3,098 research outputs found

    Biocatalytic quantification of alpha-glucan in marine particulate organic matter

    Get PDF
    Marine algae drive the marine carbon cycle, converting carbon dioxide into organic material. A major component of this produced biomass is a variety of glycans. Marine alpha-glucans include a range of storage glycans from red and green algae, bacteria, fungi, and animals. Although these compounds are likely to account for a high amount of the carbon stored in the oceans they have not been quantified in marine samples so far. Here we present a method to extract and quantify alpha-glucans (and compare it with the beta-glucan laminarin) in particulate organic matter from algal cultures and environmental samples using sequential physicochemical extraction and enzymes as alpha-glucan-specific probes. This enzymatic assay is more specific and less susceptible to side reactions than chemical hydrolysis. Using HPAEC-PAD to detect the hydrolysis products allows for a glycan quantification in particulate marine samples down to a concentration of approximate to 2 mu g/L. We measured glucans in three cultured microalgae as well as in marine particulate organic matter from the North Sea and western North Atlantic Ocean. While the beta-glucan laminarin from diatoms and brown algae is an essential component of marine carbon turnover, our results further indicate the significant contribution of starch-like alpha-glucans to marine particulate organic matter. Henceforth, the combination of glycan-linkage-specific enzymes and chromatographic hydrolysis product detection can provide a powerful tool in the exploration of marine glycans and their role in the global carbon cycle

    Nanometer-scale sharpness in corner-overgrown heterostructures

    Full text link
    A corner-overgrown GaAs/AlGaAs heterostructure is investigated with transmission and scanning transmission electron microscopy, demonstrating self-limiting growth of an extremely sharp corner profile of 3.5 nm width. In the AlGaAs layers we observe self-ordered diagonal stripes, precipitating exactly at the corner, which are regions of increased Al content measured by an XEDS analysis. A quantitative model for self-limited growth is adapted to the present case of faceted MBE growth, and the corner sharpness is discussed in relation to quantum confined structures. We note that MBE corner overgrowth maintains nm-sharpness even after microns of growth, allowing the realization of corner-shaped nanostructures.Comment: 4 pages, 3 figure

    Non-volatile voltage control of in-plane and out-of-plane magnetization in polycrystalline Ni films on ferroelectric PMN-PT (001)pcsubstrates

    Get PDF
    We identify room-temperature converse magnetoelectric effects (CMEs) that are non-volatile by using a single-crystal substrate of PMN-PT (001)pc (pc denotes pseudocubic) to impart voltage-driven strain to a polycrystalline film of Ni. An appropriate magnetic-field history enhances the magnetoelectric coefficient to a near-record peak of ∼10-6 s m-1 and permits electrically driven magnetization reversal of substantial net magnetization. In zero magnetic field, electrically driven ferroelectric domain switching produces large changes of in-plane magnetization that are non-volatile. Microscopically, these changes are accompanied by the creation and destruction of magnetic stripe domains, implying the electrical control of perpendicular magnetic anisotropy. Moreover, the stripe direction can be rotated by a magnetic field or an electric field, the latter yielding the first example of electrically driven rotatable magnetic anisotropy. The observed CMEs are associated with repeatable ferroelectric domain switching that yields a memory effect. This memory effect is well known for PMN-PT (110)pc but not PMN-PT (001)pc. Given that close control of the applied field is not required as for PMN-PT (110)pc, this memory effect could lead the way to magnetoelectric memories based on PMN-PT (001)pc membranes that switch at low voltage

    Rotated stripe order and its competition with superconductivity in La1.88_{1.88}Sr0.12_{0.12}CuO4_4

    Get PDF
    We report the observation of a bulk charge modulation in La1.88_{1.88}Sr0.12_{0.12}CuO4_4 (LSCO) with a characteristic in-plane wave-vector of (0.236, ±δ\pm \delta), with δ\delta=0.011 r.l.u. The transverse shift of the ordering wave-vector indicates the presence of rotated charge-stripe ordering, demonstrating that the charge ordering is not pinned to the Cu-O bond direction. On cooling through the superconducting transition, we find an abrupt change in the growth of the charge correlations and a suppression of the charge order parameter indicating competition between the two orderings. Orthorhombic LSCO thus helps bridge the apparent disparities between the behavior previously observed in the tetragonal "214" cuprates and the orthorhombic yttrium and bismuth-based cuprates and thus lends strong support to the idea that there is a common motif to charge order in all cuprate families.Comment: 6 pages, 4 figue

    Statistical-Thermal Model Calculations using THERMUS

    Full text link
    Selected results obtained using THERMUS, a newly-developed statistical-thermal model analysis package, are presented.Comment: Contributed to 8th International Conference on Strangeness in Quark Matter, Cape Town, South Africa, 15-20 September 200

    Laser-heated capillary discharge plasma waveguides for electron acceleration to 8 GeV

    Get PDF
    A plasma channel created by the combination of a capillary discharge and inverse Bremsstrahlung laser heating enabled the generation of electron bunches with energy up to 7.8 GeV in a laser-driven plasma accelerator. The capillary discharge created an initial plasma channel and was used to tune the plasma temperature, which optimized laser heating. Although optimized colder initial plasma temperatures reduced the ionization degree, subsequent ionization from the heater pulse created a fully ionized plasma on-axis. The heater pulse duration was chosen to be longer than the hydrodynamic timescale of ≈ 1 ns, such that later temporal slices were more efficiently guided by the channel created by the front of the pulse. Simulations are presented which show that this thermal self-guiding of the heater pulse enabled channel formation over 20 cm. The post-heated channel had lower on-axis density and increased focusing strength compared to relying on the discharge alone, which allowed for guiding of relativistically intense laser pulses with a peak power of 0.85 PW and wakefield acceleration over 15 diffraction lengths. Electrons were injected into the wake in multiple buckets and times, leading to several electron bunches with different peak energies. To create single electron bunches with low energy spread, experiments using localized ionization injection inside a capillary discharge waveguide were performed. A single injected bunch with energy 1.6 GeV, charge 38 pC, divergence 1 mrad, and relative energy spread below 2% full-width half-maximum was produced in a 3.3 cm-long capillary discharge waveguide. This development shows promise for mitigation of energy spread and future high efficiency staged acceleration experiments

