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a b s t r a c t 

Quantifying the volume of the cerebellum and its lobes is of profound interest in various neurodegenerative and 

acquired diseases. Especially for the most common spinocerebellar ataxias (SCA), for which the first antisense 

oligonculeotide-base gene silencing trial has recently started, there is an urgent need for quantitative, sensitive 

imaging markers at pre-symptomatic stages for stratification and treatment assessment. This work introduces 

CerebNet , a fully automated, extensively validated, deep learning method for the lobular segmentation of the 

cerebellum, including the separation of gray and white matter. For training, validation, and testing, T1-weighted 

images from 30 participants were manually annotated into cerebellar lobules and vermal sub-segments, as well 

as cerebellar white matter. CerebNet combines FastSurferCNN , a UNet-based 2.5D segmentation network, with 

extensive data augmentation, e.g. realistic non-linear deformations to increase the anatomical variety, eliminating 

additional preprocessing steps, such as spatial normalization or bias field correction. CerebNet demonstrates a high 

accuracy (on average 0.87 Dice and 1.742mm Robust Hausdorff Distance across all structures) outperforming 

state-of-the-art approaches. Furthermore, it shows high test-retest reliability (average ICC > 0 . 97 on OASIS and 

Kirby) as well as high sensitivity to disease effects, including the pre-ataxic stage of spinocerebellar ataxia type 

3 (SCA3). CerebNet is compatible with FreeSurfer and FastSurfer and can analyze a 3D volume within seconds 

on a consumer GPU in an end-to-end fashion, thus providing an efficient and validated solution for assessing 

cerebellum sub-structure volumes. We make CerebNet available as source-code ( https://github.com/Deep-MI/ 

FastSurfer ). 
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. Introduction 

For decades, the cerebellum was attributed to have an exclusive role

n motor control. Recently, growing evidence suggests a more general

nvolvement of the cerebellum in the adaptive control also of cogni-

ive and emotional processing. In fact, morphometric studies demon-

trate significant cerebellar atrophy with age and in a number of non-

otor brain diseases, e.g. schizophrenia, autism or Alzheimer’s disease

 Diedrichsen et al., 2015; D’Mello et al., 2015; Han et al., 2020a; Lin

t al., 2020; Marek et al., 2018; Okugawa et al., 2003; Toniolo et al.,

018; Webb et al., 2009; Womer et al., 2016 ). In healthy humans, the

epresentation of cerebral networks and cognitive domains has been in-

estigated using functional connectivity ( Buckner et al., 2011 ) as well

s task functional MRI ( King et al., 2019 ). These complementary stud-

es have helped to increase knowledge about the role of the cerebellum

n cognitive and emotional processes. This notwithstanding, the cere-

ellum is crucial for motor control, in particular metric and power of

arget movements. With regard to movement disorders, cerebellar at-

ophy is the characterizing feature in ataxias, which manifest as ac-

uired, genetic, or sporadic degenerative diseases. With clinical fea-

ures including progressive loss of balance, coordination deficits, and

lurred speech, ataxia patients suffer substantial restrictions of mobil-

ty and communicative skills. In genetic ataxies, such as the worldwide

ost common autosomal dominantly inherited spinocerebellar ataxia

ype 3 (SCA3), the manifest or ataxic stage of the disease is preceded

y a pre-ataxic stage, in which neurodegeneration is already quantifi-

ble, e.g., as cerebellar atrophy, while manifest ataxia is not yet present

 Faber et al., 2021; Kim et al., 2021; Rezende et al., 2018 ). Preventive

nterventions that aim to silence the disease gene in pre-ataxic muta-

ion carriers offer a promising treatment option prior to clinical onset

 McLoughlin et al., 2018 ). Now, that the first clinical gene silencing

rial has recently started (ClinicalTrials.gov Identifier: NCT05160558),

here is an urgent need for non-invasive biomarkers to assess disease

anifestation and progression, and to quantify potential treatment ef-

ects as clinical scales lack sensitivity during the pre-ataxic stage. Accu-

ate cerebellar volume estimation from structural MRI is a relevant neu-

oanatomical marker. However, fast automated determination of cere-

ellar volumes is required, as detailed, manual volumetry, especially

f sub-regions, is too time-consuming. Clearly, automated segmentation

ill benefit various study designs, by reducing workload and by improv-

ng reliability. 

In the present work, we introduce CerebNet , an automated method to

ub-segment the cerebellum at the lobular level based on T1-weighted

RI. Our labels focus on a detailed boundary delineation between cere-

ellar gray matter (CGM) and cerebellar white matter (CWM) captur-

ng the branches of CWM that reach into the cerebellar cortex based

n T1-weighted MRI. Our deep learning method leverages the Fast-

urfer approach ( Henschel et al., 2020 ) of multiple 2D networks and

inimal pre-processing to obtain detailed boundary segmentations.

ince CerebNet does not require any preprocessing steps and performs

he localization and segmentation of 27 cerebellar regions in only

2 seconds per MRI, it is optimally suited to also efficiently process

nd screen in large data sets. With very labor-intensive manual ref-

rence segmentation, the methodological challenge is to achieve high

ccuracy and generalizability despite a small reference dataset. To

his effect, we perform extensive pre-training on representative cross-

tudy datasets and apply several data augmentation steps including

ealistic non-linear deformations to ensure wide applicability. More-

ver, we validate our method with respect to test-retest reliability and

n an association study of neuro-morphometric cerebellum markers

cross 109 SCA3 mutation carriers, including 42 pre-ataxic participants,

s well as 41 healthy controls. Results reveal stronger group differ-

nces for CerebNet consistent with known patterns of neurodegenerative

hanges. 
2 
.1. Protocols and anatomical reference 

The Schmahmann atlas ( Schmahmann et al., 1999 ) is the standard

natomical reference for cerebellar cortex sub-segmentation protocols

 Bogovic et al., 2013b; Park et al., 2014 ) including the “Spatially Unbi-

sed Infratentorial Template ” (SUIT) ( Diedrichsen, 2006 ). It introduces

 unified terminology of the nomenclature. Slices of the cerebellum are

irectly compared with the corresponding slices of MR images, thus

acilitating the identification of anatomical landmarks. Briefly summa-

ized, the CGM is macroscopically subdivided into the midline vermis

nd four hemispheric lobes: the anterior, posterior-superior, posterior-

nferior, and the flocculonodular lobe. The anterior and posterior lobes

re further subdivided into lobules. The vermis is subdivided analo-

ously to the hemispheres except for the anterior lobe. Like all previous

rotocols, ours follows the nomenclature introduced by Schmahmann

 Schmahmann et al., 1999 ) and our segmentation is largely comparable

o previous protocols ( Bogovic et al., 2013b; Diedrichsen, 2006; Park

t al., 2014 ). The protocols for segmenting the cerebellum on MR im-

ges differ in the level of detail at which single anterior lobules and ver-

al subsegments are distinguished or aggregated ( Bogovic et al., 2013b;

iedrichsen, 2006; Park et al., 2014 ). Previous work has largely only dif-

ered in finding an aggregation compromise in the level of detail for seg-

ents I-V. We detail a comparison between the different segmentation

rotocols as well as to related automated segmentation procedures in the

ppendix of our protocol for manual segmentation( Heinz et al., 2022 ).

t should be noted, that all previous protocols ignore the CWM strands

rojecting into the cerebellar cortex ( Bogovic et al., 2013b; Diedrichsen,

006; Park et al., 2014 ) simplifying the CGM/CWM boundary to a con-

ection line across the base of CWM strands. In consequence, details at

he CGM/CWM boundary of the cerebellum are not captured by any of

he previous protocols. To allow deeper analysis of the GM/WM bound-

ry in the cerebellum, we extend our protocol by a fine-grained segmen-

ation of CWM strands projecting into the cerebellar cortex. To foster re-

roducibility and extensibility, we establish and publish our illustrated

egmentation protocol online with this publication ( Heinz et al., 2022 ).

