575 research outputs found

    Propagation of a laser beam in a plasma

    Get PDF
    This paper shows that for a nonabsorbing medium with a prescribed index of refraction, the effects of beam stability, line focusing, and beam distortion can be predicted from simple ray optics. When the paraxial approximation is used, diffraction effects are examined for Gaussian, Lorentzian, and square beams. Most importantly, it is shown that for a Gaussian beam, diffraction effects can be included simply by adding imaginary solutions to the paraxial ray equations. Also presented are several procedures to extend the paraxial approximation so that the solution will have a domain of validity of greater extent

    Discoveries and challenges en route to swinhoeisterol A

    Get PDF
    In this work, a full account of the authors’ synthetic studies is reported that culminated in the first synthesis of 13(14→8),14(8→7)diabeo‐steroid swinhoeisterol A as well as the related dankasterones A and B, 13(14→8)abeo‐steroids, and periconiastone A, a 13(14→8)abeo‐4,14‐cyclo‐steroid. Experiments are described in detail that provided further insight into the mechanism of the switchable radical framework reconstruction approach. By discussing failed strategies and tactics towards swinhoeisterol A, the successful route that also allowed an access to structurally closely related analogues, such as Δ22‐24‐epi‐swinhoeisterol A, is eventually presented

    A Method of Hospital Infection Surveillance Incorporating the Use of the Computer

    Get PDF
    The records of all patients in the hospital on a particular date were studied for hospital-acquired infections. Results were compared with a continuing surveillance based on discharge reporting. Collection of data was programmed for analysis by using the hospital computer. Thirteen per cent of the patients manifested an infection after admission, but before or on the survey day. Results elsewhere are similar. Areas of the hospital with a relatively higher incidence of infection did not have clusters of particular pathogens

    Bogoliubov spectrum and Bragg spectroscopy of elongated Bose-Einstein condensates

    Full text link
    The behavior of the momentum transferred to a trapped Bose-Einstein condensate by a two-photon Bragg pulse reflects the structure of the underlying Bogoliubov spectrum. In elongated condensates, axial phonons with different number of radial nodes give rise to a multibranch spectrum which can be resolved in Bragg spectroscopy, as shown by Steinhauer {\it et al.} [Phys. Rev. Lett. {\bf 90}, 060404 (2003)]. Here we present a detailed theoretical analysis of this process. We calculate the momentum transferred by numerically solving the time dependent Gross-Pitaevskii equation. In the case of a cylindrical condensate, we compare the results with those obtained by linearizing the Gross-Pitaevskii equation and using a quasiparticle projection method. This analysis shows how the axial-phonon branches affect the momentum transfer, in agreement with our previous interpretation of the observed data. We also discuss the applicability of this type of spectroscopy to typical available condensates, as well as the role of nonlinear effects.Comment: 8 pages, 7 figures, minor changes, typos correcte

    Dynamics of fluctuations in an optical analog of the Laval nozzle

    Full text link
    Using the analogy between the description of coherent light propagation in a medium with Kerr nonlinearity by means of nonlinear Schr\"odinger equation and that of a dissipationless liquid we propose an optical analogue of the Laval nozzle. The optical Laval nozzle will allow one to form a transonic flow in which one can observe and study a very unusual dynamics of classical and quantum fluctuations including analogue of the Hawking radiation of real black holes. Theoretical analysis of this dynamics is supported by numerical calculations and estimates for a possible experimental setup are presented.Comment: 7 pages, 4 figure

