286 research outputs found

    Controllable Shrinking and Shaping of Glass Nanocapillaries under Electron Irradiation

    Get PDF
    The ability to reshape nanopores and observe their shrinkage under an electron microscope is a powerful and novel technique. It increases the sensitivity of the resistive pulse sensing and enables to detect very short and small molecules. However, this has not yet been shown for glass nanocapillaries. In contrast to their solid-state nanopore counterparts, nanocapillaries are cheap, easily fabricated and in the production do not necessitate clean room facilities. We show for the first time that quartz nanocapillaries can be shrunken under a scanning electron microscope beam. Since the shrinking is caused by the thermal heating of the electrons, increasing the beam current increases the shrink rate. Higher acceleration voltage on the contrary increases the electron penetration depth and reduces the electron density causing slower shrinkage. This allows us to fine control the shrink rate and to stop the shrinking process at any desired diameter. We show that a shrunken nanocapillary detects DNA translocation with six times higher signal amplitudes than an unmodified nanocapillary. This will open a new path to detect small and short molecules such as proteins or RNA with nanocapillaries

    Probing the size of proteins with glass nanopores

    Get PDF
    Single molecule studies using nanopores have gained attention due to the ability to sense single molecules in aqueous solution without the need to label them. In this study, short DNA molecules and proteins were detected with glass nanopores, whose sensitivity was enhanced by electron reshaping which decreased the nanopore diameter and created geometries with a reduced sensing length. Further, proteins having molecular weights (MW) ranging from 12 kDa to 480 kDa were detected, which showed that their corresponding current peak amplitude changes according to their MW. In the case of the 12 kDa ComEA protein, its DNA-binding properties to an 800 bp long DNA molecule was investigated. Moreover, the influence of the pH on the charge of the protein was demonstrated by showing a change in the translocation direction. This work emphasizes the wide spectrum of detectable molecules using nanopores from glass nanocapillaries, which stand out because of their inexpensive, lithography-free, and rapid manufacturing proces

    Competing Patterns of Signaling Activity in Dictyostelium discoideum

    Full text link
    Quantitative experiments are described on spatio-temporal patterns of coherent chemical signaling activity in populations of {\it Dictyostelium discoideum} amoebae. We observe competition between spontaneously firing centers and rotating spiral waves that depends strongly on the overall cell density. At low densities, no complete spirals appear and chemotactic aggregation is driven by periodic concentric waves, whereas at high densities the firing centers seen at early times nucleate and are apparently entrained by spiral waves whose cores ultimately serve as aggregation centers. Possible mechanisms for these observations are discussed.Comment: 10 pages, RevTeX, 4 ps figures, accepted in PR

    Probing the size of proteins with glass nanopores

    Get PDF
    Single molecule studies using nanopores have gained attention due to the ability to sense single molecules in aqueous solution without the need to label them. In this study, short DNA molecules and proteins were detected with glass nanopores, whose sensitivity was enhanced by electron reshaping which decreased the nanopore diameter and created geometries with a reduced sensing length. Further, proteins having molecular weights (MW) ranging from 12 kDa to 480 kDa were detected, which showed that their corresponding current peak amplitude changes according to their MW. In the case of the 12 kDa ComEA protein, its DNA-binding properties to an 800 bp long DNA molecule was investigated. Moreover, the influence of the pH on the charge of the protein was demonstrated by showing a change in the translocation direction. This work emphasizes the wide spectrum of detectable molecules using nanopores from glass nanocapillaries, which stand out because of their inexpensive, lithography-free, and rapid manufacturing process

    From chemical gardens to chemobrionics

    Get PDF
    Chemical gardens in laboratory chemistries ranging from silicates to polyoxometalates, in applications ranging from corrosion products to the hydration of Portland cement, and in natural settings ranging from hydrothermal vents in the ocean depths to brinicles beneath sea ice. In many chemical-garden experiments, the structure forms as a solid seed of a soluble ionic compound dissolves in a solution containing another reactive ion. In general any alkali silicate solution can be used due to their high solubility at high pH. The cation should not precipitate with the counterion of the metal salt used as seed. A main property of seed chemical-garden experiments is that initially, when the fluid is not moving under buoyancy or osmosis, the delivery of the inner reactant is diffusion controlled. Another experimental technique that isolates one aspect of chemical-garden formation is to produce precipitation membranes between different aqueous solutions by introducing the two solutions on either side of an inert carrier matrix. Chemical gardens may be grown upon injection of solutions into a so-called Hele-Shaw cell, a quasi-two-dimensional reactor consisting in two parallel plates separated by a small gap

    The commodification of human reproductive materials.

    Get PDF
    This essay develops a framework for thinking about the moral basis for the commnodification of human reproductive nmaterials. It argues that selling and buyinlg gametes and genes is morally acceptable although there should not be a market for zygotes, embryos, or genomes. Also a market in gametes and genes shouild be regutlated in order to address concerns about the adverse social consequences of conmmodification. Originally published Journal of Medical Ethics, Vol. 24, No. 6, Dec 199

    From chemical gardens to chemobrionics

    Get PDF
    Chemical gardens are perhaps the best example in chemistry of a self-organizing nonequilibrium process that creates complex structures. Many different chemical systems and materials can form these self-assembling structures, which span at least 8 orders of magnitude in size, from nanometers to meters. Key to this marvel is the self-propagation under fluid advection of reaction zones forming semipermeable precipitation membranes that maintain steep concentration gradients, with osmosis and buoyancy as the driving forces for fluid flow. Chemical gardens have been studied from the alchemists onward, but now in the 21st century we are beginning to understand how they can lead us to a new domain of self-organized structures of semipermeable membranes and amorphous as well as polycrystalline solids produced at the interface of chemistry, fluid dynamics, and materials science. We propose to call this emerging field chemobrionics
    • 

    corecore