    Magnetic inhomogeneities in the quadruple perovskite manganite [Y2x_{2-x}Mnx_x]MnMnMn4_4O12_{12}

    Full text link
    A combination of competing exchange interactions and substitutional disorder gives rise to magnetic inhomogeneities in the [Y2x_{2-x}Mnx_x]MnMnMn4_4O12_{12} x=0.23x = 0.23 and x=0.16x = 0.16 quadruple perovskite manganites. Our neutron powder scattering measurements show that both the x=0.23x = 0.23 and x=0.16x = 0.16 samples separate into two distinct magnetic phases; below T1_{1} = 120 ±\pm 10 K the system undergoes a transition from a paramagnetic phase to a phase characterised by short range antiferromagnetic clusters contained in a paramagnetic matrix, and below T2_{2} \sim 65 K, the system is composed of well correlated long range collinear ferrimagnetic order, punctuated by short range antiferromagnetic clusters. A sharp increase in the antiferromagnetic phase fraction is observed below \sim 33 K, concomitant with a decrease in the ferrimagnetic phase fraction. Our results demonstrate that the theoretically proposed AFM phase is stabilised in the [Y2x_{2-x}Mnx_x]MnMnMn4_4O12_{12} manganites in the presence of dominant B-B exchange interactions, as predicted.Comment: 12 pages, 6 figure

    "Freshwater killer whales": beaching behavior of an alien fish to hunt land birds

    Get PDF
    The behavioral strategies developed by predators to capture and kill their prey are fascinating, notably for predators that forage for prey at, or beyond, the boundaries of their ecosystem. We report here the occurrence of a beaching behavior used by an alien and large-bodied freshwater predatory fish (Silurus glanis) to capture birds on land (i.e. pigeons, Columbia livia). Among a total of 45 beaching behaviors observed and filmed, 28% were successful in bird capture. Stable isotope analyses (δ¹³C and δ¹⁵N) of predators and their putative prey revealed a highly variable dietary contribution of land birds among individuals. Since this extreme behavior has not been reported in the native range of the species, our results suggest that some individuals in introduced predator populations may adapt their behavior to forage on novel prey in new environments, leading to behavioral and trophic specialization to actively cross the water-land interface

    Semiclassical Quantization of Effective String Theory and Regge Trajectories

    Get PDF
    We begin with an effective string theory for long distance QCD, and evaluate the semiclassical expansion of this theory about a classical rotating string solution, taking into account the the dynamics of the boundary of the string. We show that, after renormalization, the zero point energy of the string fluctuations remains finite when the masses of the quarks on the ends of the string approach zero. The theory is then conformally invariant in any spacetime dimension D. For D=26 the energy spectrum of the rotating string formally coincides with that of the open string in classical Bosonic string theory. However, its physical origin is different. It is a semiclassical spectrum of an effective string theory valid only for large values of the angular momentum. For D=4, the first semiclassical correction adds the constant 1/12 to the classical Regge formula.Comment: 65 pages, revtex, 3 figures, added 2 reference

    Laboratory and field studies of ice-nucleating particles from open-lot livestock facilities in Texas

    Get PDF
    In this work, an abundance of ice-nucleating particles (INPs) from livestock facilities was studied through laboratory measurements from cloud-simulation chamber experiments and field investigation in the Texas Panhandle. Surface materials from two livestock facilities, one in the Texas Panhandle and another from McGregor, Texas, were selected as dust proxies for laboratory analyses. These two samples possessed different chemical and biological properties. A combination of aerosol interaction and dynamics in the atmosphere (AIDA) measurements and offline ice spectrometry was used to assess the immersion freezing mode ice nucleation ability and efficiency of these proxy samples at temperatures above −29 ∘C. A dynamic filter processing chamber was also used to complement the freezing efficiencies of submicron and supermicron particles collected from the AIDA chamber. For the field survey, periodic ambient particle sampling took place at four commercial livestock facilities from July 2017 to July 2019. INP concentrations of collected particles were measured using an offline freezing test system, and the data were acquired for temperatures between −5 and −25 ∘C. Our AIDA laboratory results showed that the freezing spectra of two livestock dust proxies exhibited higher freezing efficiency than previously studied soil dust samples at temperatures below −25 ∘C. Despite their differences in composition, the freezing efficiencies of both proxy livestock dust samples were comparable to each other. Our dynamic filter processing chamber results showed on average approximately 50 % supermicron size dominance in the INPs of both dust proxies. Thus, our laboratory findings suggest the importance of particle size in immersion freezing for these samples and that the size might be a more important factor for immersion freezing of livestock dust than the composition. From a 3-year field survey, we measured a high concentration of ambient INPs of 1171.6 ± 691.6 L−1 (average ± standard error) at −25 ∘C for aerosol particles collected at the downwind edges of livestock facilities. An obvious seasonal variation in INP concentration, peaking in summer, was observed, with the maximum at the same temperature exceeding 10 000 L−1 on 23 July 2018. The observed high INP concentrations suggest that a livestock facility is a substantial source of INPs. The INP concentration values from our field survey showed a strong correlation with measured particulate matter mass concentration, which supports the importance of size in ice nucleation of particles from livestock facilities.</p
    corecore