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Abstract. The celebrated Leibnitz triangle has a remarkable property, namely
that each of its elements equals the sum of its south-west and south-east
neighbors. In probabilistic terms, this corresponds to a specific form of correlation
of N equally probable binary variables which satisfy scale invariance. Indeed,
the marginal probabilities of the N -system precisely coincide with the joint
probabilities of the (N − 1)-system. On the other hand, the non-additive
entropy Sq ≡ (1 −

∫ ∞
−∞[p(x)]q)/(q − 1) (q ∈ R;S1 = −

∫ ∞
−∞ p(x) ln p(x)), which

grounds non-extensive statistical mechanics, is, under appropriate constraints,
extremized by the (q-Gaussian) distribution pq(x) ∝ [1 − (1 − q)β x2]1/(1−q)

(q < 3; p1(x) ∝ e−βx2
). These distributions also result, as attractors, from

a generalized central limit theorem for random variables which have a finite
generalized variance, and are correlated in a specific way called q-independence.
In order to provide physical enlightenment as regards this concept, we introduce
here three types of asymptotically scale invariant probabilistic models with binary
random variables, namely (i) a family, characterized by an index ν = 1, 2, 3, . . .,
unifying the Leibnitz triangle (ν = 1) and the case of independent variables
(ν → ∞); (ii) two slightly different discretizations of q-Gaussians; (iii) a special
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family, characterized by the parameter χ, which generalizes the usual case of
independent variables (recovered for χ = 1/2). Models (i) and (iii) are in fact
strictly scale invariant. For models (i), we analytically show that the N → ∞
probability distribution is a q-Gaussian with q = (ν − 2)/(ν − 1). Models (ii)
approach q-Gaussians by construction, and we numerically show that they do
so with asymptotic scale invariance. Models (iii), like two other strictly scale
invariant models recently discussed by Hilhorst and Schehr, approach instead
limiting distributions which are not q-Gaussians. The scenario which emerges
is that asymptotic (or even strict) scale invariance is not sufficient but it might
be necessary for having strict (or asymptotic) q-independence, which, in turn,
mandates q-Gaussian attractors.

Keywords: new applications of statistical mechanics, rigorous results in
statistical mechanics, exact results
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1. Introduction

The central limit theorem (CLT) provides a most powerful tool for explaining the ubiquity
of Gaussian distributions in physical systems. It explains that N independent or weakly
correlated arbitrarily distributed random variables, with finite variances, sum up to
Gaussian probability distributions for N → ∞, corresponding to the thermodynamical
limit in physical systems. This theorem constitutes part of the foundations of Boltzmann–
Gibbs (BG) statistical mechanics, making it possible to describe a vast number of systems
without accounting for the specific microdynamics constituting them.

On the other hand, in systems dominated by strongly correlated microscopic events,
correlations have remained a stumbling block for the researcher, making it extremely
difficult to adequately take into account the contribution of all the microscopic events in
order to get a general macroscopic behavior.
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Recently, specific generalizations of the CLT have been proposed taking into account
some classes of global correlations, typically correlations over long distances [1]–[9]. Let
us briefly review the present situation. When we have N identical independent random
variables whose individual distribution has a finite variance, their sum approaches, as
N diverges and after appropriate centering and scaling, a Gaussian distribution. This
is the so-called standard CLT. If the individual variance diverges (due to fat tails of
the power law class, excepting for possible logarithmic corrections), the attractor is a
Lévy distribution (also called sometimes an α-stable distribution). If the variables are
not independent but q-independent (the q = 1 particular instance recovers standard
probabilistic independence), then, if certain q-generalized variance is finite, the attractor
is a q-Gaussian distribution [2]; if that variance diverges (due to specific power law
asymptotics), then the attractor is a (q, α)-stable distribution [3]. These various results
have been numerically illustrated in [8, 9], and some extensions can be seen in [4]–
[7], [10]. When q = 1, the correlations disappear, and the q-Gaussian ((q, α)-stable
distribution) reproduces a Gaussian (Lévy distribution). In terms of mathematical
grounding of statistical mechanics, the q �= 1 CLT cases play for non-extensive statistical
mechanics [14]–[17] the same role as the q = 1 CLT cases play for the BG theory.
The development of this theory is motivated by the observation that q-Gaussians (or
distributions very close to them) appear in many real physical systems, such as cold
atoms in dissipative optical lattices [18], dusty plasma [19], motion of hydra cells [20], and
defect turbulence [21]. This suggests that this kind of probability distribution plays an
important role in systems out of equilibrium presenting global correlations.

