172 research outputs found

    Transport Phenomena in Alcator C-Mod H-Modes

    Get PDF
    Abstract. Several interesting new results have come from studies of ICRF-heated, H-mode plasmas in Alcator C-Mod. Dimensionless scaling studies have found gyro-Bohm-like transport similar to that reported on other devices; however, the dependence on collisionality was surprisingly strong, with BE −1. Despite high edge temperatures and strong edge pressure gradients, type I edge-localized modes (ELMs) are not observed in C-Mod. Instead we obtain a regime that we have dubbed enhanced D (EDA) which is accompanied by high-frequency density fluctuations. For all H-modes, core gradients were found to increase linearly with edge temperature, suggesting the importance of critical gradient/marginal stability behaviour. Comparisons with the IFS-PPPL model have begun, showing quantitative agreement in some cases. Impurity particle transport was studied via the laser blow-off technique with impurity confinement found to be effectively infinite for ELM-free discharges but reduced into the range 0.1–0.2 s for the EDA plasmas. 1

    Linezolid population pharmacokinetic model in plasma and cerebrospinal fluid among patients with tuberculosis meningitis

    Get PDF
    BACKGROUND: Linezolid is evaluated in novel treatment regimens for tuberculous meningitis (TBM). Linezolid pharmacokinetics have not been characterized in this population, particularly in cerebrospinal fluid (CSF) where exposures may be affected by changes in protein concentration. Linezolid co-administration with high-dose rifampicin, has also not been studied. We aimed to characterize linezolid plasma and CSF pharmacokinetics in adults with TBM. METHODS: In LASER-TBM pharmacokinetic-substudy, the intervention groups received high-dose rifampicin (35mg/kg) plus linezolid 1200mg/day for 28days, then reduced to 600mg/day. Plasma sampling was done on day 3 (intensive) and on day 28 (sparse). A lumbar CSF sample was obtained on both visits. RESULTS: 30-participants, median(min-max) age and weight of 40(27-56)years and 58(30-96)kg, contributed 247 plasma and 28 CSF observations. Plasma pharmacokinetics was described by one-compartment model with first-order absorption and saturable elimination. Maximal clearance was 7.25L/h, and Km was 27.2mg/L. Rifampicin co-treatment duration did not affect linezolid pharmacokinetics. CSF-Plasma partitioning correlated with CSF total-protein upto 1.2g/L where the partition-coefficient reached maximal value of 37%. Plasma-CSF equilibration half-life was ∌3.5hours. CONCLUSION: Linezolid was readily detected in CSF despite high-dose rifampicin co-administration. These findings support continued clinical evaluation of linezolid plus high-dose rifampicin for the treatment of TBM in adults

    Validation of the Aura Microwave Limb Sounder HNOmeasurements

    Get PDF
    We assess the quality of the version 2.2 (v2.2) HNO3 measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS HNO3 product has been greatly improved over that in the previous version (v1.5), with smoother profiles, much more realistic behavior at the lowest retrieval levels, and correction of a high bias caused by an error in one of the spectroscopy files used in v1.5 processing. The v2.2 HNO3 data are scientifically useful over the range 215 to 3.2 hPa, with single-profile precision of ∌0.7 ppbv throughout. Vertical resolution is 3–4 km in the upper troposphere and lower stratosphere, degrading to ∌5 km in the middle and upper stratosphere. The impact of various sources of systematic uncertainty has been quantified through a comprehensive set of retrieval simulations. In aggregate, systematic uncertainties are estimated to induce in the v2.2 HNO3 measurements biases that vary with altitude between ±0.5 and ±2 ppbv and multiplicative errors of ±5–15% throughout the stratosphere, rising to ∌±30% at 215 hPa. Consistent with this uncertainty analysis, comparisons with correlative data sets show that relative to HNO3 measurements from ground-based, balloon-borne, and satellite instruments operating in both the infrared and microwave regions of the spectrum, MLS v2.2 HNO3 mixing ratios are uniformly low by 10–30% throughout most of the stratosphere. Comparisons with in situ measurements made from the DC-8 and WB-57 aircraft in the upper troposphere and lowermost stratosphere indicate that the MLS HNO3 values are low in this region as well, but are useful for scientific studies (with appropriate averaging)

    Validation of Aura Microwave Limb Sounder O-3 and CO observations in the upper troposphere and lower stratosphere

    Get PDF
    International audienceGlobal satellite observations of ozone and carbon monoxide from the Microwave Limb Sounder (MLS) on the EOS Aura spacecraft are discussed with emphasis on those observations in the 215–100 hPa region (the upper troposphere and lower stratosphere). The precision, resolution and accuracy of the data produced by the MLS “version 2.2” processing algorithms are discussed and quantified. O3 accuracy is estimated at ~40 ppbv +5% (~20 ppbv +20% at 215 hPa) while the CO accuracy is estimated at ~30 ppbv +30% for pressures of 147 hPa and less. Comparisons with expectations and other observations show good agreements for the O3 product, generally consistent with the systematic errors quoted above. In the case of CO, a persistent factor of ~2 high bias is seen at 215 hPa. However, the morphology is shown to be realistic, consistent with raw MLS radiance data, and useful for scientific study. The MLS CO data at higher altitudes are shown to be consistent with other observations
    • 

    corecore