.2. Automated methods for cerebellar sub-segmentation 

Several methods have been presented for segmenting cerebellar sub-

tructures including both semi-automated ( Pierson et al., 2002 ) and

ully automated ( Bogovic et al., 2013c; Carass et al., 2018; Diedrich-

en, 2006; Han et al., 2020b ) approaches. While previous methods re-

ied on atlas-based registration ( Diedrichsen, 2006; Diedrichsen et al.,

009; Park et al., 2014; Plassard et al., 2016; Romero et al., 2017 ), ar-

ificial neural networks ( Powell et al., 2008 ), support vector machines

 Powell et al., 2008 ), level sets ( Bogovic et al., 2013a ), active appear-

nce models ( Price et al., 2014 ), and patch matching ( Romero et al.,

017; Weier et al., 2014 ), recent work introduced deep learning ( Han

t al., 2020b; 2019 ). 

The reference method “Spatially Unbiased Infra-tentorial Tem-

late ” (SUIT) ( Diedrichsen, 2006 ) pioneered fully automatic cere-

ellum sub-segmentation using non-linear registration to an atlas.

owell et al. (2008) compared atlas registration with fully connected

eural network and support vector machine segmentation methods, and

emonstrated superior performance of learning approaches. ACCLAIM

 Bogovic et al., 2013a ), which is based on the Multiple object Geomet-

ic Deformable Model framework ( Bogovic et al., 2013c; Carass and

rince, 2016 ), adapts a random forest for boundary classification to

roduce topologically correct results. The Multiple Automatically Gen-

rated Templates brain segmentation algorithm (MAGeT) ( Chakravarty

t al., 2013; Park et al., 2014 ) creates a template library, then non-

inearly registers the target image to each template. The final segmen-

ation is achieved by fusing multiple segmentations using majority vot-

ng. The Cerebellar Analysis Toolkit (CATK) ( Price et al., 2014 ) adapts
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ayesian active appearance modeling ( Patenaude et al., 2011 ) to gener-

te statistical models for shape and texture and their inter-relationship

s priors. RASCAL ( Weier et al., 2014 ) utilizes a patch matching-based

pproach, which improves the multi-atlas segmentation fusion method

f Coupe et al. ( Coupé et al., 2011 ) via majority voting for label fu-

ion and nonlinear registration. CERES ( Romero et al., 2017 ), another

atch matching-based segmentation tool, employs the Optimized Patch-

atch Label fusion (OPAL) method ( Giraud et al., 2016; Ta et al., 2014 ).

ERES2 ( Carass et al., 2018 ) improves upon CERES ( Romero et al.,

017 ) by adding a patch-based boosted neural network method for error

orrection. CGCUTS ( Yang et al., 2016 ) combines multi-atlas labeling

nd random forest classification in the context of a graph cut frame-

ork to produce the segmentation. Van der Lijn et al. ( van der Lijn

t al., 2009 ) present a method that combines an appearance model

nd atlas registration. Carass et al. ( Carass et al., 2018 ) summarize

nd compare several cerebellum sub-segmentation methods, highlight-

ng CERES2 ( Carass et al., 2018; Romero et al., 2017 ) as the most per-

ormant ‘traditional’ (i.e. non deep-learning) approach. However, while

mage processing with CERES1 is supported online, CERES2 is unavail-

ble to the scientific community. 

The most recent cerebellum sub-segmentation tool, Anatomical Par-

ellation using a U-Net with Locally Constrained Optimization (ACA-

ULCO) ( Han et al., 2020b ), introduces a two-step deep learning method

ith two 3D convolutional neural networks (CNNs) to first localize and

hen sub-segment the cerebellum, outperforming the challenge winner

ERES2 ( Carass et al., 2018 ) in a head-to-head comparison. Preprocess-

ng steps include bias field inhomogeneity correction and registration

o MNI space. However, both the training and the evaluation procedure

nclude some short-comings, e.g. by forcing nearest neighbor label inter-

olation both during training and evaluation, predominantly reducing

etail in fine structures such as thin CWM strands. In fact, reported per-

ormance metrics were calculated entirely in MNI space, which required

ossy nearest neighbor interpolation of manual reference labels to MNI

pace potentially mischaracterizing segmentation performance. 

In contrast to ACAPULCO, our method does not require any prepro-

essing steps such as bias field correction or spatial (atlas) normaliza-

ion/registration during inference. Moreover, to increase the anatomi-

al variety in our training data, we employ various augmentation ap-

roaches, e.g. we generate realistic non-linear deformations via cross-

ubject registration of training images to various images from multiple

atasets. To further improve the generalization of our model we pre-

rain the model on a compiled cross-study dataset. We examine the effect

f data augmentations such as non-linear deformation and pre-training

n several experiments. In our proposed method, the neural network

rchitecture follows FastSurferCNN , a 2.5D approach in which three 2D

etworks for each axial, coronal, and sagittal view are trained and the fi-

al 3D prediction is created by view-aggregation ( Henschel et al., 2020 ).

.3. Contributions 

This work presents five contributions: 

• A detailed labeling protocol ensuring replicability and extensibility

for the 25 cerebellar cortex labels and 2 cerebellar white matter seg-

mentations including the fine branching, as well as a manual ref-

erence dataset of consensus cerebellar subsegmentation labels for

training and testing. 

• A training methodology with extensive data augmentation including

realistic deformations to address the challenge of a small training

dataset. 

• Detailed method ablation to establish design choices in dedicated

experiments on a subset of cases, not overlapping with the training

or test sets. 

• CerebNet consistently and significantly outperforms state-of-the-art

cerebellum sub-segmentation methods with respect to accuracy and

test-retest reliability. 
3 
• Sensitive CerebNet segmentations reproduce cerebellar atrophy ef-

fects in the pre-ataxic stage of spinocerebellar ataxia type 3 with a

superior group separability. 

. Methods 

We first describe the datasets for training, validation, and testing of

erebNet , then continue with the description of our method, and finally

etail the evaluation. 

.1. Datasets 

.1.1. CerebNet dataset 

We assemble a diverse cerebellum sub-segmentation dataset for

raining, validation and testing of models based on acquisitions from on-

oing observational studies. This superset includes participants equally

istributed between healthy controls as well as pre-ataxic and ataxic

CA3 mutation carriers, thereby covering a broad range of different de-

rees of cerebellar atrophy. 

Participants 32 T1-weighted MRI of SCA3 mutation carriers and

ealthy controls were acquired at 4 sites: Bonn and Aachen, Germany,

ijmegen, The Netherlands and Minneapolis, MN, US. All participants

rovided written informed consent according to the guidelines set by

he local institutional review boards. Two cases with visible motion ar-

ifacts were excluded, resulting in the final CerebNet dataset of 20 SCA3

utation carriers, covering the whole disease course of SCA3 from early

re-ataxic to late ataxic disease stages, and 10 healthy controls of the

ame age range. In Table 1 , we report demographics (age, sex) and

taxia severity, assessed with the Scale for Assessment and Rating of

taxia (SARA) ( Schmitz-Hübsch et al., 2006 ) for the three groups. For

CA3 mutation carriers, we also report the CAG repeat length. To divide

CA3 mutation carriers into pre-ataxic (SARA < 3 , 𝑁 = 11 ) and ataxic

ndividuals (SARA ≥ 3 , 𝑁 = 9 ), we follow the established SARA cut-off

alue of 3, corresponding to the mean plus 2 standard deviations of the

ealthy control group distribution from the original SARA validation

tudy ( Schmitz-Hübsch et al., 2006 ). 

MRI scans All T1-weighted MRI were acquired as MPRAGE on 3T

IEMENS scanners (Siemens Medical Systems, Erlangen, Germany). All

cans share an isotropic resolution of 1mm, FOV 256 × 256 and 192

lices, acquired in sagittal direction with a 32-channel head coil. Bonn

 𝑁 = 16 , Skyra), Minnesota ( 𝑁 = 7 , Prisma Fit), and Aachen ( 𝑁 = 4 ,
risma) acquired at TR = 2500ms, TE = 4.37ms, TI = 1100ms, FA = 7°,

hile Nijmegen ( 𝑁 = 4 , Trio) acquired at TR = 2300ms, TE = 3.03ms,

I = 1100ms, FA = 8°. 