A central point of this generalized theorem is of course the hypothesis of q-
independence (defined in [2] through the q-product [22, 23], and the q-generalized Fourier
transform [2]). This corresponds, when q �= 1, to a global correlation of the N random
variables. Its rigorous definition is however not transparent enough in physical terms. An
important goal along these lines is therefore describing in simple terms the basic physical
assumptions behind the mathematical requirement of q-independence. Two types of
simple models have been recently introduced [11, 12] in order to provide this insight. They
are hereafter referred to as the MTG and the TMNT models respectively. The first one is a
discrete model with binary random variables; the second one involves continuous variables.
They are both strictly scale invariant and have been found numerically to converge,
when N increases, to distributions remarkably close to q-Gaussians. However, a rigorous
analytical treatment showed that the functional form of the probability distribution,
although being amazingly well fitted by q-Gaussians in both models, differs from it
in the thermodynamical limit [13]. This fact established that strict scale invariance
(hence asymptotic scale invariance) is not sufficient for having q-Gaussians as limiting
distributions. There remained open the question of whether scale invariance allows for
such limiting distributions. In the present paper, we precisely clarify this central issue,
thus providing some insight into this problem.

After some brief review of the theoretical framework within which q-Gaussians emerge,
we introduce, in section 3, a strictly scale invariant family of Leibnitz-like triangles, for
which the limiting distribution can be exactly obtained. Its limiting distributions are
q-Gaussians, which proves that scale invariance is consistent with q-Gaussianity. In
section 4 we discretize (in two slightly different manners) q-Gaussians. We then show
numerically that these discretized distributions approach the limiting ones—q-Gaussians
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by construction—with asymptotic scale invariance. This illustrates that both strict and
asymptotic scale invariances are compatible with q-Gaussianity. Finally, in section 5
we introduce another family of strictly scale invariant probabilistic triangles which, like
the MTG and TMNT models, do not converge onto q-Gaussians; instead they converge
onto rather curious distributions, having a singular behavior at infinity. We conclude in
section 6.

2. q-Gaussians

In addition to their appearance in a q-generalized CLT, q-Gaussians are the non-extensive
statistical mechanical [14]–[17] analogue to Gaussians in the BG theory. By introducing
a generalized entropic functional, a generalized thermostatistics could be developed that
exhibits a thermodynamic scenario similar to that of the original one. This theory accounts
for a class of systems where the BG theory fails. The entropy Sq (with q �= 1) was proposed
as an alternative to the BG entropy for complex systems, e.g., trapped in non-ergodic non-
equilibrium states [26, 27], or non-linear dynamical systems at the edge of chaos [28, 29].
Also, a connection between this generalized entropy and the generalized non-linear Fokker–
Planck equation leading to anomalous diffusion has been established [30].

Indeed, p1(x) ∝ e−x2/2σ2
optimizes the BG entropy S1 = −k

∫ ∞
−∞ p1(x) ln p1(x) dx,

under constraints
∫ ∞
−∞ dx p1(x) = 1 and 〈x2〉1 ≡

∫ ∞
−∞ dx x2p1(x) = σ2. Analogously,

q-Gaussians

pq(x) ∝
[
1 − (1 − q)βx2

]1/(1−q)
(q < 3) (1)

optimize the entropy

Sq[pq(x)] = k
1 −

∫ ∞
−∞ dx [pq(x)]q

q − 1

under constraints
∫ ∞
−∞ dx pq(x) = 1 and [31]

〈x2〉q ≡
∫ ∞
−∞ dx x2[pq(x)]q
∫ ∞
−∞ dx [pq(x)]q

= σ2.

It must be noted that q-Gaussians (1) have compact support (|x| � 1/
√

(1 − q)β) for q < 1
and are defined for all x for q � 1. In addition, the second moment of q-Gaussians remains
finite for q < 5/3. In the following, we will consider β = 1. The distribution Pq(x) ≡
[pq(x)]q/

∫ ∞
−∞ dx [pq(x)]q is called the escort distribution [24] and its relevance is discussed

in, for instance, [25]. Sq is non-additive for q �= 1 since, for two independent systems A
and B, we easily verify (assuming k = 1) Sq(A+B) = Sq(A)+Sq(B)+(1−q)Sq(A)Sq(B).

In complex cases, the BG entropy generally loses its extensivity, i.e., it no longer
(asymptotically) increases linearly with the system size. In this paper, the emphasis is
on considering q-Gaussians as being limiting probability functions characteristic for non-
equilibrium states. We will determine the characteristic entropic index for the simple
systems described in the following sections but do not necessarily expect them to yield
extensivity of the q-entropy with the same value for q as they exhibit in the stationary-
state distribution.
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Table 1. Joint probability distribution for a set of N = 2 independent binary
variables.

