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Thus, we work with a binary string A of size equal to the length of the list of 5-

tuples, representing the allocation of genes to EC positions/enzymes and modules. 

For each position we define a scoring function E(i) and V(i) as shown in equations 

(6.3) and (6.4), respectively. These functions use equations (6.5) and (6.6), which 

define the number of up and down regulated genes respectively. 
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Therefore, if there are more up regulated than down regulated genes in a particular 

EC position, in a path, the position has a score of 1 while whenever the opposite is 

true the position has a score of -1. In cases where a position is not assigned any genes 

the respective score is 0.   

ALGORITHM 6.1: GENES TO ENZYMES ALLOCATION ALGORITHM 

1) Input 1: list of gene IDs coupled with their EC 

commission numbers 

2) Input 2: list of gene IDs coupled with their pathway IDs 

3) Input 3: = a list of EC commission numbers coupled with 

their pathway IDs 

4) Input 4: = Expression vector of log2 ratios for KEGG 

pathways genes 

5) Remove all genes between +t and –t 

6)    Allocate single-membership genes to their commission 

numbers and modules creating A 

7) Get fitness F(A), set F_old = F(A)  

8) For p = 1:number of iterations 

9) Save gene configuration 

10)    Use A to randomly choose a gene (i) in EC position e(i) 

and module m(i)  

11) If according to A gene (i) is already present in the EC 

position (i) then remove the gene, i.e. set a(i) = 0  

12) Else if not present, place it in that EC position in 

the module, i.e. set  ai = 1 

13) If the gene is also allocated to the competing module, 

remove it 

14) End if 

15) If upon completion of steps (9) to (14) the gene is not 

assigned to at least one EC position in one module, 

randomly choose a position and assign it 

16) Estimate fitness F(A) 

17) If F(A) > F_old set F_old = F(A) 

18) Else if F(A) < F_old restore gene configuration (from 

step (7)) 

19) End for 

20) Output: A 
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Finally, for positions containing equal numbers of up and down regulated genes we 

assign a score of 0.5 (equation (6.4)). This is a biologically meaningful choice, as in 

terms of biochemistry a path may switch from facilitating one enzyme to another for 

the biological system to meet its needs, as exemplified in section 6.2. Thus cases of 

equally up- and down-regulated EC positions are not in disagreement with biological 

rationale. From this perspective, the contradicting expression of genes corresponding 

to the same EC number is not surprising. 

We employ the fitness function in equation (6.9) to search for the best allocation of 

genes to EC positions and modules in order to infer the state of the modules and the 

overall state of the pathway. The more EC positions of similar expression in a 

module the higher the fitness we acquire for that module. Equation (6.7) calculates 

the fitness per module given the filling of positions with genes. Essentially, it 

subtracts the number of down-regulated positions from the number of up-regulated 

positions in the module. Then it adds 0.5 to the absolute value of the result for each 

neutral position, that is, for each position containing equal number of up- and down-

regulated genes. 

C(i) is the module coverage, acquired by equation (6.8). This is equal to the number 

of positions with allocated genes divided by all enzymes/positions in the module. 

Naturally, the better the allocation fits the module, with more positions filled with 

genes, the higher the value of C(i). Algorithm 6.1 presents the pseudocode for the hill 

climbing search implementation. 

6.4 Results and Discussion 

We applied the methodology presented here to a number of distinct microarray 

experiments on Saccharomyces cerevisiae. On principal we run the algorithm 20 

times on each dataset mainly basing our discussion on the best allocation 

accompanied by the highest fitness value, whenever appropriate. We first discuss the 

performance of the algorithm from a biological perspective and proceed to examine 

the consistency of the produced results. 
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6.4.1 Pathway allocations 

First, in (Cavalieri et al. 2007), initially discussed in chapter 4, the authors analyse 

the global expression of yeast during Diauxic shift, where cells inoculated in glucose 

rich medium turn to aerobic utilisation of ethanol produced during fermentation, 

upon exhaustion of the available sugar. According to their analysis, the KEGG 

glycolysis/gluconeogenesis pathway gradually becomes one of the most activated 

pathways in the experiment, in regard to all Saccharomyces cerevisiae KEGG 

pathways. In particular, following their statistical approach, the authors assign it a p-

value of 0.01 at time point 7. This is the probability of observing as many or more 

differentially expressed genes in the pathway by chance, given the size of the 

pathway and the overall number of expressed genes in the entire dataset.  