Segmentation Protocol Following the Schmahmann atlas

 Schmahmann et al., 1999 ) as anatomical reference, we define 27

isjoint macroscopic subsegments of the cerebellum. In addition to 20

emispheric lobules (10 for each hemisphere), we include 5 vermis

abels and two CWM labels (left and right). The cerebellar segmentation

s divided into 6 hierarchical steps, gradually moving from large-scale

tructures to the subdivision of cerebellar lobules. First, we delineate

he CGM cortex with an exact outer boundary separating CGM from

erebrospinal fluid and other subtentorial structures, such as cranial

erves ( Step 1 ). In this step, any inwardly projecting CWM branches are

gnored. Subsequently, the four lobes ( Step 2 ), and the vermis ( Step 3 )

re segmented. We conduct the sub-segmentation of the hemispheric

obules ( Step 4 ) as well as the subdivision of the vermis ( Step 5 ). Finally,

he fine delineation of the CWM including its branches into the CGM

ortex band and a consistent boundary towards the brainstem is drawn

 Step 6 ). The detailed protocol is publicly available for reproducibility

 Heinz et al., 2022 ). 

Manual Reference Standard The correct subdivision of the cerebel-

ar cortex into lobules is critical, since the cerebellum shows a high

orphological variability of its anatomical structure ( Fig. 1 ). At the

sotropic resolution of 1mm, it remains challenging to precisely deter-

ine whether a single small folia or branch belongs to one or an adja-
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Table 1 

Demographic and characterizing data of the CerebNet data set cohort consisting of pre-ataxic and ataxic SCA3 muta- 

tion carriers as well as healthy controls (HC). 1 Time to onset is given in years. The reported time from onset (defined 

as the first occurrence of gait disturbances) is given where available and for the remaining seven pre-ataxic mutation 

carriers, not yet experiencing gait disturbances, we estimated the time to onset following the model introduced by 

Tezenas et al. [42], which depends on both the number of CAG RL as well as the actual age; SD = standard deviation, 

CAG RL = CAG repeat length of the longer allele. 

Group N age [years] sex SARA Time to ataxia onset 1 CAG RL 

mean ± SD [range] m/f mean ± SD [range] mean ± SD [range] mean ± SD 

HC 10 43.9 ± 13.22 [22; 63] 4/6 0.3 ± 0.54 [0; 1.5] n.a. n.a. 

pre-ataxic SCA3 11 31.6 ± 7.1 [20; 43] 4/7 1.4 ± 0.8 [0; 2.5] -4.5 ± 6.4 [-13.8; 8.0] 72.4 ± 3.1 

ataxic SCA3 9 44.6 ± 7.3 [32; 57] 6/3 12.6 ± 4.5 [7; 19] 8.4 ± 5.4 [1.0; 8.0] 70.89 ± 4.11 

Fig. 1. Segmentation examples of a fully automated segmentation of CerebNet in 

a healthy control (A, B) as well as a symptomatic SCA3 patient (C, D) projected 

onto a coronal and sagittal slice. 
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ent lobule. To address this, all lobular boundaries within the cerebel-

ar cortex ( Step 1-5 ) are subsegmented by two experienced raters on all

RIs independently. To unify differences between the two raters, cor-

ex segmentations are reviewed by an interdisciplinary team consisting

f the experienced raters as well as a neurologist and a neuroradiolo-

ist. A consensus was reached for all cases. Furthermore, a team of four

rained raters delineated the fine-grained CGM/CWM boundary ( Step 6 ).

he final consensus segmentation together with the CWM delineations

epresents the manual reference standard for training, validation, and

esting of our method. We split the participants contained in the final

eference dataset into 18/4/8 for training, validation, and testing. For

ndividual splits, we preserve the distribution of controls, pre-ataxic and

taxic participants. 

.1.2. Cross-study pre-training dataset 

For pre-training purposes, we compile a dataset of 160 T1-weighted

mages gathered from the Autism Brain Imaging Data Exchange II

ABIDE II) ( Di Martino et al., 2017 ), the Alzheimers Disease Neu-

oimaging Initiative (ADNI) ( Mueller et al., 2005 ), the UCLA Consortium

or Neuropsychiatric Phenomics LA5c Study (LA5c) ( Poldrack et al.,

016 ), the Open Access Series of Imaging Studies 1 and 2 (OASIS-

 

3 ( Marcus et al., 2007 ) and OASIS-2 ( Marcus et al., 2010 )), and the

inimal Interval Resonance Imaging in Alzheimers Disease (MIRIAD)

 Malone et al., 2013 ). For these 160 cases, we automatically generate

erebellar sub-segmentation labels using SUIT v3.3 ( Diedrichsen, 2006;

iedrichsen et al., 2009 ). SUIT is an atlas-based segmentation tool which
3 Excluding cases from the OASIS-1 reliability section. 

a

 

s  

4 
rovides segmentations of 28 sub-regions of the cerebellar cortex at the

evel of cerebellar lobules and a sub-segmentation of the vermis accord-

ng to the Schmahmann atlas ( Schmahmann et al., 1999 ). Since SUIT

oes not provide segmentations for CWM, we additionally process all

60 images with FreeSurfer (FS) ( Fischl et al., 2002 ) and merge FS-

enerated CWM with the cerebellar sub-regions labels from SUIT. Gaps

etween cerebellar CWM and CGM are resolved by mapping them to the

earest CGM structure. The compiled external dataset is split into 140

raining and 20 validation cases and is exclusively used for pre-training

f our model. 

.1.3. Deformation dataset for augmentation 

To increase variability of our training data, we generate realistic

on-linear deformations for data augmentation. For this we generated

n auxiliary dataset of 100 cases selected from ABIDE II ( Di Mar-

ino et al., 2017 ), ADNI ( Mueller et al., 2005 ), LA5c ( Poldrack et al.,

016 ), OASIS-1 3 ( Marcus et al., 2007 ) and OASIS-2 ( Marcus et al.,

010 ), MIRIAD ( Malone et al., 2013 ), and the Human Connectome

roject (HCP) ( Van Essen et al., 2012 ). 

.1.4. Test-retest dataset 

We use the OASIS-1 (reliability subset) ( Marcus et al., 2007 ) and

irby ( Landman et al., 2011 ) datasets for test-retest analysis. OASIS-1

ontains 20 participants that were scanned no more than 90 days apart

all except 5 less than 30 days). The Kirby dataset consists of scan-rescan

PRAGE images of 21 healthy participants with one hour break be-

ween scanning sessions. 

.2. Cerebellar sub-segmentation method 

This section introduces our cerebellar sub-segmentation pipeline,

onsisting of an initial localization step to extract the relevant cere-

ellum region, a subsequent multi-view ensemble for CNN-based seg-

entation, and a final view-aggregation step to merge the predictions.

he pipeline accepts unprocessed 1.0mm T1-weighted images and out-

uts segmentation maps and tabulated volume reports. To achieve high

ccuracy, the relatively small size of the manual reference standard re-

uires special consideration. We address it by pre-training with a rep-

esentative cross-study dataset as well as applying data augmentation.

pecifically, intensity and spatial data augmentation techniques such as

ealistic deformations increase the diversity presented to the network

uring training and, thus, its performance. 

Localization To constrain the sub-segmentation network to the cere-

ellum and reduce memory and computational requirements, we crop a

ounding box of 128 × 128 × 128 isotropic 1mm voxels containing both

erebelli. The bounding box is placed symmetrically around the full

erebellar region obtained from a quick single-view (coronal) FastSurfer

egmentation ( Henschel et al., 2020 ). A visual inspection of this local-

zation approach confirms the cerebellum is always correctly localized

nd fully contained within the bounding box in all cases. 