Table 2. Joint probability distribution for a set of N = 3 independent binary
variables.

3. First model: a family of Leibnitz-like triangles

In a probabilistic context, scale invariance will be said to (strictly) occur when, for a set
of N random variables, the functional form of the associated marginal probabilities of the
N -variables set coincides with the joint probabilities associated with the (N−1)-variables
set, i.e., when

∫
pN (x1, x2, . . . , xN−1, xN ) dxN = pN−1(x1, x2, . . . , xN−1). (2)

This relation is always valid for independent random variables, where the joint probability
corresponds to the product of the individual probabilities, but it is by no means necessarily
valid for correlated ones (see, for instance, section 4 for a counter-example).

We take now the case of a set of binary independent variables, each one taking values
1 or 0 with probabilities p and 1 − p respectively. For N = 2, the joint and marginal
probability distributions are given by table 1.

The last row (column) of table 1 represents the marginal probabilities of x2 (x1) which
reproduce the form of the probability distribution for each single (N = 1) variable. For
the N = 3 case, it is necessary to project a cube in the plane in order to represent the
whole set of probabilities (table 2).

Each box of table 2 contains two probabilities. The one in brackets stands for the
case x3 = 0, the other being for x3 = 1. Adding the two probabilities of each box of
table 2 we get the corresponding box of table 1, so scale invariance, equation (2), comes
up again, as it does when increasing N .
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It is clear that among the 2N elementary events of the sample space, only N +1 have
different probabilities rN,n = pN−n(1 − p)n, for n = 0, . . . , N , which, as a function of N ,
can be displayed in a triangle in the form

(N = 0) 1
(N = 1) p 1 − p
(N = 2) p2 p(1 − p) (1 − p)2

(N = 3) p3 p2(1 − p) p(1 − p)2 (1 − p)3

...
...

The probabilities rN,n are the joint N -variable probabilities. The above triangle reflects
the aforementioned scale invariance, equation (2), in the sense that its coefficients satisfy
the relation

rN,n + rN,n+1 = rN−1,n, (3)

that is, the sum of two consecutive coefficients (marginal probabilities of a N -system)
in the same row yields the coefficient on top of them (joint probabilities of the (N − 1)-
system). In other words, the corresponding marginal probabilities happen to coincide with
the row just above, a quite remarkable property (by no means general: see section 4). More
precisely, we are comparing two systems: one with N elements and one with (N − 1)
elements. And equation (3) means that the probabilistic observation of the (N − 1)-
system coincides with the observation of (N − 1) particles of the N -system. Relation (3)
can alternatively be given as a rule for generating the triangle together with the starting
condition rN,0 = pN for each row.

Let us focus now on the random variable z = x1 + x2 + · · · + xN . It takes the
values 0, 1, . . . , N , with a degeneracy—imposed by the identical character of the N binary
subsystems—given by the binomial coefficients (N

n
), so the actual set of probabilities

for z

pN,n ≡ P (z = N − n) =

(
N

n

)

rN,n (4)

are to be calculated multiplying the above triangle by the Pascal triangle. It can be easily
verified that pN,n is the binomial distribution which has, as limiting probability function
(N → ∞), a Gaussian.

Scale invariance condition (3) is the so-called Leibnitz triangle rule. The Leibnitz
triangle

(N = 0) 1
(N = 1) 1

2
1
2

(N = 2) 1
3

1
6

1
3

(N = 3) 1
4

1
12

1
12

1
4

(N = 4) 1
5

1
20

1
30

1
20

1
5

(N = 5) 1
6

1
30

1
60

1
60

1
30

1
6

...
...

...

satisfies condition (3) and differs from the independent case in the definition of the
starting condition, now given by rN,0 = 1/(N + 1). Leibnitz triangle coefficients

doi:10.1088/1742-5468/2008/09/P09006 6

http://dx.doi.org/10.1088/1742-5468/2008/09/P09006


J.S
tat.M

ech.
(2008)

P
09006

Strictly and asymptotically scale invariant probabilistic models

may be interpreted as a way to introduce correlations in the system of N random
variables. Probabilities are again calculated with (4), i.e., by multiplying Leibnitz and
Pascal triangles to get pN,n = 1/(N + 1). Hence, the Leibnitz triangle rule leads to a
uniform probability distribution, and so can be related to a q-Gaussian in the limit case
q → −∞.

