94 research outputs found

    Archazolid and apicularen: Novel specific V-ATPase inhibitors

    Get PDF
    BACKGROUND: V-ATPases constitute a ubiquitous family of heteromultimeric, proton translocating proteins. According to their localization in a multitude of eukaryotic membranes, they energize many different transport processes. Since their malfunction is correlated with various diseases in humans, the elucidation of the properties of this enzyme for the development of selective inhibitors and drugs is one of the challenges in V-ATPase research. RESULTS: Archazolid A and B, two recently discovered cytotoxic macrolactones produced by the myxobacterium Archangium gephyra, and apicularen A and B, two novel benzolactone enamides produced by different species of the myxobacterium Chondromyces, exerted a similar inhibitory efficacy on a wide range of mammalian cell lines as the well established plecomacrolidic type V-ATPase inhibitors concanamycin and bafilomycin. Like the plecomacrolides both new macrolides also prevented the lysosomal acidification in cells and inhibited the V-ATPase purified from the midgut of the tobacco hornworm, Manduca sexta, with IC(50 )values of 20–60 nM. However, they did not influence the activity of mitochondrial F-ATPase or that of the Na(+)/K(+)-ATPase. To define the binding sites of these new inhibitors we used a semi-synthetic radioactively labelled derivative of concanamycin which exclusively binds to the membrane V(o )subunit c. Whereas archazolid A prevented, like the plecomacrolides concanamycin A, bafilomycin A(1 )and B(1), labelling of subunit c by the radioactive I-concanolide A, the benzolactone enamide apicularen A did not compete with the plecomacrolide derivative. CONCLUSION: The myxobacterial antibiotics archazolid and apicularen are highly efficient and specific novel inhibitors of V-ATPases. While archazolid at least partly shares a common binding site with the plecomacrolides bafilomycin and concanamycin, apicularen adheres to an independent binding site

    Altitude and latitude variations in trait-impulsivity, depression, anxiety, suicidal risk, and negative alcohol-related consequences in Argentinean adolescents

    Get PDF
    The aims of this research were threefold: 1) to analyze mental health state both general (GMHS, i.e., self-perceived health and psychological distress) and specific (SMHS; i.e., depression, trait-anxiety, negative alcohol-related consequences, and suicidal risk), and impulsivity-related traits (i.e., negative urgency, positive urgency, [lack of] perseverance, [lack of] premeditation, and sensation seeking) in a sample of Argentinean adolescent college students, in function of sex (women, men) and three different altitude-latitude regions (high-north, middle-center, low-south), for identifying common and specific features; 2) to analyze relationships between impulsivity-related traits and indicators of GMHS and SMHS, in the entire sample and in each altitude-latitude region, for understanding the importance of impulsivity-related traits in these forms of mental disorders; and 3) to analyze bivariate relationships between depression, trait-anxiety, negative alcohol-related consequences, and suicidal risk, in the entire sample and considering the three altitude-latitude regions, for testing two-disorder comorbidities. Scores on impulsivity-related traits differed by sex and by altitude-latitude region. GMHS and SMHS differed by sex but not by altitude-latitude region. Several relationships were found between impulsivity-related traits, GMHS, and SMHS as well as between indicators of SMHS. Some of these relationships were dependent on altitude-latitude regions, and implications of these findings were discussed.Fil: López Steinmetz, Lorena Cecilia. Universidad Nacional de Córdoba. Instituto de Investigaciones Psicológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Psicológicas; Argentina. Universidad Empresarial Siglo XXI; ArgentinaFil: Godoy, Juan Carlos. Universidad Nacional de Córdoba. Instituto de Investigaciones Psicológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Psicológicas; ArgentinaFil: Fong, Shao Bing. University of Melbourne; Australi

    Gelingendes Leben - Krise als Chance für Person & Gesellschaft. Band II

    Get PDF
    • Peter Antes, Rel.wiss. • Petra Bahr, Theol. / Journ. • Matthias Beck Med./JS, AT • Gottfried Biewer, Bildungswiss., AT • Aladin El-Mafaalani, Pol.wiss.• Johannes Eurich, Diak.wiss. • Mario Feigel, Med. CH • Heike Gramkow, Manag.Dir. • Heinrich Greving, Heilpäd. • Udo Hahn, Theol.• Maria-C. Hallwachs, Stud., Beratg. schon betroffen • Walter Hirche, Min. a.D./Präs. Dt. UNESCO • Wolfgang Jantzen †, Soz. • Jochen-C. Kaiser, Hist. • Karl-J. Kemmelmeyer, Präs. Musikrat • Hermes Kick, Med.-Ethik • Waldemar Kippes Redemptorist JN • Ferdinand Klein, SoPäd., SK • Berthold Krüger, bpb • Christian Larsen, Arzt, CH • Ulrich Lilie Präs. Diak.W • Christian Lindmeier, SoPäd., DGfE • Ralf Meister, Bischof • Bertolt Meyer, Org.- u. Wirtschaftspsych, schon betroffen, CH • Peter Neher, Präs. Caritas • Ekkehard Nuissl, Dir. Dt. Inst. EB, DIE • Ulrich Pohl, Vorst. Bethel • Hartmann Römer, Physiker • David Roth, Lt. Hospiz • Hartmut Schlegel SoPäd. • Joachim Schoss, Unternehmer, schon betroffen, CH • Walter Surböck Med., AT• Karl-H. Steinmetz, Trad. Europ. Med., AT • Rudolf Tippelt, Bildg. Forschg. • Inge Wasserberg, Inklu.Beratg. • Walter Thirring †, Phys. CERN, C