Cerebellar Sub-segmentation Network The method for cerebellum sub-

egmentation follows FastSurfer ( Henschel et al., 2020 ). Briefly, in its
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.5D approach, FastSurfer utilizes an ensemble of three two-dimensional

NNs ( FastSurferCNN ) – each of these processing the MRI images sliced

n a different direction (axial, coronal, and sagittal views). A final view-

ggregation step combines the resulting label probability maps in prob-

bility space. FastSurferCNN is a U-Net-based fully CNN architecture

ith a dense encoder and decoder block per depth-level. In contrast to

ts predecessor ( Guha Roy et al., 2019 ), the architecture extends the

ense blocks and unpooling operations with a local competition ap-

roach ( Estrada et al., 2018; 2020 ) and gathers information in the third

imension via spatial information aggregation (SPI). The SPI approach

rovides the network with a wider volumetric context by stacking ad-

itional three preceding and three succeeding neighboring slices for a

otal of 7 input channels. Both the view aggregation and the SPI ap-

roach together allow the method to process 3D information, while at

he same time retaining the computational advantages of 2D networks,

rimarily lower memory requirements and sample efficiency, i.e. 1. a

ower number of parameters compared to 3D networks and 2. 3D MRI

re split into slices increasing the number of samples presented to the

etwork. 

Spatial Augmentations Spatial augmentations such as flipping, trans-

ation, rotation, and scaling were used during training to improve the

obustness of our model. We encode these transformation as a 3 × 3
n-slice transformation matrix in homogeneous coordinates with coeffi-

ients uniformly sampled from predefined ranges. Random offsets along

he in-slice-axes for translation are selected from -12 to 12mm to sim-

late cerebellum centroid variation. We sample the scaling factor from

.95 to 1.2. The image is rotated in-slice with respect to its center with

ngles uniformly sampled from -20° to 20°. We also apply a random

eft-right flip, i.e., both the image and its labels are mirrored, but la-

el IDs are swapped with respect to the mid-plane separating the two

emispheres keeping left-labels on the left. 

Augmentation with non-linear Deformation To increase variability of

ur training data, we perform static augmentation with 500 non-linearly

eformed training images. For this, we first non-linearly register each

mage of the Deformation (see Section 2.1.3 ) to 5 randomly selected im-

ges from the training split of the CerebNet dataset (see Section 2.1.1 )

sing ANTs v2.3.1 ( Avants et al., 2008 ). We ensure each manually la-

eled CerebNet case is at least paired once. For each of the resulting 500

natomically realistic deformation fields, we then map both image and

anual label from the training split of the CerebNet dataset using the

btained deformation field. In effect, this procedure drastically increases

he anatomical variance presented to the network during training. 

Intensity Augmentations Random MRI magnetic field inhomogeneities

re synthesized and linearly superimposed to the images to increase

he robustness of the model to bias field artifacts. We generate the

ugmented inhomogeneity field by linear-combination of randomly

eighted cubic polynomial basis functions ( Van Leemput et al., 1999 ).

he coefficients of the basis functions are uniformly sampled from a -0.5

o 0.5 range. 

.3. Metrics for evaluation 

To establish the quality and accuracy of CerebNet with respect to vol-

metric and geometric features, we evaluate the resulting segmentations

ith three common segmentation metrics: The Dice Score , calculated as

he general label overlap, is well established as a good compromise be-

ween volumetric and geometric segmentation properties; the Hausdorff

istance serves as a metric for geometric and spatial similarity, and fi-

ally the Volume Similarity completely ignores overlap and spatial dis-

ance, but most directly evaluates the reliability for volumetric measures

ommonly used in statistical modeling. 

Dice Score The Dice score (Dice) ( Dice, 1945; Sørensen and Julius,

948 ), is one of the most frequently used metrics in validating semantic

egmentations. If 𝑃 and 𝐺 are the segmentation maps of the network
5 
rediction and ground-truth respectively, then Dice is defined as: 

ice = 2 × |𝐺 ∩ 𝑃 |

|𝐺| + |𝑃 |
, (1)

here |. | represents cardinality. It measures overlap of 3D volumes on

 scale between 0 and 1, where a value of 1 indicates exact agreement

nd 0 disjoint segmentations. 

Hausdorff Distance To evaluate the quality of segmentation bound-

ries we calculate the distance between the manual and the automatic

egmentation boundaries. In particular, this distance metric allows to

est the overall accuracy of the boundary delineation emphasizing the

orrect contour. As this distance-metric decreases, segmentation bound-

ries more closely correspond to each other locally, i.e. more agree-

ent of geometric details. Boundary distances can be quantified by

he standard Hausdorff Distance (HD) or the Robust Hausdorff Distance

HD95). The standard HD measures the maximum distance and there-

ore is strongly affected by local outliers. HD95 – the 95% percentile

f distances between surfaces ( Huttenlocher et al., 1993 ) – is less sensi-

ive to outliers and consequently more informative when analyzing the

eneral trend. Formally, for boundaries 𝐵 𝐺 (of the ground-truth label

ap 𝐺) and 𝐵 𝑃 (of its predicted correspondent), we use their distances

 𝐺↔𝑃 = { min 𝑔∈𝐵 𝐺 𝑑( 𝑝, 𝑔) | ∀𝑝 ∈ 𝐵 𝑃 } ∩ { min 𝑝 ∈𝐵 𝑃 𝑑( 𝑝, 𝑔) | ∀𝑔 ∈ 𝐵 𝐺 } to
ompute HD and HD95 as 𝑑 HD = max 𝐷 𝐺↔𝑃 and P( 𝑑 < 𝑑 HD95 ) < 0 . 95 ,
 ∈ 𝐷 𝐺↔𝑃 . 

Volume Similarity Volume similarity ( 𝑣𝑜𝑙 sim 

) compares the absolute

olume difference with the sum of volumes. Given 𝑉 𝐺 and 𝑉 𝑃 , the vol-

mes of the ground-truth and predicted segmentations ( 𝐺 and 𝑃 ), 𝑣𝑜𝑙 sim 

s calculated as 

𝑜𝑙 sim 

= 1 − 

|
|𝑉 𝐺 − 𝑉 𝑃 

|
|

𝑉 𝐺 + 𝑉 𝑃 
. (2)

ince this metric ignores overlap and geometric information, the opti-

al similarity (a value of 1) can be achieved for two segmentations of

he same size, even if their spatial overlap is zero. However, its inde-

endence from spatial correspondence enables cross-acquisition com-

arison, e.g. for test-retest analysis, without requiring image alignment.

Intraclass Correlation Coefficient The Intraclass Correlation Coefficient

ICC) ( Shrout and Fleiss, 1979 ) evaluates the reliability and agreement

etween measurements. Its values range from 0 to 1 with larger values

epresenting higher reliability. We also compute the 95% confidence in-

erval around the ICC. For test-retest scenarios, we calculate the ICC as

 measure of agreement between two repeated scans of the same partic-

pant (relative agreement, single fixed rater). Since scans are acquired

n close temporal proximity, we assume only little volumetric changes

nd thus a high ICC. 

.4. Implementation details 

Here, we detail the training of CerebNet and our adaptations of state-

f-the-art methods to establish compatibility with our labeling protocol.

CerebNet Training We train each network for axial, coronal, sagittal

iews independently for 70 epochs with a batch size of 128 using one

VIDIA Tesla V100 GPU with 32 GB RAM. We use the AdamW ( Kingma

nd Ba, 2015; Loshchilov and Hutter, 2019 ) optimizer with a weight

ecay of 10 −4 and an initial learning rate (LR) of 0.01. The reduce on

lateau strategy for scheduling updates the LR based on the Dice score

n the validation set. This strategy reduces the LR by a factor of 0.01, if

here is no improvement in Dice score for 4 epochs. 

ACAPULCO Re-Training In order to detach protocol and training data

ifferences from method features, we retrain the deep learning method

CAPULCO ( Han et al., 2020b ) with our data following identical splits,

ereafter referred to as ACAPULCO 

rt . For this, we start with the pub-

ished method code of ACAPULCO and configure the dataset loader to

ccept our dataset. Since we do not have access to the ACAPULCO train-

ng data, training our method on their data for comparison is not possi-

le. We trained ACAPULCO with the publicly available source code and

herein defined hyperparameters. 
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Fig. 2. Dice score (larger values are better) and Robust Hausdorff Distances (HD95, smaller values are better) on validation cases for comparison of baseline, individual 

method contributions (not cumulative) and CerebNet. CerebNet combines multiple data augmentations with pre-training on a representative cross-study dataset. 