We will now generalize the Leibnitz triangle introducing a family of scale invariant

triangles r
(ν)
N,n, ν = 1, 2, . . ., with boundary coefficients given by

r
(1)
N,0 =

1

N + 1
,

r
(2)
N,0 =

2 · 3
(N + 2)(N + 3)

,

r
(3)
N,0 =

3 · 4 · 5
(N + 3)(N + 4)(N + 5)

, . . . ,

r
(ν)
N,0 =

ν · · · (2ν − 1)

(N + ν) · · · (N + 2ν − 1)
,

(5)

which recovers the Leibnitz triangle for ν = 1. Let us emphasize that this definition leads
to (i) positive, (ii) symmetric, and (iii) norm preserving (in the sense that

∑N
n=0 pN,n = 1,

for all values of N) triangles. As a second example, the triangle for ν = 2 reads

(N = 0) 1
(N = 1) 1

2
1
2

(N = 2) 3
10

1
5

3
10

(N = 3) 1
5

1
10

1
10

1
5

(N = 4) 1
7

2
35

3
70

2
35

1
7

(N = 5) 3
28

1
28

3
140

3
140

1
28

3
28

...
...

...

It may be shown that the coefficients of consecutive triangles of the family are related
to each other in the following way:

r
(ν)
N,n =

r
(ν−1)
N+2,n+1

r
(ν−1)
2,1

. (6)

Therefore, all of them can be expressed in terms of the Leibnitz triangle and so a general
expression for the coefficients may be obtained:

r
(ν)
N,n =

r
(1)
N+2(ν−1),n+ν−1

r
(1)
2(ν−1),ν−1

=
(2ν − 1)!

[(ν − 1)!]2(N + 2ν − 1)
(

N+2(ν−1)
n+ν−1

) . (7)

In particular, the central elements of the triangle (n = N/2 for even N)

r
(ν)
N,N/2 =

(2ν − 1)!

[(ν − 1)!]2(N + 2ν − 1)
(

N+2(ν−1)
(N/2)+ν−1

) (8)

can be used to generate the whole triangle starting from the center instead of the side.
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We will now show that not only the Leibnitz triangle but also the rest of the triangles
of the family yield q-Gaussians as limiting probability distributions. In fact, there is a
value q = qlim(ν) for which the qlim-Gaussian corresponds to the N → ∞ probability
distribution defined by the corresponding triangle, that is

p
(ν)
N,n =

(
N

n

)

r
(ν)
N,n → Pqlim

(x) (9)

for N → ∞ (as n = 0, 1, . . . , N , we need to define x in terms of n and N , normally
through appropriate centering and scaling). For this purpose we will express the boundary

coefficients r
(ν)
N,0 in an alternative way by using partial fraction decomposition:

r
(ν)
N,0 =

(2ν − 1)!

[(ν − 1)!]2

ν−1∑

j=0

(−1)j

(
ν − 1

j

)
1

N + ν + j
. (10)

On the other hand, due to the scale invariance rule, any term of the triangle can be
expressed as a function of the boundary terms in the form

r
(ν)
N,n =

n∑

i=0

(−1)n−i
(n

i

)
r
(ν)
N−i,0. (11)

Introducing equation (10) in (11) yields

r
(ν)
N,n =

ν−1∑

j=0

a
(ν)
j

n∑

i=0

(−1)n−i
(n

i

) 1

N + ν − i + j
, (12)

where we have made the substitution a
(ν)
j ≡ ((2ν − 1)!/[(ν − 1)!]2)(−1)j(ν−1

j
).

By means of the relation 1/(N + α) =
∫ ∞
0

e−(N+α)zdz, together with the binomial
expansion (a + b)n =

∑n
i=0(

n
i
)an−ibi, equation (12) can be cast in the form

r
(ν)
N,n =

ν−1∑

j=0

a
(ν)
j

∫ ∞

0

dz

n∑

i=0

(−1)n−i
(n

i

)
e−(N+ν−i+j)z

=

ν−1∑

j=0

a
(ν)
j

∫ ∞

0

dz e−(N+ν+j)z
n∑

i=0

(−1)n−i
(n

i

)
eiz

=
ν−1∑

j=0

a
(ν)
j

∫ ∞

0

dz e−(N+ν+j)z(ez − 1)n

=

ν−1∑

j=0

a
(ν)
j

∫ ∞

0

dz e−(N+ν+j)zen ln(ez−1) =

ν−1∑

j=0

a
(ν)
j

∫ ∞

0

dz e−(ν+j)ze−Nf(z), (13)

where f(z) = z − y ln(ez − 1) with y = n/N .
For large N , the integral in equation (13) can be evaluated by using the saddle

point method. The minimum of f(z) is located at z� = − ln(1 − y), with f(z�) =

doi:10.1088/1742-5468/2008/09/P09006 8
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−(1 − y) ln(1 − y) − y ln y and f ′′(z�) = (1 − y)/y. Therefore, in the limit N → ∞,

r
(ν)
N,n ≈

ν−1∑

j=0

a
(ν)
j e−(ν+j)z�−Nf(z�)

