397 research outputs found
Enhanced performance by a hybrid NIRS–EEG brain computer interface
Noninvasive Brain Computer Interfaces (BCI) have been promoted to be used for neuroprosthetics. However, reports on applications with electroencephalography (EEG) show a demand for a better accuracy and stability. Here we investigate whether near-infrared spectroscopy (NIRS) can be used to enhance the EEG approach. In our study both methods were applied simultaneously in a real-time Sensory Motor Rhythm (SMR)-based BCI paradigm, involving executed movements as well as motor imagery. We tested how the classification of NIRS data can complement ongoing real-time EEG classification. Our results show that simultaneous measurements of NIRS and EEG can significantly improve the classification accuracy of motor imagery in over 90% of considered subjects and increases performance by 5% on average (p < 0:01). However, the long time delay of the hemodynamic response may hinder an overall increase of bit-rates. Furthermore we find that EEG and NIRS complement each other in terms of information content and are thus a viable multimodal imaging technique, suitable for BCI
Interferon-α Abrogates Tolerance Induction by Human Tolerogenic Dendritic Cells
BACKGROUND: Administration of interferon-α (IFN-α) represents an approved adjuvant therapy as reported for malignancies like melanoma and several viral infections. In malignant diseases, tolerance processes are critically involved in tumor progression. In this study, the effect of IFN-α on tolerance induction by human tolerogenic dendritic cells (DC) was analyzed. We focussed on tolerogenic IL-10-modulated DC (IL-10 DC) that are known to induce anergic regulatory T cells (iTregs). METHODOLOGY/PRINCIPAL FINDINGS: IFN-α promoted an enhanced maturation of IL-10 DC as demonstrated by upregulation of the differentiation marker CD83 as well as costimulatory molecules. IFN-α treatment resulted in an increased capacity of DC to stimulate T cell activation compared to control tolerogenic DC. We observed a strengthened T cell proliferation and increased IFN-γ production of CD4(+) and CD8(+) T cells stimulated by IFN-α-DC, demonstrating a restoration of the immunogenic capacity of tolerogenic DC in the presence of IFN-α. Notably, restimulation experiments revealed that IFN-α treatment of tolerogenic DC abolished the induction of T cell anergy and suppressor function of iTregs. In contrast, IFN-α neither affected the priming of iTregs nor converted iTregs into effector T cells. CONCLUSIONS/SIGNIFICANCE: IFN-α inhibits the induction of T cell tolerance by reversing the tolerogenic function of human DC
Melanogenesis is directly affected by metabolites of melatonin in human melanoma cells
Melatonin (N-acetyl-5-methoxytryptamine, MEL), its kynurenic (-acetyl--formyl-5-methoxykynurenine, AFMK) and indolic derivatives (6-hydroxymelatonin, 6(OH)MEL and 5-methoxytryptamine, 5-MT) are endogenously produced in human epidermis. Melatonin, produced by the pineal gland, brain and peripheral organs, displays a diversity of physiological functions including anti-inflammatory, immunomodulatory, and anti-tumor capacities. Herein, we assessed their regulatory effect on melanogenesis using amelanotic (A375, Sk-Mel-28) and highly pigmented (MNT-1, melanotic) human melanoma cell lines. We discovered that subjected compounds decrease the downstream pathway of melanin synthesis by causing a significant drop of cyclic adenosine monophosphate (cAMP) level, the microphthalmia-associated transcription factor (MITF) and resultant collapse of tyrosinase (TYR) activity, and melanin content comparatively to N-phenylthiourea (PTU, a positive control). We observed a reduction in pigment in melanosomes visualized by the transmission electron microscopy. Finally, we assessed the role of G-protein-coupled seven-transmembrane-domain receptors. Obtained results revealed that nonselective MT1 and MT2 receptor antagonist (luzindole) or selective MT2 receptor antagonist (4-P-PDOT) did not affect dysregulation of the melanin pathway indicating a receptor-independent mechanism. Our findings, together with the current state of the art, provide a convenient experimental model to study the complex relationship between metabolites of melatonin and the control of pigmentation serving as a future and rationale strategy for targeted therapies of melanoma-affected patients
Regulatory T-cell deficiency leads to features of autoimmune liver disease overlap syndrome in scurfy mice
Scurfy mice have a complete deficiency of functional regulatory T cells (Treg) due to a frameshift mutation in the Foxp3 gene. The impaired immune homeostasis results in a lethal lymphoproliferative disorder affecting multiple organs, including the liver. The autoimmune pathology in scurfy mice is in part accompanied by autoantibodies such as antinuclear antibodies (ANA). ANA are serological hallmarks of several autoimmune disorders including autoimmune liver diseases (AILD). However, the underlying pathogenesis and the role of Treg in AILD remain to be elucidated. The present study therefore aimed to characterize the liver disease in scurfy mice
Protease- and cell type–specific activation of protease-activated receptor 2 in cutaneous inflammation
Background: Protease-activated receptor 2 (PAR2) signaling controls skin barrier
function and inflammation, but the roles of immune cells and PAR2-activating pro teases in cutaneous diseases are poorly understood.