In this approach it is not directly clear what this activation actually means, increased 

synthesis or utilisation of glucose. The application of our method to the data from 

time point 7 reveals that the gluconeogenesis module is activated while glycolysis is 

actually repressed. This is in agreement with the more detailed analysis of the data, 

in the first publication accompanying the dataset (DeRisi, Iyer & Brown 1997). The 

authors identify repression of the glycolytic process and rechanneling of pyruvate 

through the gluconeogenesis path. Our method adequately identifies as fittest 

configuration the allocation of genes to the glycolysis module, so that 7 out of 13 EC 

positions appear repressed and one neutral, containing one up-regulated and one 

repressed gene. At the same time up-regulated genes are assigned to the 

gluconeogenesis module, covering 3 out of 8 EC positions in that path (Figure 6.2, 

t7).  

The low coverage in the latter case is not unexpected and in agreement with our 

rationale. Both processes take place simultaneously, with cells rerouting the flow of 

metabolites. Thus genes along the reversible steps of the entire pathway, members of 

both the glycolysis and gluconeogenesis modules, need to be expressed in a way that 

balances two competing trends, repression in the first case but activation in the later. 

Consequentially, it is quite likely that the genes shared by both processes may appear 

repressed as a net effect of their regulation in order to satisfy both modules. It is 

likely that much less of their protein product is needed as glycolysis switches off, 
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even though gluconeogenesis becomes active. Without applying the search process, 

the gluconeogenesis path contains 5 down-regulated, as compared to 3 up-regulated 

genes at time point 7, which could lead to the incorrect assumption that the module is 

repressed. 

 

Figure 6.2 Glycolysis and Gluconeogenesis enzymes behaviour. The figure exhibits 

the activation and deactivation of various enzymic positions in the modules (EC 

positions) throughout 7 time points, upon processing with the proposed method. 

Notably, before the exhaustion of glucose, the picture is quite different. In particular, 

as noted in (DeRisi, Iyer & Brown 1997), initially there is no substantial change in 

global gene activity, with most differential expression occurring towards the last two 

time points. At time points 3 and 4 there appears some glycolytic activity, while 
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glucose is still available, with the balance starting to shift towards glucose synthesis 

at time point 6. In (Cavalieri et al. 2007) the authors calculate an insignificant p-

value for the KEGG glycolysis/gluconeogenesis pathways at time points 1 and 2, 

which becomes significant at time point 3, to increase again afterwards and then 

regain its significance at the last time point. 

We became interested in examining the allocation of genes to EC positions and 

modules in the time points preceding the exhaustion of available sugar and obtained 

a sensible result, as shown on the Figure 6.2. In particular, while initially there are no 

differentially expressed genes in the glycolysis and gluconeogenesis modules, at time 

point 3 to 5 all filled EC positions contain up-regulated genes, only for the glycolysis 

module. Then at time point 6 there is an evident shift with the appearance of an up-

regulated position in the gluconeogenesis module, while the glycolysis module now 

exhibits 2 down-regulated EC positions, and one that contains an equal number of 

up- and down-regulated genes. At time point 7 the switch is complete, with the 

glycolysis module exhibiting 7 down-regulated positions, while the gluconeogenesis 

module 3 up-regulated ones. 

To proceed to another dataset, in (Ronen & Botstein 2006) the authors describe a 

series of microarray experiments studying the response of steady-state yeast cultures 

to transient perturbations in carbon source. In GSM95012 in the analysed dataset, 

obtained from GEO, cells grown in steady conditions are subjected to a pulse of 

glucose (0.2 g/l) and microarray analysis performed on RNA extracted 20 minutes 

after the glucose addition. There are 12 differentially expressed genes in the KEGG 

Glycolysis/Gluconeogenesis pathway. Upon processing of the data the glycolysis 

module appears activated with 7 out of 13 positions covered, while the 

gluconeogenesis module repressed with 4 out of 8 positions covered, as expected 

given that cells are presented with excess glucose to cover their nutritional needs. If 

we were to base our analysis on the behaviour of genes only, for each module in 

isolation, we would observe 5 up-regulated and only 4 down-regulated genes in the 

gluconeogenesis pathway. Naturally, it is unclear if the module is activated or 

supressed and if we were to make a sensible guess activation would be more 

appealing, even though this is clearly not the case here. 
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The results are similar for GSM94996 from the same dataset, where RNA is 

extracted 120 minutes after the admission of a glucose pulse (2 g/l). The analysis 

identifies glycolysis as the activated module, with coverage of 6 out of 13 EC 

positions. In contrast, gluconeogenesis shows downward trend, given the increase of 

available glucose in its environment. The module coverage is 3 out of 8 EC positions 

in the latter case.  