∫ ∞

0

dz e−(N/2)(z−z�)2f ′′(z�)

≈
ν−1∑

j=0

a
(ν)
j

√
2πy

N(1 − y)
e(ν+j+N(1−y)) ln(1−y)+Ny ln y

=

√
2π

N

ν−1∑

j=0

a
(ν)
j (1 − y)ν+j+N(1−y)−1/2yNy+1/2. (14)

Concerning the limiting probability distribution, it can be obtained from the triangle
coefficients through

P(ν)(y) = Np
(ν)
N,n = N

(
N

n

)

r
(ν)
N,n ≈

√
N

2π
(1 − y)−N(1−y)−1/2y−(Ny+1/2)r

(ν)
N,n, (15)

where we have made use of the Stirling approximation. Inserting now equation (14) in (15)
yields

P(ν)(y) ≈
ν−1∑

j=0

a
(ν)
j (1 − y)ν+j−1. (16)

The largest exponent of y in the distribution (16) is 2(ν − 1). Hence, comparing with
equation (1), the value of qlim for the q-Gaussian limiting distribution function can be
obtained using 1/(1 − qlim) = ν − 1, i.e.

qlim =
ν − 2

ν − 1
, (17)

which implies a width of the compact support given by Δ ≡ 2
√

1/(1 − qlim) = 2
√

ν − 1.
Equation (17) can be rewritten as qlim = 1 − 1/(ν − 1), which recalls many analogous
relations existing in the literature, such as qentropy = 1 − 1/d in [1, 32, 33].

The variable y is defined between 0 and 1. However, we are interested in a centered
distribution function defined within [−Δ/2, Δ/2] and thus apply the transformation
x = 2

√
ν − 1(y − 1/2). The limiting function now results

P(ν)(x) =
1

2
√

ν − 1
P(ν)(y) ≈ 1√

ν − 1

ν−1∑

j=0

a
(ν)
j

2j+ν

(

1 − x√
ν − 1

)ν+j−1

=
(2ν − 1)!

2ν
√

ν − 1[(ν − 1)!]2

(

1 − x√
1 − ν

)ν−1 ν−1∑

j=0

(
ν − 1

j

)
(−1)j

2j

(

1 − x√
ν − 1

)j

=
(2ν − 1)!

22ν−1
√

ν − 1[(ν − 1)!]2

(

1 − x2

ν − 1

)ν−1

, (18)

which exactly coincides with a q-Gaussian with q = qlim.
In addition, P(ν)(x) transforms into the Gaussian distribution for ν → ∞, so we

recover the statistical independence case. In fact, it can be verified that taking the
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Figure 1. (a) Dotted lines: probability distributions P(ν)(x) = (N/2
√

ν − 1)p(ν)
N,n,

with p
(ν)
N,n given in (9) for N = 500 and ν = 2, 3, 5 and 10. Solid lines:

corresponding qlim-Gaussians with qlim given in (17) for the respective values
qlim = 0, 1/2, 3/4 and 8/9. The limiting case ν → ∞ (Gaussian) is also depicted
for comparison. (b) P(5)(x) for N = 100, 200, 500 and 1000 and the corresponding
qlim-Gaussian with qlim = 3/4.

limit in equation (7) one gets limν→∞ r
(ν)
N,n = 2−N ; hence limν→∞ p

(ν)
N,n = (N

n
)2−N , so

the corresponding triangle is the one given at the beginning of this section with p = 1/2.

Figure 1(a) shows P(ν)(x) = (N/2
√

ν − 1)p
(ν)
N,n as compared to the corresponding

qlim-Gaussians for N = 500. It is apparent that the approximation becomes poorer with
increasing ν. Figure 1(b) shows the validity of equation (9) for ν = 5, the corresponding
qlim = 3/4 and N = 100, 200, 500 and 1000. Curves overlap with the q-Gaussian for
greater values of N . The convergence is thus evident.

Figure 2 shows that, as regards extensivity, the family of triangles (5) follows the
Boltzmann–Gibbs prescription, that is, the value of q that makes the q-entropy extensive
is qent = 1 for all values of ν.

As a last remark, let us associate with the N random variables the variables
σi ≡ 2xi − 1 = ±1 (i = 1, 2, . . . , N), so that 〈σi〉 = 0, ∀i. We can straightforwardly
prove that 〈σiσj〉 = 1/(2ν + 1), ∀i �= j, ∀N . In the limit ν → ∞ we recover 〈σiσj〉 = 0,
as expected for independent variables, where no correlation exists.