    Soil myxobacteria as a potential source of polyketide-peptide substances.

    Get PDF
    Myxobacteria, a group of antimicrobial producing bacteria, have been successfully cultured and characterized from ten soil samples collected from different parts of Slovakia. A total of 79 myxobacteria belonging to four genera (Myxococcus, Corallococcus, Sorangium, and Polyangium) were isolated based on aspects of their life cycle. Twenty-five of them were purified, fermented, and screened for antimicrobial activities against 11 test microorganisms. Results indicated that crude extracts showed more significant activities against Gram-positive than against Gram-negative bacteria or fungi. Based on a higher degree and broader range of antimicrobial production, the two most potential extracts (K9-5, V3-1) were selected for HPLC fractionation against Micrococcus luteus and Staphylococcus aureus and LC/MS analysis of potential antibiotic metabolites. The analysis resulted in the identification of polyketide-peptide antibiotics, namely corallopyronin A and B (K9-5) and myxalamid B and C (V3-1), which were responsible for important Gram-positive activity in the observed strains. A sequence similarity search through BLAST revealed that these strains showed the highest sequence similarity to Corallococcus coralloides (K9-5, NCBI accession number KX256198) and Myxococcus xanthus (V3-1, NCBI accession number KX256197). Although screening of myxobacteria is laborious, due to difficulties in isolating cultures, this research represented the first report covering the isolation and cultivation of this challenging bacterial group from Slovakian soils as well as the screening of their antimicrobial activity, cultural identification, and secondary metabolite identification

    Characterization of Antimycins – Producing Streptomycete Strain VY46 Isolated from Slovak Soil

    No full text
    ABSTRACT The strain no. VY46 was isolated from agricultural soil of Slovak republic and tested for potential antimicrobial activity against various human pathogens. On the basis of results, strain VY46 significantly inhibited growth of yeast Candida albicans and therefore was used for further characterization. In order to explore the potential bioactivities, extract of the fermented broth culture was prepared with organic solvent extraction method. The ethylacetate extract was subjected to HPLC fractionation against Candida albicans and followed by LC/MS analysis for potential production of anticandidal substances. The analysis resulted in the identification of two antimycins antibiotics, which may be responsible for important anticandidal activity of the strain. On the basis of liquid chromatography and mass spectrometry the antibiotics were identified as Urauchimycin A and Kitamycin A. According tothe results from cultural, morphological, physiological, biochemical and 16S rRNA gene sequence methods, the strain was identified as Streptomyces albidoflavus. In addition, neighbor-joining phylogenetic tree confirmed the relationships of this strain to other members of Streptomyces genera

    A unique mechanism for methyl ester formation via an amide intermediate found in myxobacteria.

    No full text
    Secondary metabolism involves a broad diversity of biochemical reactions that result in a wide variety of biologically active compounds. Terminal amide formation during the biosynthesis of the myxobacterial electron-transport inhibitor, myxothiazol, was analyzed by heterologous expression of the unique nonribosomal-peptide synthetase, MtaG, and incubation with a synthesized substrate mimic. These experiments provide evidence that the terminal amide is formed from a carrier protein-bound myxothiazol acid that is thioesterified to MtaF. This intermediate is transformed to an amide by extension with glycine and subsequent oxidative cleavage by MtaG. The final steps of melithiazol assembly involve a highly similar protein-bound intermediate (attached to MelF, a homologue of MtaF), which is transformed to an amide by MelG (homologue of MtaG). In this study, we also show that the amide moiety of myxothiazol A can be hydrolyzed in vivo to the formerly unknown free myxothiazol acid by heterologous expression of melJ in the myxothiazol producer Stigmatella aurantiaca DW4/3-1. The methyltransferase MelK can finally methylate the acid to give rise to the methyl ester, which is produced as the final product in the melithiazol A biosynthetic pathway. These experiments clarify the role of MelJ and MelK during melithiazol assembly

    New Natural Epothilones from Sorangium

    No full text
    • …
    corecore