Deformation-250/500 indicates the number of realistic deformation fields used for static augmentation. The baseline model is our network without augmentation or 

pre-training. Error bars indicate 95% confidence intervals. 
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SUIT+FS The leading traditional method ( Carass et al., 2018 ), SUIT

 Diedrichsen et al., 2009 ) does not rely on a deep learning approach

nd is only compatible with the CerebNet labels after combination with

reeSurfer ( Fischl et al., 2002 ). In analogy to Section 2.1.2 , we therefore

erge SUIT cerebellum sub-segmentation labels with FreeSurfer ’s CWM

egmentation (SUIT+FS) to obtain the full set of labels. 

. Results 

We report detailed results for multiple experiments to assess the per-

ormance of CerebNet . First, we ablatively establish the configuration

nd parameters of CerebNet on a validation hold-out set. Second, keep-

ng method parameters fixed from here on, we compare the average

erformance of CerebNet with the state-of-the-art using four volumet-

ic and geometric metrics: the Dice Score, two Hausdorff distances, and

olume similarity. We investigate regional performance differences of

hese methods for all cerebellar sub-structures. Third, we contextualize

he accuracy of CerebNet with differences between raters. Fourth, we

ompare the test-retest reliability of CerebNet with the state-of-the-art

ethod ACAPULCO ( Han et al., 2020b ). Finally, we validate whether

erebNet reproduces known group differences between pre-ataxic and

taxic patients and healthy controls. 

.1. Ablation experiments 

We perform several experiments to determine, how different changes

o the data augmentation impact the performance of our method. In

pecific, we isolate the individual effects of different data augmentation

ethods and pre-training. We assess random flipping (Flip), bias field,

ffine deformation, and realistic non-linear deformation (Deformation-

, we test 𝑁 = 250 and 𝑁 = 500 deformation fields). While the baseline

oregoes all data augmentation and pre-training, CerebNet combines all

ata augmentations with pre-training. All individual contributions im-

rove results over the baseline ( Fig. 2 ) in both Dice and Robust Haus-

orff Distance (HD95) evaluations. Finally, the combination of all con-

ributions clearly improves the results over any individual approach.

e exclusively evaluate on validation cases for this analysis to avoid

ata-leakage. 

.2. Comparison with the state-of-the-art 

In a summary evaluation, we compare the overall performance of

erebNet , ACAPULCO 

rt ( Han et al., 2020b ) and SUIT+FS ( Diedrichsen,

006; Fischl et al., 2002 ) on the test subset of the CerebNet dataset
6 
 Section 2.1.1 ). On average across all segmented structures, CerebNet

chieves a 0.870 per-structure Dice score and a 1.742mm Robust Haus-

orff distance, which is the 95% percentile of surface-to-surface dis-

ances. In comparison with both state-of-the-art approaches, CerebNet

utperforms either approach significantly in all four metrics ( 𝑝 < . 01 ,
ee Fig. 3 ): the Dice score, Hausdorff distance (HD), Robust Hausdorff

istance (HD95) and volume similarity. 

Results for individual structures are very consistent across all four

etrics. Therefore, we focus further analysis and discussion on the Dice

core and the Robust Hausdorff Distance. Specifically, we favor the

obust implementation, since its robustness to outliers better reflects

he accuracy across the surface, yet the high margin of 95% ensures

arger structures (like CWM strands) are captured. Additionally, conclu-

ions and reported significance values (derived by a Wilcoxon signed-

anked test) are completely independent of the choice of Hausdorff

etric. 

Dice Score CerebNet surpasses a 0.75 Dice score for all 27 individual

tructures and exceeds 0.95 Dice for the joint CWM. In fact, the least per-

orming structures (specifically lobes VIIb and VIIIa/b) are “thin struc-

ures ” sharing predominantly hard to define boundaries with other gray

atter regions. CerebNet outperforms ACAPULCO 

rt in 22 of 27 individ-

al structures. In 14 out of 27 structures the improvement is significant

10 times 𝑝 < . 01 and 4 times 𝑝 < . 05 , Fig. 4 ). For regions, with better per-

ormance of ACAPULCO 

rt , the difference is usually small and never sig-

ificant. CerebNet also significantly improves over ACAPULCO 

rt segmen-

ations for both merged gray matter and merged vermis regions ( 𝑝 < . 01 ,
ig. 4 ). In comparison to the traditional SUIT+FS method, CerebNet al-

ays achieves better Dice scores, which are also statistically significant

or all but three sub-structures ( Fig. 4 ). 

Robust Hausdorff Distance (HD95) On average, CerebNet achieves a

D95 distance of 1.742mm improving substantially over ACAPULCO 

rt 

y 0.779mm. Across different vermis regions, the Crus I and lobe X

egions and the merged gray matter region, CerebNet even exceeds a

.25mm threshold. Larger distances remain in the lobes, where hard

o reproduce lobe-to-lobe boundaries dominate the evaluation. Across

ll 27 structures, CerebNet outperforms ACAPULCO 

rt in 26 of 27 struc-

ures (significantly for 14 structures, 5 times 𝑝 < . 01 , 9 times 𝑝 < . 05 ,
ig. 4 ). In fact, the large performance differences for the merged CWM

nd CGM (both ⪆ 2 𝑚𝑚 ) clearly indicate the differences between meth-

ds ( Fig. 4 ). Compared with SUIT+FS, CerebNet demonstrates a superior

erformance consistently. 

To quantify the robustness of CerebNet , we perform an outlier analy-

is for the Dice and Robust Hausdorff results. All data points are within

.5 standard deviations of the per class mean. 
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Fig. 3. Comparison of mean a) Dice score (larger values are better), b) Volume similarity (larger values are better), c) Robust Hausdorff Distance (HD95, smaller 

values are better), and d) Hausdorff Distance (HD, smaller values are better) over all structures and participants. CerebNet outperforms both ACAPULCO 

rt (which is 

retrained on our dataset for direct comparison) and SUIT+FS. Error bars indicate 95% confidence intervals. Statistical significance for all results is confirmed by 

two-sided non-parametric Wilcoxon signed-rank tests ( ∗∗ : 𝑝 < . 01 ). 
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.3. Inter-rater reproducibility 

In our experience, delineation of cerebellar sub-structures, manual

r automatic, is a challenging task due to the inherent uncertainty and

ack of information to determine boundaries between cerebellar lobules

ven at 1mm isotropic resolution. To evaluate the CerebNet performance

n the context of the reliability of manual segmentation, we analyze

erebNet segmentation errors together with the inter-rater variability.

igs. 4 and 5 share the same evaluation results for CerebNet in both cases

omparing CerebNet predictions with the final “consensus segmentation ”

after Step 6, see Section 2.1.1 ). However, for best annotation quality,

abels from multiple raters are merged and harmonized in Step 6 of the

rotocol (see Section 2.1.1 ). To consistently and comparably represent

he inter-rater reliability, we compare labels from one rater prior to this

armonization (after Step 5) to the “consensus ”. Since Step 5 data also

oes not include CWM labels, we exclude segmentation errors along the

GM/CWM boundary in the inter-rater evaluation (i.e. we mask out the

WM as defined in the “consensus ”) and only consider CGM regions for

valuation. 

To evaluate the inter-rater variability, we utilize the Dice score

nd the Robust Hausdorff Distance (HD95). Fig. 5 illustrates per-region

erebNet and inter-rater Dice scores and HD95 on the CerebNet test set.

oth volumetric and geometric segmentation scores are strongly corre-

ated and – in most cases – at similar levels. Specifically, lower CerebNet

erformance values also map to lower inter-rater reliability in lobes V,

IIb and VIIIa/b. Results to lobe X as well as vermis VII/IX/X are out-

iers to this observation, where CerebNet provides good segmentations

espite – in comparison – low inter-rater reliability. 

