950 research outputs found

    Space Efficient Breadth-First and Level Traversals of Consistent Global States of Parallel Programs

    Full text link
    Enumerating consistent global states of a computation is a fundamental problem in parallel computing with applications to debug- ging, testing and runtime verification of parallel programs. Breadth-first search (BFS) enumeration is especially useful for these applications as it finds an erroneous consistent global state with the least number of events possible. The total number of executed events in a global state is called its rank. BFS also allows enumeration of all global states of a given rank or within a range of ranks. If a computation on n processes has m events per process on average, then the traditional BFS (Cooper-Marzullo and its variants) requires O(mn−1n)\mathcal{O}(\frac{m^{n-1}}{n}) space in the worst case, whereas ou r algorithm performs the BFS requires O(m2n2)\mathcal{O}(m^2n^2) space. Thus, we reduce the space complexity for BFS enumeration of consistent global states exponentially. and give the first polynomial space algorithm for this task. In our experimental evaluation of seven benchmarks, traditional BFS fails in many cases by exhausting the 2 GB heap space allowed to the JVM. In contrast, our implementation uses less than 60 MB memory and is also faster in many cases

    Transoral laser surgery for laryngeal carcinoma: has Steiner achieved a genuine paradigm shift in oncological surgery?

    Get PDF
    Transoral laser microsurgery applies to the piecemeal removal of malignant tumours of the upper aerodigestive tract using the CO2 laser under the operating microscope. This method of surgery is being increasingly popularised as a single modality treatment of choice in early laryngeal cancers (T1 and T2) and occasionally in the more advanced forms of the disease (T3 and T4), predomi- nantly within the supraglottis. Thomas Kuhn, the American physicist turned philosopher and historian of science, coined the phrase ‘paradigm shift’ in his groundbreaking book The Structure of Scientific Revolutions. He argued that the arrival of the new and often incompatible idea forms the core of a new paradigm, the birth of an entirely new way of thinking. This article discusses whether Steiner and col- leagues truly brought about a paradigm shift in oncological surgery. By rejecting the principle of en block resection and by replacing it with the belief that not only is it oncologically safe to cut through the substance of the tumour but in doing so one can actually achieve better results, Steiner was able to truly revolutionise the man- agement of laryngeal cancer. Even though within this article the repercussions of his insight are limited to the upper aerodigestive tract oncological surgery, his willingness to question other peoples’ dogma makes his contribution truly a genuine paradigm shift

    Shoulder pain due to cervical radiculopathy: an underestimated long-term complication of herpes zoster virus reactivation?

    Get PDF
    Purpose To evaluate if herpes zoster virus (HZV) reactivation may be considered in the aetiology of cervical radiculopathy. Methods The study group was composed of 110 patients (52 M-58F;mean age ± SD:46.5 ± 6.12; range:40-73) with a clinical diagnosis of cervical radiculopathy. Patients with signs of chronic damage on neurophysiological studies were submitted to an X-ray and to an MRI of the cervical spine in order to clarify the cause of the cervical radiculopathy and were investigated for a possible reactivation of HZV; HZV reactivation was considered as “recent” or “antique” if it occurs within or after 24 months from the onset of symptoms, respectively. Data were submitted to statistics. Results Thirty-eight patients (34,5%,16 M-22F) had a history of HZV reactivation: four (2 M-2F) were “recent” and 34 (14 M-20F) were “antique”. In 68 of 110 participants (61,8%,30 M-38F), pathological signs on X-ray and/or MRI of the cervical spine appeared; in the remaining 42 (38,2%,22 M-20F) X-ray and MRI resulted as negative. Among patients with HZV reactivation, seven (18,4%) had a “positive” X-ray-MRI while in 31 (81,6%) the instrumental exams were considered as negative. The prevalence of “antique” HZV reactivations was statistically greater in the group of patients with no pathological signs on X-ray/MRI of the cervical spine with respect to the group with a pathological instrumental exam (p < 0.01). Conclusions It may be useful to investigate the presence of a positive history of HZV reactivation and to consider it as a long-term complication of a cervical root inflammation especially in patients in which X-ray and MRI of the cervical spine did not show pathological findings

    Single and two-particle energy gaps across the disorder-driven superconductor-insulator transition

    Full text link
    The competition between superconductivity and localization raises profound questions in condensed matter physics. In spite of decades of research, the mechanism of the superconductor-insulator transition (SIT) and the nature of the insulator are not understood. We use quantum Monte Carlo simulations that treat, on an equal footing, inhomogeneous amplitude variations and phase fluctuations, a major advance over previous theories. We gain new microscopic insights and make testable predictions for local spectroscopic probes. The energy gap in the density of states survives across the transition, but coherence peaks exist only in the superconductor. A characteristic pseudogap persists above the critical disorder and critical temperature, in contrast to conventional theories. Surprisingly, the insulator has a two-particle gap scale that vanishes at the SIT, despite a robust single-particle gap.Comment: 7 pages, 5 figures (plus supplement with 4 pages, 5 figures

