13,907 research outputs found
Single polymer dynamics: coil-stretch transition in a random flow
By quantitative studies of statistics of polymer stretching in a random flow
and of a flow field we demonstrate that the stretching of polymer molecules in
a 3D random flow occurs rather sharply via the coil-stretch transition at the
value of the criterion close to theoretically predicted.Comment: 4 pages, 5 figure
Diagnosis, prescription and prognosis of a Bell-state filter by quantum process tomography
Using a Hong-Ou-Mandel interferometer, we apply the techniques of quantum
process tomography to characterize errors and decoherence in a prototypical
two-photon operation, a singlet-state filter. The quantum process tomography
results indicate a large asymmetry in the process and also the required
operation to correct for this asymmetry. Finally, we quantify errors and
decoherence of the filtering operation after this modification.Comment: 4 pages, 4 figure
Clock synchronization with dispersion cancellation
The dispersion cancellation feature of pulses which are entangled in
frequency is employed to synchronize clocks of distant parties. The proposed
protocol is insensitive to the pulse distortion caused by transit through a
dispersive medium. Since there is cancellation to all orders, also the effects
of slowly fluctuating dispersive media are compensated. The experimental setup
can be realized with currently available technology, at least for a proof of
principle.Comment: 4 pages, 3 figure
Strictly and asymptotically scale-invariant probabilistic models of correlated binary random variables having {\em q}--Gaussians as limiting distributions
In order to physically enlighten the relationship between {\it
--independence} and {\it scale-invariance}, we introduce three types of
asymptotically scale-invariant probabilistic models with binary random
variables, namely (i) a family, characterized by an index ,
unifying the Leibnitz triangle () and the case of independent variables
(); (ii) two slightly different discretizations of
--Gaussians; (iii) a special family, characterized by the parameter ,
which generalizes the usual case of independent variables (recovered for
). Models (i) and (iii) are in fact strictly scale-invariant. For
models (i), we analytically show that the probability
distribution is a --Gaussian with . Models (ii) approach
--Gaussians by construction, and we numerically show that they do so with
asymptotic scale-invariance. Models (iii), like two other strictly
scale-invariant models recently discussed by Hilhorst and Schehr (2007),
approach instead limiting distributions which are {\it not} --Gaussians. The
scenario which emerges is that asymptotic (or even strict) scale-invariance is
not sufficient but it might be necessary for having strict (or asymptotic)
--independence, which, in turn, mandates --Gaussian attractors.Comment: The present version is accepted for publication in JSTA
A note on q-Gaussians and non-Gaussians in statistical mechanics
The sum of sufficiently strongly correlated random variables will not in
general be Gaussian distributed in the limit N\to\infty. We revisit examples of
sums x that have recently been put forward as instances of variables obeying a
q-Gaussian law, that is, one of type (cst)\times[1-(1-q)x^2]^{1/(1-q)}. We show
by explicit calculation that the probability distributions in the examples are
actually analytically different from q-Gaussians, in spite of numerically
resembling them very closely. Although q-Gaussians exhibit many interesting
properties, the examples investigated do not support the idea that they play a
special role as limit distributions of correlated sums.Comment: 17 pages including 3 figures. Introduction and references expande
Making Good Lawyers
Today, the criticism of law schools has become an industry. Detractors argue that legal education fails to effectively prepare students for the practice of law, that it is too theoretical and detached from the profession, that it dehumanizes and alienates students, too expensive and inapt in helping students develop a sense of professional identity, professional values, and professionalism. In this sea of criticisms it is hard to see the forest from the trees. “There is so much wrong with legal education today,” writes one commentator, “that it is hard to know where to begin.” This article argues that any reform agenda will fall short if it does not start by recognizing the dominant influence of the culture of autonomous self-interest in legal education. Law schools engage in a project of professional formation and instill a very particular brand of professional identity. They educate students to become autonomously self-interested lawyers who see their clients and themselves as pursuing self-interest as atomistic actors. As a result, they understand that their primary role is to serve as neutral partisans who promote the narrow self-interest of clients without regard to the interests of their families, neighbors, colleagues, or communities and to the exclusion of counseling clients on the implications of those interests. They view as marginal their roles as an officer of the legal system and as a public citizen and accordingly place a low priority on traditional professional values, such as the commitment to the public good, that conflict with their primary allegiance to autonomous self-interest. In this work of professional formation, law schools are reflecting the values and commitments of the autonomously self-interested culture that is dominant in the legal profession. Therefore, even if law schools sought to form a professional identity outside of the mold of autonomous self-interest, such a commitment would require much more than curricular reform. It would, at minimum, require the construction of a persuasive alternative understanding of the lawyer’s role. The article seeks to offer such an understanding grounded in a relational perspective on lawyers and clients. Part I offers workable definitions of professionalism and professional identity that enable an informed discussion of the formation of professional identity in and by law schools. Part II explores what and how legal education teaches students showing that both institutionally (at the law school level) and individually (at the law professor level) legal education is proactively engaged in the formation of a professional identity of autonomous self-interest. Part II further explains that its dominance in legal education notwithstanding, autonomous self-interest is but one, often unpersuasive, account of professionalism and professional identity. Part III turns to the competing vision of relationally self-interested professionalism and professional identity and develops an outline for legal education grounded in these conceptions. Because legal education reflects a deep commitment to the dominant culture of autonomous self-interest, it is unlikely that reform proposals that are inconsistent with that culture are likely to succeed in the near future. Yet proposing an alternative account of professional identity that exposes the assumptions of the dominant culture, explains their limitations, and develops a more persuasive understanding is a necessary step toward providing a workable framework for reformers committed to promoting professional values in the long term
Parametric Generation of Second Sound by First Sound in Superfluid Helium
We report the first experimental observation of parametric generation of
second sound (SS) by first sound (FS) in superfluid helium in a narrow
temperature range in the vicinity of . The temperature dependence
of the threshold FS amplitude is found to be in a good quantitative agreement
with the theory suggested long time ago and corrected for a finite geometry.