.4. Test-retest reliability 

With the substantial time and labor requirements of manual seg-

entation, crucial external validation of methods is not easily possible.

owever, test-retest datasets with multiple scans of the same under-

ying anatomy and acquisition/machine properties offer the opportu-

ity to test the reliability of methods. The OASIS-1 reliability dataset

 Marcus et al., 2007 ) and Kirby dataset ( Landman et al., 2011 ) are

ot only acquired at sites and in studies independent of the CerebNet

ataset, but also feature 1.5T Siemens and 3T Philips scanners, respec-

ively. To avoid influences of potentially error-prone image registration

nd interpolation, only per-structure volumes will be compared, as all

eometric analysis would require alignment of baseline and follow-up

cans. 

Here, we compare the reliability of regional volumes with the intra-

lass correlation coefficient (ICC) and the volume differences derived

rom the two test-retest images. In Fig. 6 , we plot the ICC values (and

ts 95% confidence interval) of CerebNet and ACAPULCO 

rt for the two

atasets. Statistical significance tests, however, are directly performed

n volume differences using a Wilcoxon signed-rank test to compare the
7 
ethods. The ICCs of CerebNet and ACAPULCO 

rt range between 0.635

nd 0.997 across both datasets with – in most cases – more consistent

esults (higher ICC) for CerebNet . In fact, the ICC is superior for CerebNet

ver ACAPULCO 

rt in 24 of 27 sub-structures for the Kirby data and in

3 out of 27 sub-structures for the OASIS1 data set set as well as for the

ombined regions of the vermis and the left and right hemispheric CGM.

his difference was significant in 17 (9) out of all 30 structures for the

ASIS1 (Kirby) data set (only once in favor of ACAPULCO 

rt , Fig. 6 ). In

articular, CerebNet was more consistent as evidenced by much lower

tandard deviations and smaller 95% confidence intervals of the ICC for

ach sub-structure in comparison to ACAPULCO 

rt ( Fig. 6 ). 

.5. Volumetric changes in pre-ataxic and ataxic spinocerebellar ataxia 

ype 3 (SCA3) 

We analyzed the cerebellar volumes of 109 SCA3 mutation carriers

nd 41 healthy controls (HC), who are participants of ongoing obser-

ational studies and gave their written informed consent. MRI were ac-

uired at 7 EU and 2 US sites. All T1-weighted images were acquired on

T SIEMENS scanners (Siemens Medical Systems, Erlangen, Germany)

ith an isotropic resolution of 1mm. To establish generalizability of

erebNet to this dataset, we visually inspect a random subset of 5 cases

er group (total 𝑁 = 15 ) finding good segmentation quality with no out-

iers. 

To investigate group differences between pre-ataxic and ataxic SCA3

s well as healthy controls, we used a linear mixed-effects model with

he co-variables age and estimated total intracranial volume (eTIV)

s well as group (pre-ataxic SCA3, ataxic SCA3 and HC) and sex as

xed and scanner as random factors, respectively. Ataxia severity was

ssessed with the Scale for Assessment and Rating of Ataxia (SARA)

 Schmitz-Hübsch et al., 2006 ). We applied the common SARA cut-off

alue of 3 to divide the group of SCA3 mutation carriers into pre-ataxic

SARA < 3 ) and ataxic (SARA ≥ 3 ) individuals ( Jacobi et al., 2020 ). The

TIV was assessed using FreeSurfer 6.0 ( Buckner et al., 2004 ). Cerebel-

ar volumes were compared between pre-ataxic SCA3 (N = 42 , mean age

8.02 years, 62 . 91% female, mean SARA 1.25) and ataxic SCA3 (N = 67 ,
ean age 49.94 years, 35 . 82% female, mean SARA 12.05) as well as

ealthy controls (N = 41 , mean age 43.95, female 43 . 90% , mean SARA

.27). In the post-hoc analyses of pairwise comparisons, we applied

onferroni correction for multiple comparisons. P-values smaller than

 < . 05 after Bonferroni correction were considered significant. 

For CerebNet -derived per-region volumes, pre-ataxic SCA3 mutation

arriers already showed significant volume reduction in comparison to

C in the right lobules I-IV, left and right lobule X, vermis IX as well

s the left and right CWM. We detected significant volume reduction

f ataxic patients in comparison to pre-ataxic SCA3 mutation carriers

n left and right lobule VI, Crus II, VIIb, VIIIa and left VIIIb, left and

ight X and the left and right CWM. These results reaffirm that cere-

ellar neurodegeneration already starts before the clinical onset of the
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Fig. 4. Dice score (larger values are better) and Robust Hausdorff Distance (HD95) (smaller values are better) per sub-structure for CerebNet , ACAPULCO 

rt and 

SUIT+FS. Illustrations show the cross-subject average of the metric (bar) and corresponding, bootstrapped 95% confidence intervals (error bars), data points (eight 

per bar, may overlap) as well as the significance level calculated by a Wilcoxon signed-rank test ( ∗∶ 𝑝 < . 05 and ∗∗∶ 𝑝 < . 01 ). CGM: Cerebellar Gray Matter; CWM: 

Cerebellar White Matter. 
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isease and is ongoing throughout the disease course with a very early

nd continuous involvement of cerebellar white matter. 

In Fig. 7 , we evaluate the power of our neuro-morphometric mea-

ures to separate between different groups: HC and pre-ataxic SCA3

utation carriers (top) as well as pre-ataxic SCA3 and ataxic SCA3

bottom). While in a direct competition of methods, only CerebNet and

he original ACAPULCO ( Han et al., 2020b ) are available publicly,

e also include ACAPULCO 

rt (which is retrained with our labels, see

ection 2.4 ) to illustrate the impact of both our high-quality training

ata and its interaction with our segmentation pipeline. A clear differ-

nce between the methods is already apparent in the varying details

f the highly significant CWM segmentations and its branches. Even
8 
CAPULCO 

rt does not achieve the degree of detail available in CerebNet ,

n spite of it using the same training data. While a direct comparison of

-values is usually not possible, here it is meaningful as the methods op-

rate on exactly the same input images. This is because the p-values of

he group effect are monotonically connected to the absolute value of the

-statistic (effect size divided by standard error). More significant effects,

.e. smaller p-values illustrated in Fig. 7 by more saturated colors, indi-

ate better group separation. In the group comparison of pre-ataxic mu-

ation carriers to HC, ACAPULCO showed unexpected, non-significant

olume increases in two structures and ACAPULCO 

rt in one structure

blue regions in Fig. 7 ). Comparing the p-values for group separation

etween pre-ataxic SCA3 mutation carriers and healthy controls, Cereb-
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Fig. 5. Comparison of Inter-rater reliability and CerebNet by Dice score and Robust Hausdorff Distance (HD95) per sub-structure. Error bars indicate 95% confidence 

intervals. CGM is Cerebellar Gray Matter and CWM is Cerebellar White Matter ( ∗∶ 𝑝 < . 05 and ∗∗∶ 𝑝 < . 01 ). 

N  

v  

b  

s  

c  

f  

n  

b  

C

4

 

d  

v  

a  

d  

e  

v  

e  

s  

a  

a  

c  

d  

r  

m  

t

et showed smaller p-values in more structures than ACAPULCO (10

ersus 4) as well as ACAPULCO 

rt (9 versus 6). For the group separation

etween pre-ataxic and ataxic SCA3 mutation carriers, CerebNet showed

maller p-values in 15 structures compared to 6 for ACAPULCO and 13

ompared to 11 for ACAPULCO 

rt . Given that the true group differences

or each sub-structure are unknown, these results cannot establish a fi-

al superiority, but they can assure that known and expected effects can

e reliably detected and that this signal is recovered most strongly with

erebNet . 

. Discussion 

Neuroanatomical volumetry is a promising imaging biomarker can-

idate to assess progressive neurodegeneration in clinical trials. The ad-
9 
antages are, first, that non-invasive T1-weighted MRI is widely avail-

ble, second, that precise quantitative estimates can aid studies into

isease progression even at early stages, and third, that these volume

stimates permit assessing subtle changes to quantify atrophy rates in

arious disease stages and effects of potential interventions and dis-

ase modifying therapies. Especially quantitative estimates of cerebellar

tructures are highly relevant for studying ataxia, in particular for those

taxia disorders where clinical trials have already been initiated, such

s SCA3. Therefore, with this work, we introduce a multi-stage proto-

ol for reliable and repeatable cerebellum segmentation with carefully

rawn and quality-assured boundaries, establish a manually segmented

eference dataset, and develop and validate CerebNet , a fast and accurate

ethod to automatically sub-segment the cerebellum into its lobules and

he cerebellar WM from a T1-weighted MRI. 
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Fig. 6. Intraclass correlation coefficient (ICC) on volume of Kirby and OASIS1 datasets for test-retest analysis. Error bars indicate the 95% confidence interval. 