 

Figure 6.3 Response to excess glucose. Cells submitted to 0.2 g/l glucose pulse 

gradually exhibit increased expression of glycolytic enzymes, while gluconeogenesis 

subsides.  
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Figure 6.4 Response to excess glucose. Cells submitted to 2 g/l glucose pulse 

gradually exhibit increased expression of glycolytic enzymes, while gluconeogenesis 

subsides. 

Notably, in this example the number of down-regulated is half the number of up-

regulated genes in the gluconeogenesis group, 6 against 3 respectively. 

Consequentially, examining the expression of these genes in isolation, without 
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considering their participation in the glycolytic process, would again suggest 

increased synthesis of glucose. 

As these are time series experiments we applied the analysis to the entire dataset, 

even though as expected in some cases, at the initial and final stages, there are no 

expressed genes or their number is quite small. This includes both time series 

analysed in the publication, one following a 0.2 g/l glucose pulse and one following 

2 g/l glucose pulse. Figure 6.3 exhibits the result of applying the search to 

consecutive time points after the 0.2 g/l pulse, with evident gradual increase in the 

number of up-regulated glycolysis and down-regulated gluconeogenesis EC 

positions, which then gradually subsides. 

Not surprisingly, the effect of the 2 g/l pulse is stronger, as exemplified on Figure 

6.4. After 10 min the number of expressed glycolysis enzymic positions gradually 

increases while gluconeogenesis exhibits an apparent downward trend. Here, unlike 

in the case of the 0.2 g/l pulse, the effect of glucose addition does not show signs of 

decrease until 240min following the pulse submission. Notably, in the first few time 

points the picture is somewhat confusing, which is not surprising given that the cells 

have not had time to respond to the extra glucose in their environment. 

In another dataset analysed here, from (Gasch et al. 2000), the authors examine the 

global expression response of Saccharomyces cerevisiae to a number of 

environmental changes, in time series experiments. They identify that nitrogen 

depletion has a repressive effect on the cluster of glycolytic genes, throughout 9 

consecutive time points (GSM874-882). Following their observations, we subjected 

the microarray data corresponding to each time point to processing with proposed 

methodology. 

The algorithm was able to correctly assign down-regulated genes to the glycolysis 

module and up-regulated genes to the gluconeogenesis module, identifying 

suppression and activation in each case respectively, in all time points. As in the 

previous analysis, the obtained coverage shows an apparent gradual increase until it 

starts to subside at the last time point. There is an evident correlation to time (0.82, p-

value=0.006), as shown on figure 6.5, with only time point 4 showing some 
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divergence from the overall pattern. This however, could be due to the general 

limitations of microarrays technology which sometimes have been shown to lack 

accuracy. 

 

Figure 6.5 Glycolysis/Gluconeogenesis pathway coverage. Coverage represents the 

proportion of expressed EC position, for consecutive time point experiments 

discussed in (Gasch et al. 2000). 

Additionally, we examined the performance of the algorithm on GSM290980, which 

deals with the response of yeast cells to glucose deprivation (Bradley et al. 2009). In 

this case we expected yeast cells to switch on the gluconeogenesis process and at the 

same time deactivate the glycolysis module. Indeed, the method identified activation 

of gluconeogenesis, in agreement with biological rationale, with coverage of 4 out of 

8 EC positions. At the same time the glycolysis module appears severely repressed 

with coverage of all 13 EC positions, which appear down-regulated. This is expected 

given the lack of available glucose for degradation. 

Here, there are 9 down-regulated and 5 up-regulated gluconeogenesis genes. 

Naturally, looking into the module in isolation without taking into account the 
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participation of many of its genes in the glycolytic process would suggest 

suppression of glucose synthesis. However, the methodology produces a clearer 

setting allowing us to detect increase of glucose synthesis and decrease of glucose 

degradation. 

For the data discussed in this section we examined the convergence of the algorithm. 