4. Second model: discretized q-Gaussians

We will now introduce another probabilistic model in which we impose a priori the
condition that the N → ∞ limit for the probability distribution is a q-Gaussian, with the
aim of studying whether (strict or asymptotic) scale invariance is also obtained. In order
to verify whether the concept of q-independence, i.e. correlations leading to q-Gaussians,
can be related to scale invariance in probabilistic terms, relation (3) is expected to be
satisfied at least in the limit N → ∞, i.e., asymptotically.
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Figure 2. The q-entropy Sq = (1 −
∑N

n=0(
N
n )(r(ν)

N,n)q/q − 1) as a function of N

for ν = 1 (left), ν = 2 (center), and ν = 5 (right), and typical values of q. In all
cases qent = 1.

Considering again the set of N equally probable binary variables, the correlations will
now be given in the form

rN,n =
pq(xN,n)

(
N
n

)∑N
n=0 pq(xN,n)

, (19)

where xN,n are N + 1 equally spaced points in the support of the q-Gaussian pq(x), to be

specified later. For the set of probabilities we again write pN,n = (N
n
)rN,n, which provides

us with a discrete probability distribution which, by construction, follows the shape of the
q-Gaussian pq(x).

Concerning the way to choose the points xN,n in (19) a distinction must be made
between cases q < 1 and q � 1.

As mentioned before, for q < 1, q-Gaussians have compact and symmetric support of
width Δ ≡ 2/

√
(1 − q). For this case, we will consider two different ways to choose the

points xN,n in the support of the q-Gaussian:
(1) N +2 discretization (D1): In this implementation, we take xN,n = xmin +(n+1)h,

for n = 0, 1, . . . , N , with xmin = −Δ/2 and h = Δ/(N + 2), i.e., explicitly, xN,n =
xmin + h, xmin + 2h, xmin + 3h, . . . , xmin + (N + 1)h.

(2) N + 1 discretization (D2): Now, the points xN,n are chosen differently: the same
initial interval Δ breaks now into N +1 equal subintervals (not N +2 as before) of width
h = Δ/(N + 1) and we take the values of pq(xN,n) in the center of each subinterval,
i.e. xN,n = xmin +(2n+1)h/2. The whole set reads xN,n = xmin +h/2, xmin +3h/2, xmin +
5h/2, . . . , xmin + (2N + 1)h/2.

In contrast, for q � 1, the support for q-Gaussians is the whole real axis and we must
take this into account in the fit. We will take an increasing width for the fit interval in
the form ΔN = δ(N +1)γ, δ being some initial width, and γ, with 0 � γ � 1, a parameter
determining the growth of the interval width (for γ = 0 we recover the q < 1 case). Now
xN,n = xmin,N + (n + 1)hN , with xmin,N = −ΔN/2 and hN = ΔN/(N + 2).

Despite the fact that different discretizations yield different triangles (19) for a given
value of q, let us emphasize that the corresponding limiting distributions pN,n tend to the
same q-Gaussian pq(x) in the limit N → ∞.
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Now the following question arises. Do the triangles (19) satisfy relation (3) as the
triangles (5) from section 3 do? In other words, can q-Gaussians be related to strictly
scale invariant distributions? Strictly speaking, they are not, since relation (3) is not
exactly fulfilled (except for the case q = 0 with the first discretization D1, as we will show
later), but we will show (analytically in some cases, numerically in others) that these
triangles are asymptotically scale invariant, that is, relation (3) is satisfied for N → ∞,
or, alternatively, the ratio

QN,n ≡ rN,n

rN+1,n + rN+1,n+1
(20)

tends to 1 (or equivalently QN,n − 1 tends to 0) as N increases. Note that Q0,0 = Q1,0 =
Q1,1 = 1 for arbitrary values of r0,0, r1,n and r2,n.

4.1. The q < 1 case

Figure 3 shows QN,n − 1 as a function of n for N = 500 and different values of q, for
both the D1 and D2 discretizations. There is clearly observed the proximity of QN,n to 1,
which is more noticeable in the center of the triangle.

Quite remarkably, for q = 0, strict scale invariance is obtained in the first
discretization, that is, QN,n = 1 for all N and n. This is so because, in this case, it
can be proved that triangle (19) exactly coincides with the Leibnitz-like triangle of the

family (5) with ν = 2, with associated probabilities p
(2)
N,n = (N

n
)r

(2)
N,n = 6[1+n(N−n)/(N +

1)]/(N + 2)(N + 3).
An exact expression for rN,n and hence QN,n can also be obtained for the D2

discretization and q = 0, the probabilities being in this case pN,n = 3[(2n + 1)(2N − 2n +
1)]/[(N + 1)(2N2 + 4N + 3)]. Of particular interest are the central value, Qc ≡ QN,N/2,
and the boundary one, Q0 ≡ QN,0, of quotient (20), being given by