Statistical significance is calculated with a two-sided non-parametric Wilcoxon signed-rank test over the absolute volume difference, since ICC values cannot provide 

significance information. ∗ and ∗∗ annotations represent statistical significance for better volume consistency with 𝑝 < . 05 and 𝑝 < . 01 , respectively. 
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4 Since the ACAPULCO training dataset is not available publicly, we cannot 
Our method CerebNet employs a FastSurferCNN deep-learning model

ustomized to our cerebellum training dataset. In contrast to state-of-

he-art methods ( Carass et al., 2018; Diedrichsen, 2006; Han et al.,

020b ), CerebNet does not require any preprocessing, such as spatial

ormalization or bias field correction, thus preserving sufficient detail

o segment even the fine branches of the white matter and simultane-

usly allowing rapid processing at only 12 seconds per MRI with one

PU (Nvidia Titan Xp). Fast MRI segmentation in general opens up mul-

iple avenues of potential applications, ranging from direct feedback or

eld-of-view localization during image acquisition or fast clinical de-

ision support by quantitative personalized measurements. In addition

o speed, we demonstrate in an extensive validation that the CerebNet

ipeline outperforms state-of-the-art approaches and provides detailed

egmentation masks especially for white matter strands. 

Our quantitative analysis illustrates CerebNet ’s superior segmenta-

ion quality in both volumetric and geometric metrics. Furthermore, we

emonstrate CerebNet ’s superior test-retest reliability and show-case its

tility to down-stream group analysis: While clinical scales lack sensitiv-

ty in pre-ataxic cases, simply due to the absence of symptoms, CerebNet

r

10 
eliably identifies patterns of cerebellar degeneration consistent with

revious studies ( Faber et al., 2020; Kim et al., 2021; Rezende et al.,

018 ). Consequently volumetric estimates of the cerebellum, especially

ubtle longitudinal changes, are promising imaging biomarker candi-

ates to assess the effect of preventive genetic therapies during the pre-

taxic stage and might play a central role as stratification markers or

ven as secondary outcome parameters in clinical trials. 

A qualitative inspection of the predicted segmentation maps il-

ustrates the different character of the presented pipelines. CerebNet -

erived segmentation maps feature the highest level of detail, especially

isible at the intricate boundary between CWM and CGM (see Fig. 7 ). In

act, comparing predictions of CerebNet , ACAPULCO and ACAPULCO 

rt 4 ,

e find that the level of detail of ACAPULCO 

rt lies between CerebNet

nd ACAPULCO (see Fig. 7 ), highlighting both the added value of our

ataset with its manual segmentations (ACAPULCO 

rt vs. ACAPULCO)

nd of our method ( CerebNet vs. ACAPULCO 

rt ). In contrast to volu-
etrain CerebNet with this data. 
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Fig. 7. Map of volume change in HC vs. pre-ataxic SCA3 (top) and pre-ataxic vs. ataxic SCA3 (bottom). Per-region p-values of the respective group comparisons are 

shown for 3 different methods: CerebNet , ACAPULCO (as distributed by Han et al., 2020b ) and ACAPULCO 

rt (ACAPULCO retrained on our dataset). Red colors indicate 

atrophy, blue colors indicate volume increase (color saturation corresponds to significance). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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etric analyses, which are relatively robust to limited detail in seg-

entation maps, structural and geometric analyses, including thickness

nalysis, rely on accurate and detailed boundaries ( Sörös et al., 2021 ).

ecause of the fine-grained furcations of CWM, the delineation of the

GM/CWM boundary is particularly challenging both for manual raters

nd automated methods. CerebNet especially improves these boundaries

s proven by significantly improved Dice and Robust Hausdorff metrics

ver both ACAPULCO 

rt and FreeSurfer (see L./R. CGM/CWM in Fig. 4 ).

In general, a critical limitation of learning-based approaches remains

n the uncertain generalizability beyond images similar to those encoun-

ered during training. This limitation also applies to CerebNet . While our

eference dataset features diversity in terms of severity of ataxia and

erebellar atrophy, the generalizability to other datasets is not guaran-

eed, since we only included T1w MRI of healthy controls and SCA3

utation carriers acquired on SIEMENS scanners. Therefore, as for any

ethod, dedicated experimental validation is required to confirm the

alidity under differing conditions, i.e. at least rigorous, manual qual-

ty checks of generated segmentations. Given the convincing test-retest

erformance (c.f. Fig. 6 Kirby dataset, which was acquired with Philips

canners), we are optimistic CerebNet ’s extensive augmentation may al-

eady enable basic generalizability to other scan-settings. Furthermore,

e visually inspected automatically generated segmentations of several

linically diagnosed sporadic and hereditary ataxias to verify whether

erebNet generalizes to other pathologies ( 𝑁 = 14 : two randomly se-

ected cases of MSA-C, RFC1, SCA1, SCA2 and SCA6, AOA2 as well as

ne case of SYNE1 and CTX each, including cases with severe atrophy,

ee also Fig. 9 in the Appendix). While not a formal validation for these

athologies, we found the segmentation quality among these cases com-

arable to our SCA3 cases without fails or unacceptable quality, further

upporting the generalizability of CerebNet . 

Obviously, volumetric analyses of other sporadic and hereditary neu-

odegenerative ataxias are canonical further research questions. More-

ver, CerebNet may enable cerebellar analyses of aging, non-motor dis-

ases (e.g. Alzheimer’s disease or attention deficit hyperactivity disor-

a  

11 
er) and combined analyses of imaging and neuropsychological data.

or these applications the focus may shift to parts of the cerebellum pri-

arily involved in the adaptive control of non-motor processes. Since

he functional representation of cognitive tasks is oriented across lobules

long a parasagittal axis ( King et al., 2019 ), the utility of segmentation

long the anatomical boundaries of the hemispheric lobules is unclear

or studies of the cerebellar involvement in cognitive and emotional pro-

esses. 

In summary, CerebNet offers significant improvements and advan-

ages for users in terms of runtime, accuracy, reliability and sensitivity

o subtle cerebellar atrophy. Thus, we are confident, that CerebNet will

nable and simplify the detailed morphometric analysis of the cerebel-

um. 

cknowledgments 

We would like to thank Beate Brol, Tim Elter, Isabelle Finkel,

nd Sophia Wismeth for their contribution to the manual segmen-

ation. This work was supported by the National Ataxia Founda-

ions SCA Young Investigator Award as well as by DZNE institutional

unds, by the Federal Ministry of Education and Research of Germany

031L0206, 01GQ1801), and by NIH (R01 LM012719, R01 AG064027,

56 MH121426, and P41 EB030006). JF is fellow of the Hertie Net-

ork of excellence in clinical Neuroscience. This publication is an out-

ome of ESMI, an EU Joint Programme - Neurodegenerative Disease

esearch (JPND) project (see www.jpnd.eu ). The project is supported

hrough the following funding organisations under the aegis of JPND:

ermany, Federal Ministry of Education and Research (BMBF; fund-

ng codes 01ED1602A/B); Netherlands, The Netherlands Organisation

or Health Research and Development; Portugal, Foundation for Sci-

nce and Technology and Regional Fund for Science and Technology

f the Azores; United Kingdom, Medical Research Council. This project

as received funding from the European Unions Horizon 2020 research

nd innovation programme under grant agreement No 643417. For the

http://www.jpnd.eu


J. Faber, D. Kügler, E. Bahrami et al. NeuroImage 264 (2022) 119703 

c  

t  

l  

t  

s  

E  

i  

p  

t  

t  

P  

R  

c  

P  

t  

t  

i  

a  

R  

s  

u  

D  

A  

s  

p  

o  

c  

c  

D  

G  

n  

o  

n  

b  

A  

p  

E  

i  

I  

L  

L  

N  

C  

t  

o  

C  

f  

n  

a  

s  

n  

C  

P  

a  

a  

a  

U

5

5

A

 

t  

C  

Fig. 8. Comparison of Dice and Robust Hausdorff Distance (HD95) metrics for 

CerebNet, the retrained ACAPULCO 

rt , SUIT+FS as well as the original (pub- 

lished) ACAPULCO on our test set. Note, the direct comparison of CerebNet 

and the original ACAPULCO does not correct for the differences in the train- 

ing datasets; ACAPULCO 

rt corrects for this difference (see text). 
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. Appendix 