    Outbursts on normal stars. FH Leo misclassified as a novalike variable

    Full text link
    We present high resolution spectroscopy of the common proper motion system FH Leo (components HD 96273 and BD+07 2411B), which has been classified as a novalike variable due to an outburst observed by Hipparcos, and we present and review the available photometry. We show from our spectra that neither star can possibly be a cataclysmic variable, instead they are perfectly normal late-F and early-G stars. We measured their radial velocities and derived the atmospheric fundamental parameters, abundances of several elements including Fe, Ni, Cr, Co, V, Sc, Ti, Ca and Mg, and we derive the age of the system. From our analysis we conclude that the stars do indeed constitute a physical binary. However, the observed outburst cannot be readily explained. We examine several explanations, including pollution with scattered light from Jupiter, binarity, microlensing, background supernovae, interaction with unseen companions and planetary engulfment. While no explanation is fully satisfactory, the scattered light and star-planet interaction scenarios emerge as the least unlikely ones, and we give suggestions for further study.Comment: 8 pages, 7 figures. Accepted for publication in A&

    Transmittivity of a Bose-Einstein condensate on a lattice: interference from period doubling and the effect of disorder

    Full text link
    We evaluate the particle current flowing in steady state through a Bose-Einstein condensate subject to a constant force in a quasi-onedimensional lattice and to attractive interactions from fermionic atoms that are localized in various configurations inside the lattice wells. The system is treated within a Bose-Hubbard tight binding model by an out-of-equilibrium Green's function approach. A new band gap opens up when the lattice period is doubled by locating the fermions in alternate wells and yields an interference pattern in the transmittivity on varying the intensity of the driving force. The positions of the transmittivity minima are determined by matching the period of Bloch oscillations and the time for tunnelling across the band gap. Massive disorder in the distribution of the fermions will wash out the interference pattern, but the same period doubling of the lattice can be experimentally realized in a four-beam set-up. We report illustrative numerical results for a mixture of 87Rb and 40K atoms in an optical lattice created by laser beams with a wavelength of 763 nm.Comment: 13 pages, 5 figure

    Inverse anisotropic diffusion from power density measurements in two dimensions

    Full text link
    This paper concerns the reconstruction of an anisotropic diffusion tensor Îł=(Îłij)1≀i,j≀2\gamma=(\gamma_{ij})_{1\leq i,j\leq 2} from knowledge of internal functionals of the form γ∇ui⋅∇uj\gamma\nabla u_i\cdot\nabla u_j with uiu_i for 1≀i≀I1\leq i\leq I solutions of the elliptic equation ∇⋅γ∇ui=0\nabla \cdot \gamma \nabla u_i=0 on a two dimensional bounded domain with appropriate boundary conditions. We show that for I=4 and appropriately chosen boundary conditions, Îł\gamma may uniquely and stably be reconstructed from such internal functionals, which appear in coupled-physics inverse problems involving the ultrasound modulation of electrical or optical coefficients. Explicit reconstruction procedures for the diffusion tensor are presented and implemented numerically.Comment: 27 pages, 6 figure

    Quantum-fluid dynamics of microcavity polaritons

    Get PDF
    Semiconductor microcavities offer a unique system to investigate the physics of weakly interacting bosons. Their elementary excitations, polaritons--a mixture of excitons and photons--behave, in the low density limit, as bosons that can undergo a phase transition to a regime characterised by long range coherence. Condensates of polaritons have been advocated as candidates for superfluidity; and the formation of vortices as well as elementary excitations with a linear dispersion are actively sought after. In this work, we have created and set in motion a macroscopically degenerate state of polaritons and let it collide with a variety of defects present in the sample. Our experiments show striking manifestations of a coherent light-matter packet that displays features of a superfluid, although one of a highly unusual character as it involves an out-of-equilibrium dissipative system where it travels at ultra-fast velocity of the order of 1% the speed of light. Our main results are the observation of i) a linear polariton dispersion accompanied with diffusion-less motion, ii) flow without resistance when crossing an obstacle, iii) suppression of Rayleigh scattering and iv) splitting into two fluids when the size of the obstacle is comparable with the size of the wavepacket. This work opens the way to the investigation of new phenomenology of out-of-equilibrium condensates.Comment: 22 pages, 5 figure
    • 

    corecore