    Roy-Steiner equations for pion-nucleon scattering

    Get PDF
    Starting from hyperbolic dispersion relations, we derive a closed system of Roy-Steiner equations for pion-nucleon scattering that respects analyticity, unitarity, and crossing symmetry. We work out analytically all kernel functions and unitarity relations required for the lowest partial waves. In order to suppress the dependence on the high-energy regime we also consider once- and twice-subtracted versions of the equations, where we identify the subtraction constants with subthreshold parameters. Assuming Mandelstam analyticity we determine the maximal range of validity of these equations. As a first step towards the solution of the full system we cast the equations for the ππ→NˉN\pi\pi\to\bar NN partial waves into the form of a Muskhelishvili-Omn\`es problem with finite matching point, which we solve numerically in the single-channel approximation. We investigate in detail the role of individual contributions to our solutions and discuss some consequences for the spectral functions of the nucleon electromagnetic form factors.Comment: 106 pages, 18 figures; version published in JHE

    Display of native antigen on cDC1 that have spatial access to both T and B cells underlies efficient humoral vaccination

    Get PDF
    Follicular dendritic cells and macrophages have been strongly implicated in presentation of native Ag to B cells. This property has also occasionally been attributed to conventional dendritic cells (cDC) but is generally masked by their essential role in T cell priming. cDC can be divided into two main subsets, cDC1 and cDC2, with recent evidence suggesting that cDC2 are primarily responsible for initiating B cell and T follicular helper responses. This conclusion is, however, at odds with evidence that targeting Ag to Clec9A (DNGR1), expressed by cDC1, induces strong humoral responses. In this study, we reveal that murine cDC1 interact extensively with B cells at the border of B cell follicles and, when Ag is targeted to Clec9A, can display native Ag for B cell activation. This leads to efficient induction of humoral immunity. Our findings indicate that surface display of native Ag on cDC with access to both T and B cells is key to efficient humoral vaccination

    The use of the SF-36 questionnaire in adult survivors of childhood cancer: evaluation of data quality, score reliability, and scaling assumptions

    Get PDF
    BACKGROUND: The SF-36 has been used in a number of previous studies that have investigated the health status of childhood cancer survivors, but it never has been evaluated regarding data quality, scaling assumptions, and reliability in this population. As health status among childhood cancer survivors is being increasingly investigated, it is important that the measurement instruments are reliable, validated and appropriate for use in this population. The aim of this paper was to determine whether the SF-36 questionnaire is a valid and reliable instrument in assessing self-perceived health status of adult survivors of childhood cancer. METHODS: We examined the SF-36 to see how it performed with respect to (1) data completeness, (2) distribution of the scale scores, (3) item-internal consistency, (4) item-discriminant validity, (5) internal consistency, and (6) scaling assumptions. For this investigation we used SF-36 data from a population-based study of 10,189 adult survivors of childhood cancer. RESULTS: Overall, missing values ranged per item from 0.5 to 2.9 percent. Ceiling effects were found to be highest in the role limitation-physical (76.7%) and role limitation-emotional (76.5%) scales. All correlations between items and their hypothesised scales exceeded the suggested standard of 0.40 for satisfactory item-consistency. Across all scales, the Cronbach's alpha coefficient of reliability was found to be higher than the suggested value of 0.70. Consistent across all cancer groups, the physical health related scale scores correlated strongly with the Physical Component Summary (PCS) scale scores and weakly with the Mental Component Summary (MCS) scale scores. Also, the mental health and role limitation-emotional scales correlated strongly with the MCS scale score and weakly with the PCS scale score. Moderate to strong correlations with both summary scores were found for the general health perception, energy/vitality, and social functioning scales. CONCLUSION: The findings presented in this paper provide support for the validity and reliability of the SF-36 when used in long-term survivors of childhood cancer. These findings should encourage other researchers and health care practitioners to use the SF-36 when assessing health status in this population, although it should be recognised that ceiling effects can occur

    CerebNet: A fast and reliable deep-learning pipeline for detailed cerebellum sub-segmentation

    Get PDF
    Quantifying the volume of the cerebellum and its lobes is of profound interest in various neurodegenerative and acquired diseases. Especially for the most common spinocerebellar ataxias (SCA), for which the first antisense oligonculeotide-base gene silencing trial has recently started, there is an urgent need for quantitative, sensitive imaging markers at pre-symptomatic stages for stratification and treatment assessment. This work introduces CerebNet, a fully automated, extensively validated, deep learning method for the lobular segmentation of the cerebellum, including the separation of gray and white matter. For training, validation, and testing, T1-weighted images from 30 participants were manually annotated into cerebellar lobules and vermal sub-segments, as well as cerebellar white matter. CerebNet combines FastSurferCNN, a UNet-based 2.5D segmentation network, with extensive data augmentation, e.g. realistic non-linear deformations to increase the anatomical variety, eliminating additional preprocessing steps, such as spatial normalization or bias field correction. CerebNet demonstrates a high accuracy (on average 0.87 Dice and 1.742mm Robust Hausdorff Distance across all structures) outperforming state-of-the-art approaches. Furthermore, it shows high test-retest reliability (average ICC >0.97 on OASIS and Kirby) as well as high sensitivity to disease effects, including the pre-ataxic stage of spinocerebellar ataxia type 3 (SCA3). CerebNet is compatible with FreeSurfer and FastSurfer and can analyze a 3D volume within seconds on a consumer GPU in an end-to-end fashion, thus providing an efficient and validated solution for assessing cerebellum sub-structure volumes. We make CerebNet available as source-code (https://github.com/Deep-MI/FastSurfer)
    • 

    corecore