Figures 6.6 to 6.9 exhibit the convergence for 20 separate runs of the algorithm on 

the diauxic shift time point 7 data, GSM94996, GSM 95012 and GSM290980 

respectively. Naturally, the larger the search space, as defined by the number of 

expressed multi-membership genes and the possible allocations, the larger the 

number of iterations required by the algorithm to converge. Processing of 

GSM290980 with the most expressed genes converges after 104 iterations on 

average, as opposed to the time point 7 diauxic shift data, converging after 40 

iterations on average. 

 

 

Figure 6.6 Convergence of 20 separate runs, on Diauxic Shift data, time point t7. 
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Figure 6.7 Convergence of 20 separate runs, on data from GSM94996. 

 

 

Figure 6.8 Convergence of 20 separate runs, on data from GSM95012. 
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Figure 6.9 Convergence of 20 separate runs, on data from GSM290980. 

6.4.2 Consistency of Allocations 

Regarding the similarity of the produced allocations based on the hamming distance 

measure, discussed in chapter 4, section 4.3.3, the result were generally characterised 

by very high consistency. First for the Diauxic shift time series, the obtained 

allocations of genes were identical in all cases except from time point 6, where the 

average similarity was found to be 98.64% with a minimum of 95.12 and a 

maximum of a 100%, which was reached in 95 of the comparisons. The highest 

fitness values correspond to allocation of down-regulated genes to the glycolysis 

module and up-regulated to the gluconeogenesis module, in agreement with 

biological rationale. 

For the dataset corresponding to admission of 0.2 g/l glucose pulse there is a 

significant proportion of differentially expressed genes in the experiments 

corresponding to 10, 15, 20, 30, and 45 minutes following the admission. All 

allocations were 100% identical, with the exception of the one corresponding to 15 

minutes. In this case we observed an average similarity of 85.4172, which was 

revealed to be due to some cases of incorrect assignment of down-regulated genes to 
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the glycolysis module. Nevertheless, the fitness of the latter allocation was 

significantly lower, half the value of the correct allocation‘s fitness.  

The results exhibit some variability in the case of the 2 g/l glucose pulse in some of 

the initial stages, with a mean hamming distance of 82.93, 78.49 and 73.17 for 10 15 

and 30 minutes respectively. However, in these instances the number of expressed 

genes is relatively small. The rest of the experiments produced consistent results. 

There were no occurrences of variable allocations in the nitrogen depletion data, 

where the application of the search produces identical results for all experiments 

regardless of the proportion of differentially expressed genes. Similarly, consistent 

results were obtained for all runs on GSM290980. 

6.5 Conclusions 

Interestingly, the result produced by separate runs of the search on the same data 

where not only in agreement with biological rationale but also often identical for 

experiments with substantial proportion of expressed KEGG glycolysis and 

gluconeogenesis genes. While this is encouraging, suggesting that the approach is 

producing consistent allocations, it remains to be examined how the results may vary 

when a more complicated setting such as the entire metabolic network is subjected to 

such analysis. 

Overall, the method seems capable of successfully differentiating between activation 

and repression of the glycolysis and gluconeogenesis modules. Importantly, the 

search algorithm takes into account the topology of the network, meaning the 

positions where genes interact through their protein products, and facilitates our 

knowledge of the competitive nature of the two modules. It considers the multi-

membership nature of genes and all the reactions where a gene participates.  Rather 

than simply providing us with a list of expressed genes, it gives as an indication of 

the state of activity at various steps and in the pathway as a whole, thus providing us 

with information regarding the direction of the reactions taking place.  
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Thus, the methodology is improved from a biological point of view. The 

representation of the setting and solution reflects the reality of pathway behaviour in 

a more accurate way, than the algorithmic implementation presented in chapter 4.  

Here, the analysis is confined to the KEGG glycolysis/gluconeogenesis pathway, 

consisting of the two competing modules, using rigorous constraints to select 

microarray data suitable for applying the search. Namely, only experiments with 

sufficient accompanying information, subjected to statistical testing to be confident 

that the glycolysis/gluconeogenesis pathway is severely affected by the experimental 

conditions. 

Naturally, the methodology needs to be extended to the entire metabolic network and 

it would be interesting to examine the results produced when applied to organisms 

with more sophisticated biochemistry than Saccharomyces cerevisiae. Organisms 

higher in the evolutionary chain provide more complicated networks with larger 

number of genes and pathways, as well as interconnections. The methodology seems 

an ideal candidate approach, for the identification of the most likely flow taking 

place in the metabolic network of a cell.  

