25 research outputs found

    Future Perspectives of Co-Simulation in the Smart Grid Domain

    Full text link
    The recent attention towards research and development in cyber-physical energy systems has introduced the necessity of emerging multi-domain co-simulation tools. Different educational, research and industrial efforts have been set to tackle the co-simulation topic from several perspectives. The majority of previous works has addressed the standardization of models and interfaces for data exchange, automation of simulation, as well as improving performance and accuracy of co-simulation setups. Furthermore, the domains of interest so far have involved communication, control, markets and the environment in addition to physical energy systems. However, the current characteristics and state of co-simulation testbeds need to be re-evaluated for future research demands. These demands vary from new domains of interest, such as human and social behavior models, to new applications of co-simulation, such as holistic prognosis and system planning. This paper aims to formulate these research demands that can then be used as a road map and guideline for future development of co-simulation in cyber-physical energy systems

    ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems

    Get PDF
    Smart energy solutions aim to modify and optimise the operation of existing energy infrastructure. Such cyber-physical technology must be mature before deployment to the actual infrastructure, and competitive solutions will have to be compliant to standards still under development. Achieving this technology readiness and harmonisation requires reproducible experiments and appropriately realistic testing environments. Such testbeds for multi-domain cyber-physical experiments are complex in and of themselves. This work addresses a method for the scoping and design of experiments where both testbed and solution each require detailed expertise. This empirical work first revisited present test description approaches, developed a newdescription method for cyber-physical energy systems testing, and matured it by means of user involvement. The new Holistic Test Description (HTD) method facilitates the conception, deconstruction and reproduction of complex experimental designs in the domains of cyber-physical energy systems. This work develops the background and motivation, offers a guideline and examples to the proposed approach, and summarises experience from three years of its application.This work received funding in the European Community’s Horizon 2020 Program (H2020/2014–2020) under project “ERIGrid” (Grant Agreement No. 654113)

    Validating Intelligent Power and Energy Systems { A Discussion of Educational Needs

    Get PDF
    Traditional power systems education and training is flanked by the demand for coping with the rising complexity of energy systems, like the integration of renewable and distributed generation, communication, control and information technology. A broad understanding of these topics by the current/future researchers and engineers is becoming more and more necessary. This paper identifies educational and training needs addressing the higher complexity of intelligent energy systems. Education needs and requirements are discussed, such as the development of systems-oriented skills and cross-disciplinary learning. Education and training possibilities and necessary tools are described focusing on classroom but also on laboratory-based learning methods. In this context, experiences of using notebooks, co-simulation approaches, hardware-in-the-loop methods and remote labs experiments are discussed.Comment: 8th International Conference on Industrial Applications of Holonic and Multi-Agent Systems (HoloMAS 2017

    Lessons learned from CPES co-simulation with distributed, heterogeneous systems

    No full text
    Abstract The increasing integration of distributed renewable energy resources into the power grid calls for employment of information and communication technology, transforming the grid into a cyber-physical energy system with new options for stable and optimized control. In order to evaluate and validate new control technologies, test systems are necessary. When the future extensibility of an approach is to be tested, laboratory and field tests reach their limits. Instead, simulation-based testing is required, like co-simulation, which allows the reuse of pre-existing simulation components. However, some co-simulation approaches designed for generic applicability tend to ignore certain setup characteristics like the need for remote coupling or exchange of complex data. This paper presents a co-simulation case study with distributed, heterogeneous simulation components. Challenges are discussed and it is shown how the framework MOSAIK helps to bridge the gap between special interfacing requirements and high system usability

    Design of experiments aided holistic testing of cyber-physical energy systems

    Get PDF
    The complex and often safety-critical nature of cyber-physical energy systems makes validation a key challenge in facilitating the energy transition, especially when it comes to the testing on system level. Reliable and reproducible validation experiments can be guided by the concept of design of experiments, which is, however, so far not fully adopted by researchers. This paper suggests a structured guideline for design of experiments application within the holistic testing procedure suggested by the European ERIGrid project. In this paper, a general workflow as well as a practical example are provided with the aim to give domain experts a basic understanding of design of experiments compliant testing. © 2018 IEEE.Design of experiments aided holistic testing of cyber-physical energy systemsacceptedVersio

    Towards Scalable FMI-based Co-simulation of Wind Energy Systems Using PowerFactory

    No full text
    Due to the increased deployment of renewable energy sources and intelligent components the electric power system will exhibit a large degree of heterogeneity, which requires inclusive and multi-disciplinary system assessment. The concept of co-simulation is a very attractive option to achieve this; each domain-specific subsystem can be addressed via its own specialized simulation tool. The applicability, however, depends on aspects like standardised interfaces, automated case creation, initialisation, and the scalability of the co-simulation itself. This work deals with the inclusion of the Functional Mock-up Interface for co-simulation into the DIgSILENT PowerFactory simulator, and tests its accuracy, implementation, and scalability for the grid connection study of a wind power plant. The coupling between the RMS mode of PowerFactory and MATLAB/Simulink in a standardised manner is shown. This approach allows a straightforward inclusion of black-boxed modelling, is easily scalable in size, quantity, and component type

    Applying the Smart Grid Architecture Model for Designing and Validating System-of-Systems in the Power and Energy Domain: A European Perspective

    No full text
    The continuously increasing complexity of modern and sustainable power and energy systems leads to a wide range of solutions developed by industry and academia. To manage such complex system-of-systems, proper engineering and validation approaches, methods, concepts, and corresponding tools are necessary. The Smart Grid Architecture Model (SGAM), an approach that has been developed during the last couple of years, provides a very good and structured basis for the design, development, and validation of new solutions and technologies. This review therefore provides a comprehensive overview of the state-of-the-art and related work for the theory, distribution, and use of the aforementioned architectural concept. The article itself provides an overview of the overall method and introduces the theoretical fundamentals behind this approach. Its usage is demonstrated in several European and national research and development projects. Finally, an outlook about future trends, potential adaptations, and extensions is provided as well

    Design of Experiments aided Holistic Testing of Cyber-Physical Energy Systems

    No full text
    The complex and often safety-critical nature of cyber-physical energy systems makes validation a key challenge in facilitating the energy transition, especially when it comes to the testing on system level. Reliable and reproducible validation experiments can be guided by the concept of design of experiments, which is, however, so far not fully adopted by researchers. This paper suggests a structured guideline for design of experiments application within the holistic testing procedure suggested by the European ERIGrid project. In this paper, a general workflow as well as a practical example are provided with the aim to give domain experts a basic understanding of design of experiments compliant testing.</p
    corecore