Strong amplitude fluctuations and two types of the SS spectra are observed
above the bifurcation. The latter effect is quantitatively explained by the
discreteness of the wave vector space and the strong temperature dependence of
the SS dissipation length.Comment: 4 pages, 4 postscript figures, REVTE
Building Design and Construction over Organic Soil
A lowrise office building was constructed on a mat foundation over a thick peat deposit that had been preconsolidated beneath surface fill. Environmental restrictions prevented use of deep foundations for fear that penetration through an aquaclude would permit contamination of a deeper water table. This paper describes the laboratory testing and field instrumentation programs, as well as the special geotechnical and structural analysis undertaken for the design and construction of this project. Included in the program were long-term consolidation tests, pressuremeter tests, use of heave markers, inclinometers and pore pressure piezometers. A site history was also developed to define the extent and nature of the surficial fill. To achieve much of the anticipated initial settlement, the basement was temporarily flooded, thus preloading with the full building weight. Water was removed as construction proceeded so that the full building weight was always maintained. Actual settlement was observed to agree fairly well with predicted settlements
Sub-femtosecond determination of transmission delay times for a dielectric mirror (photonic bandgap) as a function of angle of incidence
Using a two-photon interference technique, we measure the delay for
single-photon wavepackets to be transmitted through a multilayer dielectric
mirror, which functions as a ``photonic bandgap'' medium. By varying the angle
of incidence, we are able to confirm the behavior predicted by the group delay
(stationary phase approximation), including a variation of the delay time from
superluminal to subluminal as the band edge is tuned towards to the wavelength
of our photons. The agreement with theory is better than 0.5 femtoseconds (less
than one quarter of an optical period) except at large angles of incidence. The
source of the remaining discrepancy is not yet fully understood.Comment: 5 pages and 5 figure
ATP prevents Woronin bodies from sealing septal pores in unwounded cells of the fungus Zymoseptoria tritici
This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Septa of filamentous ascomycetes are perforated by septal pores that allow communication between individual hyphal compartments. Upon injury, septal pores are plugged rapidly by Woronin bodies (WBs), thereby preventing extensive cytoplasmic bleeding. The mechanism by which WBs translocate into the pore is not known, but it has been suggested that wound-induced cytoplasmic bleeding "flushes" WBs into the septal opening. Alternatively, contraction of septum-associated tethering proteins may pull WBs into the septal pore. Here, we investigate Woronin body dynamics in the wheat pathogen Zymoseptoria tritici. Ultrastructural studies showed that 3.4 ± 0.2 WBs reside on each side of a septum and that single WBs of 128.5 ± 3.6 nm in diameter seal the septal pore (41±1.5 nm). Live cell imaging of green-fluorescent ZtHex1, a major protein in WBs, and the integral plasma membrane protein ZtSso1 confirms WB translocation into the septal pore. This was associated with the occasional formation of a plasma membrane "balloon", extruding into the dead cell, suggesting that the plasma membrane rapidly seals the wounded septal pore wound. Minor amounts of fluorescent ZtHex1-eGFP appeared associated with the "ballooning" plasma membrane, indicating that cytoplasmic ZtHex1-eGFP is recruited to the extending plasma membrane. Surprisingly, in ~15% of all cases, WBs moved from the ruptured cell into the septal pore. This translocation against the cytoplasmic flow suggests that an active mechanism drives in WB plugging. Indeed, treatment of unwounded and intact cells with the respiration inhibitor CCCP induced WB translocation into the pores. Moreover, CCCP treatment recruited cytoplasmic ZtHex1-eGFP to the lateral plasma membrane of the cells. Thus, keeping the WBs out of the septal pores, in Z. tritici, is an ATP-dependent process
- …