Interestingly, this can be extended to routes, going through the module, when there 

are alternative options. Given that we know the routes that reactions can follow 

within a module we can examine how well an allocation fits each possible route. In 

the case of the glycolysis and gluconeogenesis modules, a plausible route starts with 

α-D-glucose while another with β-D-glucose. While this is a simple example, more 

complicated diversions are present elsewhere in the metabolic network. 

More sophisticated search approaches such as simulated annealing are worth 

exploring in cases of larger search space. This requires detailed preparation of the 

search setting, meaning identification of the modules constituting each pathway, their 

interconnectivity and nature, as well as the interconnections between entire pathways 

themselves. As pathway knowledge increases, through wet lab experimentation, we 

are able to construct this setting in greater detail. 
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Chapter 7: Conclusions and future 

work 

 

7.1 Scope of work  

Biology aims to decipher the mystery of living organisms and understand the 

processes that govern life. Through centuries of research, it has substantially 

increased our knowledge of living structures and their functionality. It was in the 19
th

 

century that Gregor Mendel first suggested the existence of a factor that carries 

genetic information from a parent to offspring, what we now term gene. It took 

almost a whole century before evidence emerged that DNA is the carrier molecule of 

genetic information and it was only about 60 years ago that the scientific community, 

reluctant at first, was finally convinced that it is indeed DNA rather than proteins, 

despite their divergence, that stores the data of living systems (Hershey & Chase 

1952). 

As a natural science biology seeks to achieve its goals through subsequent rounds of 

hypothesis formulation and experimentation. Traditionally, research has focused on 

different parts of organisms, including cells, organelles, tissue, and more recently 

genes and proteins, trying to decipher their role and mode of function. While 

acquiring the list of all genes and proteins in an organism is essential, as Hiraoki 

Kitano argues, it is by itself insufficient to understand the complexity of the 

organism and it function as a dynamic system (Kitano 2002b). He provides a 
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revealing analogy of having an extensive list of all components of an airplane, which 

naturally by itself can not reveal to us the complexity and workings of the underlying 

object. 

Thus, today with the development of automation and high-throughput experimental 

techniques, the scope of biological research is shifting as are the questions we are 

asking. Systems biology has emerged to build upon the immense knowledge we have 

acquired regarding the components of biological entities, in order to elucidate their 

collaboration and functional dynamics. This effort requires the contribution of a 

number of disciplines and clear understanding of biological processes. Computer 

science plays a central role allowing us to model and examine the dynamics of life 

processes and manipulate available data to draw meaningful conclusions.  

Microarrays are largely dependent on computer science, especially at the analytical 

stage, where we strive to make sense of the behaviour of genes in different 

experimental conditions. In more than a decade microarrays have been widely used, 

but the initial enthusiasm has perhaps not been fully realised. There is an on-going 

effort to come up with ways to analyse the data in more efficient ways and find 

useful applications. One such approach is the integration of gene expression data 

with data produced by other experimental methodologies in a single holistic 

analytical approach.  

Pathway based microarray analysis lies on the crossroad between gene expression 

data and our understanding of biochemical pathways. It seeks to analyse the 

behaviour of pre-defined sets of genes, forming biochemical pathways, largely 

identified by wet-lab biological research, in different experimental conditions. While 

the idea seemed promising it has struggled to produce clear results. It has been 

observed that genes forming a pathway often show quite contradictory expression not 

allowing us to identify the state of individual pathways with sufficient degree of 

certainty. 

The somewhat unclear and erratic behaviour of such closely related genes, in terms 

of RNA production has been attributed to a number of reasons, discussed in section 

3.1.2. In brief summary, genes store the sequence of amino-acids in protein 
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polypeptide chains, but it is proteins that constitute the functional molecules in living 

organisms. The rate of protein translation, post-translational modifications and 

different half-life of distinct proteins affect their function, hence, the abundance of 

RNA corresponding to a gene is not always a good indicator of protein activity 

(Greenbaum et al. 2003). Additionally, genes in a particular pathway are often 

characterised by diversity and have distinct functionalities (Stryer & Tymoczko 

2006). All these reasons may explain their varying response to changes in 

experimental conditions, in terms of RNA production. 

Realising such obstacles, this work comes to add some contribution to pathway based 

microarray analysis. It identifies additional issues that increase the observed 

inconsistency in the expression of genes forming defined pathways, which unlike the 

obstacles discussed above can be targeted computationally. It further proposes an 

analytical approach to assist the biologist to identify the state of activity of 

biochemical pathways, wherever simple observation of gene expression levels is 

inconclusive.  