.1. Dice score and Hausdorff metric compared between CerebNet, 

CAPULCO 

rt , original ACAPULCO and SUIT+FS 

To motivate our choice of pre-training with SUIT+FS and illustrate

he impact of the dataset, we compare four methods on our test set:

erebNet , the ACAPULCO 

rt ( Han et al., 2020b ) (both trained on our
12 
raining set), as well as the original ACAPULCO ( Han et al., 2020b )

nd SUIT+FS ( Diedrichsen et al., 2009 ) (both trained on their individ-

al datasets). We compare each prediction with our manually labeled

eference segmentation to obtain average Dice and Robust Hausdorff

etrics for each method in Fig. 8 . Two observations are notable: 1.

UIT+FS outperforms the original ACAPULCO; 2. ACAPULCO 

rt outper-

orms ACAPULCO (and SUIT+FS). Both results are expected and illus-

rate how much different labeling protocols (e.g. along the CGM/CWM

order) can impact the performance and ranking of methods. These re-

ults confirm that inconsistent labeling protocols between training and

est significantly impact the measured performance even to the level of

ontradicting previous rankings ( Carass et al., 2018; Han et al., 2020b ).

herefore, we 1. choose SUIT+FS for pre-training and 2. retrain ACA-

ULCO (yielding ACAPULCO 

rt ) so that our methodological comparison

re fair and not impacted by the choice of protocols. 

This analysis also raises the question of how the performance of two

ipelines may be compared fairly (a pipeline evaluation includes the

mpact of both the training dataset and the method). This is specifically

ifficult if protocols differ and higher quality reference standards are not

vailable. While retraining on the same dataset yields a fair, direct com-

arison of methods (see for example section 3.2 ), pipeline comparisons,

n situations where retraining is not feasible, require indirect evaluations

ased on segmentation-derived metrics instead of segmentation maps,

.g. whether and how well volume estimates can be used to differentiate

etween patient groups as done for SCA3 in Section 3.5 . 

.2. Correlation of SARA sum scores with volumetric estimates 

We perform a correlation analysis between the SARA sum score and

egional volumes. Table 2 shows individual Kendell Tau coefficients for

hree methods: CerebNet , ACAPULCO (original) and ACAPULCO 

rt (re-

rained). We also report whether the analysis achieved statistical signif-

cance. However, we would like to note that SCA3 is not a pure cere-

llar disease like for example SCA6. The patterns of neurodegeneration

n SCA3 include non-cerebellar structures, e.g. the basal ganglia or the

eripheral nerve system. Progressive neurodegeneration of the cerebel-

um might be the main driver of ataxia severity in SCA3, but symp-

oms resulting from non-cerebellar manifestations, like e.g. spasticity or

olyneuropathy have a direct impact on SARA items such as gait and

tance. This should be taken into account in the interpretation of the

orrelation. 

.3. CerebNet segmentation in sporadic and hereditary ataxias 

To illustrate the robustness of CerebNet to “out-of-distribution ” sam-

les, we show some qualitative examples of segmentations in Fig. 9 .

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.13039/100007333
https://doi.org/10.13039/100000049
http://www.fnih.org
https://doi.org/10.13039/100000135
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Fig. 9. Qualitative “out-of-distribution ” evaluation of CerebNet : Segmentation maps for pathologies, which are not part of the training (SCA1, SCA2, SCA6, MSA-C, 

RFC1, SYNE1, AOA2 and CTX) together with an in-distribution example (SCA3). Images illustrated here are randomly picked from a larger repository of images and 

represent average performance. ∗ : Label is not visible in the shown slice. 
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Table 2 

Correlation of SARA sum score with each cerebellar 

volume for CerebNet, ACAPULCO and ACAPULCO 

rt . 

Kendell Tau correlation coefficients are given, and sta- 

tistical significance of the correlation is indicated by 
∗ ( 𝑝 < . 05 ) and ∗ ∗ ( 𝑝 < . 01 ). For each volume, the most 

negative, statistically significant correlation coefficient 

is printed in boldface. 

CerebNet ACAPULO ACAPULCO 

rt 

(original) (retrained) 

Left I-IV -0.204 ∗ ∗ -0.134 ∗ -0.211 ∗ ∗ 

Right I-IV -0.235 ∗ ∗ -0.167 ∗ -0.208 ∗ ∗ 

Left V -0.0602 -0.213 ∗ ∗ -0.0593 

Right V -0.00294 -0.194 ∗ ∗ -0.0401 

Left VI -0.306 ∗ ∗ -0.227 ∗ ∗ -0.284 ∗ ∗ 

Vermis VI -0.0954 -0.0197 -0.0874 

Right VI -0.322 ∗ ∗ -0.225 ∗ ∗ -0.264 ∗ ∗ 

L. Crus I -0.252 ∗ ∗ -0.287 ∗ ∗ -0.214 ∗ ∗ 

R. Crus I -0.200 ∗ ∗ -0.199 ∗ ∗ -0.151 ∗ 

L. Crus II -0.219 ∗ ∗ -0.267 ∗ ∗ -0.145 ∗ 

R. Crus II -0.214 ∗ ∗ -0.179 ∗ ∗ -0.154 ∗ 

Left VIIb -0.385 ∗ ∗ -0.241 ∗ ∗ -0.341 ∗ ∗ 

Right VIIb -0.410 ∗ ∗ -0.364 ∗ ∗ -0.314 ∗ ∗ 

Vermis VII -0.144 ∗ -0.139 ∗ -0.0765 

Left VIIIa -0.299 ∗ ∗ -0.113 -0.264 ∗ ∗ 

Right VIIIa -0.315 ∗ ∗ -0.100 -0.408 ∗ ∗ 

Left VIIIb -0.317 ∗ ∗ -0.311 ∗ ∗ -0.374 ∗ ∗ 

Right VIIIb -0.254 ∗ ∗ -0.344 ∗ ∗ -0.323 ∗ ∗ 

Vermis VIII -0.182 ∗ ∗ -0.0941 -0.170 ∗ ∗ 

Left IX -0.258 ∗ ∗ -0.159 ∗ -0.232 ∗ ∗ 

Vermis IX -0.0650 -0.0327 -0.0760 

Right IX -0.292 ∗ ∗ -0.248 ∗ ∗ -0.240 ∗ ∗ 

Left X -0.265 ∗ ∗ 0.0101 -0.207 ∗ ∗ 

Vermis X -0.115 -0.0667 -0.0270 

Right X -0.298 ∗ ∗ -0.0598 -0.253 ∗ ∗ 

CWM -0.583 ∗ ∗ -0.440 ∗ ∗ -0.549 ∗ ∗ 
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hile these results indicate good performance across many pathologies,

tudies utilizing CerebNet to segment patients with these or other dis-

ases should still ensure the performance also translates to their datasets

y performing a formal validation, or, at least, rigorous quality assur-

nce as laid out in the Discussion. 

ata and Code Availability Statement 

The MRI data is not publicly available because of data protection reg-

lations. Access can be provided upon reasonable request to scientists in

ccordance with our Data Use and Access Policy. Requests to access the

ata should be directed to Jennifer Faber at Jennifer.Faber@dzne.de. 

The source code of CerebNet will be made publicly available on

ithub ( https://github.com/Deep-MI/FastSurfer ) upon acceptance. 
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