Qc =
(N + 2)2N(2N2 + 8N + 9)

(2N2 + 4N + 3)(N3 + 6N2 + 10N + 2)
for odd N, (21)

Q0 =
(2N + 1)(N + 2)(2N2 + 8N + 9)

(2N2 + 4N + 3)(2N2 + 11N + 6)
. (22)

From equations (21) and (22) result Qc − 1 ∼ N−2 and Q0 − 1 ∼ −N−1, respectively.
Though these equations are only valid for q = 0, this trend is observed for any value of
q < 1. Figure 4 shows in a log–log plot Qc − 1 as a function of N for different values
of q < 1 and both discretizations. It is clear that the decay follows a 1/N2 power law
for large N and any value of q. No substantial differences are observed between the two
discretizations.

Analogously, figure 5 shows Q0 − 1 as a function of N and different values of q. We
observe now a 1/N power law. We found that this 1/N power law transforms into 1/N2

when we do not take into account the complete interval of the compact support of the
q-Gaussian under consideration (not shown).

As regards the extensivity of Sq, the same behavior as in the previous systems is
found. We get qent = 1 no matter what the value of q � 1 of the discretized q-Gaussian
is (let us recall that there is no reason for the value of q of the discretized q-Gaussian to
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Figure 3. QN,n − 1 as a function of xN,n for N = 500 and different values of
q = −1,−1/2, 0, 1/4, 1/2 for discretizations D1 (top) and D2 (bottom). Strict
scale invariance is observed for q = 0 and discretization D1. In the rest of the
cases the deviation from zero is small and, as can be seen from results not shown
here, decreases when increasing N .

be equal, or even simply related, to the index qent corresponding to the extensivity of the
entropy Sq(N)), and no matter what the type of discretization is (D1 or D2). Figure 6
shows the q-entropy for discretized q-Gaussians for typical values of q. The results are
independent of the discretization.

4.2. The q � 1 case

A similar trend is observed for q � 1. Quotients Q0 and Qc tend to 1 as N increases for all
values of γ, which, as mentioned before, determines the growth of the interval where the
q-Gaussian is evaluated. In the case of the Gaussian, i.e. q = 1, it is known that γ = 1/2.
Figure 7 shows the decay of the central quotient for q = 3/2 and different values of γ.
Apparently, γ = 1/2 provides the appropriate growth of the interval for q-Gaussians with
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Figure 4. Central ratio Qc − 1 as a function of N for discretized q-Gaussians
with q = −1, 0, 1/4, 1/2 and 3/4 for discretizations D1 (top) and D2 (bottom).
Exact result (21) for q = 0 is also shown for D2 discretization. The power law
with exponent −2 is shown for comparison.

q > 1 as well. For γ < 1/2, one observes the power law behavior only over some range,
whereas for γ > 1/2 the decay follows a power law with an exponent larger than −1. The
boundary ratio displays the same dependence on γ.

For γ = 1/2 we verify a 1/N power law. Figure 8 shows Qc −1 and Q0 −1 for typical
values of q and γ = 1/2.

As regards the extensivity of the entropy Sq, the value of qent remains 1 and is
independent of γ. Figure 9 shows the Sq(N) for typical values of q � 1.

5. Third model: another family of generalized triangles

As seen in sections 3 and 4, strictly as well as asymptotically scale invariant probability
models may lead to q-Gaussian limiting distributions. Nevertheless, as we already
know [13], scale invariance does not guarantee q-Gaussianity. In this section, we present
a last model to emphasize this point.
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Figure 5. Boundary ratio Q0 − 1 as a function of N for discretized q-Gaussians
with q = −1, 0, 1/4, 1/2 and 3/4 for discretizations D1 (top) and D2 (bottom).
Exact result (22) for q = 0 is also shown for D2 discretization. The power law
with exponent −1 is shown for comparison.

The following strictly scale invariant triangle:

(N = 0) 1
(N = 1) 1

2
1
2

(N = 2) 4
14

3
14

4
14

(N = 3) 5
28

3
28

3
28

5
28

(N = 4) 7
56

3
56

3
56

3
56

7
56

(N = 5) 11
112

3
112

3
112

3
112

3
112

11
112

...
...

...

with coefficients (χ = 3/7) given by

rN,n =

⎧
⎨

⎩

1

2
− χ(1 − 21−N); n = 0, N

χ21−N ; n �= 0, N
(23)

corresponds to a different way to introduce correlations in the system. In order to get
non-negative coefficients, the parameter χ is kept within [0, 1/2].
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Figure 6. q-entropy Sq = (1 −
∑N

n=0(
N
n )rq

N,n)/(q − 1), with rN,n given in (19), as
a function of N for discretized q-Gaussians with q = −1 (left), q = −1/2 (center),
and q = 1/2 (right) and discretization D1. Results with discretization D2 are
indistinguishable. In all cases qent = 1.