Importantly, while direct observation of protein abundance is of great value, as it is 

more directly related to cell function than mRNA messages, it has proven technically 

more tricky and expensive process than microarray analysis (Stoughton 2005). Hence 

the widely available and easier to obtain gene expression datasets are likely to remain 

popular analytical subjects for some time, especially given the emergence of novel, 

direct methodologies for measuring transcript abundance with much greater accuracy 

(Morozova , Hirst & Marra 2009). In that sense devising analytical approaches that 

improve our ability to interpret gene expression remains a beneficial task. 

7.2 Contribution 

Visualisation is very useful in pathway based microarray analysis. It provides us with 

insights into the data and sometimes allows us to draw straightforward conclusions. 

However, we have seen that this is not always the case and to be able to interpret the 

data in hand we often need to combine visualisation with analytical methods.  

Biologists often struggle to adapt to the current approaches to analysing expression 

data, which rely heavily on mathematics and complicated computational approaches.  
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They have exhibited a significant level of mistrust, from the early stages of 

bioinformatics development, to black box computational methodologies (Claverie 

1999). Pathway based microarray analysis is often a challenging task, with 

considerable room left for speculation. This is not surprising, as traditionally, biology 

has been an experimental science, mostly wet lab based, and it would be greatly 

beneficial to find ways to provide the researcher with simple clear insight into the 

data in hand. Motivated by this reality, this work is an effort to gain clearer 

understanding of the behaviour of genes forming biochemical pathways, in terms of 

expression, by facilitating a straight-forward heuristic methodology. 

7.2.1 Multi-membership genes 

A number of analytical approaches applied to large datasets compiled from GEO, to 

analyse the relative behaviour of single- and multi-membership genes in terms of 

RNA production, were discussed in chapter 3.  

Firstly, the frequency of differential expression of the two groups of genes was 

explored, revealing a clear tendency of genes that participate in more than one 

KEGG pathways to be more frequently expressed on average than genes that 

constitute members of one and only one pathway. Furthermore, an increase in the 

expression frequency of genes with higher degree of membership was identified. 

That is, genes that constitute members of three or more KEGG pathways appear 

differentially expressed more frequently, than genes that are members of two 

pathways. This pattern persists, showing an increase that follows the minimum 

degree of membership. A positive correlation between the degree of membership and 

the average expression of genes belonging to each membership band was evident. 

These results are in agreement with the underlying biological rationale. Multi-

membership genes can be seen as multitask genes, encoding proteins of varying 

functionality. Consequentially, the organism is more likely to require the functional 

contribution of a multi-task protein, to adapt to a large number of random 

environmental conditions.  

Additionally, single-membership genes in a pathway were shown to be less likely to 

exhibit differential expression of opposing direction, in a given experiment, than 
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their multi-membership counterparts. At the same time the former group of genes 

exhibited higher correlation in terms of expression and pathway contribution.  

Finally, through the application of association rule mining, single–membership genes 

were shown to produce more consistent rules, of smaller number and higher 

confidence values. In contrast, their multi-membership counterparts exhibited a 

tendency to produce more rules of lower confidence. Again, this is in agreement with 

the underlying hypothesis. The more functions a protein has, the more likely the 

system is to require its contribution at any given time. Thus, one would expect the 

gene encoding such a protein to appear differentially expressed more often, in a large 

number of random experiments, than a gene encoding a protein of a single function.  

Admittedly, the distinction between multi- and single-membership genes is not very 

strong in some cases, in the context of this analysis. This is especially so in the case 

of the expression correlation analysis.  To an extent this may be due to the 

aforementioned limitations of microarrays. However, we should also consider the 

fact that while the experiments in the datasets are compiled randomly, this does not 

override biases introduced by the choice of experimental questions by the researchers 

supplying the data. For example, the gene expression response of cells to addition or 

removal of popular nutrients from their environment is quite common choice of 

experimental approach. Hence, identifying frequent differential expression of gene 

members of the glycolysis pathway does not come as a surprise.  

Even more importantly, as revealed in chapter 6, in some cases different genes 

encode a protein that can carry forward the same reaction. Thus, it is not necessary 

for such genes to show significant correlation in expression levels, since the 

organism can use them alternatively in different instances. 