Objective: To dissect PAR2 signaling contributions to skin inflammation with new ge netic and pharmacological tools.
Methods/Results: We found markedly increased numbers of PAR2+ infiltrating my eloid cells in skin lesions of allergic contact dermatitis (ACD) patients and in the skin
of contact hypersensitivity (CHS) in mice, a murine ACD model for T cell–mediated
allergic skin inflammation. Cell type–specific deletion of PAR2 in myeloid immune cells
as well as mutation-induced complete PAR2 cleavage insensitivity significantly re duced skin inflammation and hapten-specific Tc1/Th1 cell response. Pharmacological
approaches identified individual proteases involved in PAR2 cleavage and demon strated a pivotal role of tissue factor (TF) and coagulation factor Xa (FXa) as upstream
activators of PAR2 in both the induction and effector phase of CHS. PAR2 mutant
mouse strains with differential cleavage sensitivity for FXa versus skin epithelial cell–expressed proteases furthermore uncovered a time-dependent regulation of
CHS development with an important function of FXa-induced PAR2 activation during
the late phase of skin inflammation.
Conclusions: Myeloid cells and the TF–FXa–PAR2 axis are key mediators and poten tial therapeutic targets in inflammatory skin disease
Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa
Cortical mapping of cognitive function during infancy is poorly understood in low-income countries due to the lack of transportable neuroimaging methods. We have successfully piloted functional near infrared spectroscopy (fNIRS) as a neuroimaging tool in rural Gambia. Four-to-eight month old infants watched videos of Gambian adults perform social movements, while haemodynamic responses were recorded using fNIRS. We found distinct regions of the posterior superior temporal and inferior frontal cortex that evidenced either visual-social activation or vocally selective activation (vocal > non-vocal). The patterns of selective cortical activation in Gambian infants replicated those observed within similar aged infants in the UK. These are the first reported data on the measurement of localized functional brain activity in young infants in Africa and demonstrate the potential that fNIRS offers for field-based neuroimaging research of cognitive function in resource-poor rural communities
Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa
Cortical mapping of cognitive function during infancy is poorly understood in low-income countries due to the lack of transportable neuroimaging methods. We have successfully piloted functional near infrared spectroscopy (fNIRS) as a neuroimaging tool in rural Gambia. Four-to-eight month old infants watched videos of Gambian adults perform social movements, while haemodynamic responses were recorded using fNIRS. We found distinct regions of the posterior superior temporal and inferior frontal cortex that evidenced either visual-social activation or vocally selective activation (vocal > non-vocal). The patterns of selective cortical activation in Gambian infants replicated those observed within similar aged infants in the UK. These are the first reported data on the measurement of localized functional brain activity in young infants in Africa and demonstrate the potential that fNIRS offers for field-based neuroimaging research of cognitive function in resource-poor rural communities
Cyber-physical energy systems modeling, test specification, and co-simulation based testing
The gradual deployment of intelligent and coordinated devices in the electrical power system needs careful investigation of the interactions between the various domains involved. Especially due to the coupling between ICT and power systems a holistic approach for testing and validating is required. Taking existing (quasi-) standardised smart grid system and test specification methods as a starting point, we are developing a holistic testing and validation approach that allows a very flexible way of assessing the system level aspects by various types of experiments (including virtual, real, and mixed lab settings). This paper describes the formal holistic test case specification method and applies it to a particular co-simulation experimental setup. The various building blocks of such a simulation (i.e., FMI, mosaik, domain-specific simulation federates) are covered in more detail. The presented method addresses most modeling and specification challenges in cyber-physical energy systems and is extensible for future additions such as uncertainty quantification
- …