Nevertheless, overall, the results provide evidence that supports and strengthens the 

underlying hypothesis, that the expression of multi-membership genes represents a 

net effect of their contribution to any combination of their constituent pathways, in a 

given experiment. The biological system needs to regulate the activity of multi-task 

genes in a balanced manner to accommodate the needs of all pathways. 
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7.2.2 Hill climbing based gene to pathway allocation  

Chapter 4 presented and explored the performance of an analytical methodology that 

is used to identify the behaviour of biochemical pathways, as shown in (Pavlidis, 

Payne & Swift 2008). The methodology is centred on the expression of multi-

membership genes and attempts to identify the pathways responsible for any 

observed up or down-regulation of such genes. 

The methodology facilitates a hill climbing search to maximise pathway coverage. It 

works by allocating as many genes of similar expression as possible to each pathway, 

while at the same time minimising the number of genes of opposing behaviour in 

each pathway. 

Application of the method to Escherichia coli and Saccharomyces cerevisiae data 

showed that it is able to allocate multi-membership genes to their constituent 

pathways in configurations that make biological sense in accordance with underlying 

pathway activity. Importantly, the produced allocations exhibit consistency, revealed 

by simple observations of the results of subsequent runs of the algorithm, as well as 

through application of the hamming distance measure to examine their similarity. 

Notably, a number of distinct configurations were explored as starting points for the 

algorithm. 

Analysis of the obtained results suggests that the methodology has a potential 

interest, especially in cases where gene members of the same pathway exhibit 

contradicting expression. The innovative characteristic of the proposed method lies 

within the fact that it considers the multi-membership nature of some genes. To our 

knowledge this has not been the subject of extensive research. At best, available 

software tools for pathway based microarray analysis employ various statistical 

approaches to look for pathways substantially enriched in differentially expressed 

genes. This is not to say that these approaches are of limited use or significance, 

rather that it may be beneficial to facilitate the proposed heuristic methodology in a 

complementary manner.  

It should be noted that in some cases genes may be expected to show change in 

expression that contradicts the up- or down-regulated state of a pathway. As 
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discussed later on, to a degree, this depends on what we define as a pathway, that is, 

the level of detail we zoom into to study a chain of reactions. Still, the method seems 

capable of producing satisfactory results, indicating an interesting direction for future 

work. 

7.2.3 Heuristic search approaches comparison 

Chapter 5 built on the methodology presented in chapter 4 discussing the application 

of simulated annealing and a genetic algorithm to search for the assignment of multi-

membership genes to their constituent pathways, in a way that maximises the number 

of genes of similar expression per pathway. 

Furthermore the methodologies were applied to a larger number of microarray 

experiments, each one run a number of times. The consistency of the produced 

allocations was examined, not only for the same method but also comparing the 

results of the different search implementations. Besides the obtained fitness which 

has no straightforward biological meaning, other measures of similarity were 

facilitated. Namely, an implementation of the fuzzy adjusted rand indexes, of the 

hamming distance measure and a methodology of estimating the probability of 

obtaining two allocations of a given hamming distance or smaller, purely by chance. 

In the context of all similarity metrics, all methods produced consistent results which 

were, interestingly, more or less similar.  

The hill climbing, the simulated annealing and genetic algorithm were shown to 

reach roughly equal fitness values. The simulated annealing approach seemed 

capable of reaching only slightly higher fitness values without changing the overall 

pathway behaviour picture. Furthermore, no correlation was observed between the 

size of the search space, as defined by the number of possible genes to pathways 

allocations, and the consistency of the produced results, in terms of Hamming 

distance and FARI values. 

However, in some instances there was a slight variation in the observed hamming 

distance, with FARI values remaining extremely high. This seems to reflect the 

swapping of some piles of genes between pathways, by subsequent runs of the 
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algorithms. That is, a group of genes may be allocated to a different pathway, while 

still remaining together. This issue leaves room for further investigation.  

7.2.4 Pathway analysis centred on enzyme compounds 

Chapter 6 presented an effort to refine and improve the analytical approach, as 

presented in (Pavlidis, Swift & Payne 2010). The decision was mainly biologically 

driven, based on the fact that a number of genes may participate in the same step of a 

biochemical pathway, that is, the same reaction. Such are the cases of isoenzymes, 

which, while encoded by different genes, are responsible for the catalysis of the same 

reaction. At the same time a particular gene, through its protein product may appear 

at more than one distinct steps of the same pathway.  

Given that it is proteins that fulfil enzymic functions rather than genes themselves, 

and that we are looking for evidence that a reaction takes place, regardless of the 

particular gene encoding the enzyme that catalyses it, it is a sensible choice to centre 

the analysis of pathway activity on enzymic positions rather than genes. In that sense 

the up-regulation of any of the genes involved in a particular step of a pathway 

serves as indication that the reaction takes place. 

Furthermore, this analytical approach zooms in the biochemical network, working 

with KEGG modules, smaller sub-networks in the chain of enzymic reactions in 

KEGG pathways. While, when working on a pathway a certain route may become 

inactive, explaining possible disagreement of gene expression, here we are more 

confident that the activity of a module should be on principal reflected upon the 

expression of the genes involved. 

Application of the method to the KEGG glycolysis and gluconeogenesis pathway and 

modules and showed that it can successfully differentiate between activation and 

repression of the glycolysis and gluconeogenesis modules in a number of unrelated 

datasets. Instead of working with lists of genes, the methodology gives us an 

indication of the state of activity at distinct steps of the pathway, providing us with 

information regarding the direction of the reactions taking place. 
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The initial analysis is confined to the KEGG glycolysis/gluconeogenesis pathway of 

Saccharomyces cerevisiae, and the two modules it contains. Thus, while it is 

encouraging that the produced allocations were in most cases identical or very 

similar, the performance of the method needs to be examined when applied to the 

entire metabolic network of an organism. 

7.3 Future work 

There is clearly a lot of room for future work on the ideas presented in here. Some of 

the possible directions have already become apparent in the previous sections of the 

chapter. First, the multi-membership nature of genes appears more complicated than 

initially conceived. As revealed in chapter 6, a gene may be a member of a particular 

pathway but participate in more than one different steps of the path. From that 

perspective, the gene becomes a multi-membership gene of the pathway itself. 

Additionally, distinct genes may correspond to the same enzymic position in a 

pathway. Hence any one of these genes may be producing an active protein, while 

the activity of the others is not required for the pathway in question. To an extent, the 

approach presented in chapter 6 accommodates for these observations, but there is 

room for further thought and analysis.   

On another issue, Saccharomyces cerevisiae and Escherichia coli, have relatively 

simple biochemical networks and it is worth applying the methodology to other 

organisms higher in the evolutionary chain. Overall, the methodology requires 

detailed knowledge of the biochemical network of an organism, the modules of 

which it consists, the functions of their genes and their interconnectivity. This 

knowledge is far from complete and remains an issue of intensive research, 

constantly updated and refined. As our understanding of biochemical networks 

increases, it becomes possible to prepare our search setting in more detail, with 

greater accuracy. This may allow us to obtain better results, through application of 

the proposed search methodology. 

To a great extent, the limitations of microarray technology confer any analytical 

efforts, including the method proposed here, less reliable. Any inconsistences in the 

analysed data are directly reflected on the obtained genes to pathway configurations. 
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However, very recent advances in transcriptomics tools appear capable of surpassing 

or at least greatly reducing many of the problems faced by microarray technology. 

More precisely, the development of RNA-Seq, which uses deep sequencing 

technologies, is widely considered the next revolutionary step in biological research. 

This quantitative approach can be used to determine RNA expression with far greater 

accuracy and less noise than microarrays, which infer transcript abundance only 

indirectly from hybridization intensity (Wang, Gerstein & Snyder 2009). It has been 

shown to greatly increase the number of genes, identified to exhibit differential 

expression ('t Hoen et al. 2008). An informative review of this methodology can be 

found in (Morozova , Hirst & Marra 2009), as further discussion is beyond the scope 

of this text. The important point, however, is that it would be of great interest to 

examine the performance of the methodology proposed in this thesis, using more 

accurate expression data produced by such advanced techniques. 

Finally, the proposed analytical methodology aims to reveal the state of activation of 

biochemical pathways in microarray experiments. Thus, applying it to do so, on a 

large number of experiments may in turn produce useful pathway data. This can be 

then subjected to association rule mining to search for functional relationships 

between pathways.  

In conclusion the methods presented in this thesis suggest some promising directions 

for future work and can contribute to pathway based microarray analysis and help us 

elucidate individual pathway states, based on a collective view of gene expression 

and enzyme activity in a cell or tissue. Progress in the area of transcriptomics and our 

knowledge of biochemical networks can facilitate further improvement of the 

analytical framework and performance of the proposed methodology.  
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