Figure 7. Central ratio |Qc−1| as a function of N for q = 3/2, δ = 2 and γ = 0.4,
0.5 and 0.6. Asymptotic power law behavior with the exponent dependent on γ
is observed for γ � 1/2. For γ = 1/2 Qc − 1 ∼ N−1, the decay is slower for
greater γ.

The probabilities are given by

pN,n =
(

1
2
− χ

)
(δn,0 + δn,N) +

(
N

n

)

χ21−N . (24)

The case of binary random variables (ν → ∞ for the triangles analyzed in section 3) is
reproduced here for χ = 1/2; hence pN,n = (N

n
)2−N .

For calculating the limiting probability function, the CLT states that the new variable
x = (n − N/2)/(

√
N/2) provides a normal distribution in the limit N → ∞ for the

second term of equation (24). In addition, two delta peaks appear after substitutions

δn,0 → δ((
√

N/2)x + N/2) = (2/
√

N)δ(x +
√

N) and δn−N,0 → δ((
√

N/2)x − N/2) =

(2/
√

N)δ(x −
√

N). Finally, by taking limits in equation (24), we obtain

P(x) = lim
N→∞

√
N

2
pN,n = 2χ

1√
2π

e−x2/2 +

(
1

2
− χ

)

lim
N→∞

(δ(x −
√

N) + δ(x +
√

N)), (25)
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Figure 8. Central quotient (top) and boundary quotient (bottom) decay as a
function of N for discretized q-Gaussians with q = 1.01, 1.25, 1.25 and 2, γ = 1/2
and δ = 2. In all cases the trend Q0 − 1 ∼ Qc − 1 ∼ N−1 is observed.

which consists of a Gaussian distribution plus the additional contribution of the delta
peaks corresponding to a concentration of probability on the two sides of the triangle.

As in the previous sections, the BG entropy is extensive for this triangle as well. This
may be proved directly by inserting coefficients (24) into

S1 = −
N∑

n=0

(
N

n

)

rN,n ln rN,n, (26)

yielding

S1 = −(1 − χ) ln[(1
2
− χ) + χ21−N ] − χ21−N

N−1∑

n=1

(
N

n

)

[ln(χ21−N)]

= (χ − 1) ln[(1
2
− χ) + χ21−N ] − 2χ

(
ln(2χ) − 21−N ln(χ21−N)

)
+ 2χN ln 2

∝ N (27)

for large N .
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Figure 9. q-entropy as in figure 6 for discretized q-Gaussians with q = 1 (left),
q = 3/2 (center), and q = 2 (right). In all cases qent = 1.

6. Conclusions

A family of Leibnitz-like triangles leading to q-Gaussians as limiting probability
distribution functions with q � 1 was introduced, where the limiting distribution could be
exactly calculated. These systems correspond to N correlated binary random variables,
the index q characterizing the strength of correlation. The case q → −∞ corresponds to
very strongly correlated variables giving a uniform limiting distribution.

On the other hand, the coefficients of another type of triangles were constructed by
discretizing q-Gaussians. These triangles, having now by construction q-Gaussians with
q < 1 as limiting probability functions, showed a behavior which depends on the specific
discretization of the support interval. Except for one particular case, the Leibnitz rule,
related to system size scale invariance of the probabilities, is only asymptotically satisfied.
The system approaches scale invariance with a 1/N2 power law for large N , except for
the boundary coefficients where the convergence to scale invariance is much slower, of the
type 1/N . The 1/N2 law makes a crossover into a 1/N one over the entire triangle when
considering q-Gaussians with q � 1.

Finally, another family of strictly scale invariant triangles with a rather strange
limiting distribution function was introduced. In the limit N → ∞, the triangles yield a
Gaussian distribution together with two delta peaks centered at points going to infinity.

The BG entropy remains extensive for all three types of triangles, equally to previously
studied Leibnitz-like triangles [11]. This may be the result of the simplicity of the models
presented in this paper. More sophisticated models, for instance the Hamiltonian mean
field model (see for instance [26, 27]), appear to approach a q-Gaussian characterized
by a non-equilibrium stationary state with the q-entropy possibly being extensive for
q �= 1. However, in the present effort we are here not particularly interested in the
general relation between the extensivity of the entropy and stationary-state probability
distributions, but we rather searched to find which kind of correlation between the
microscopic events of a system leads to q-Gaussians as limiting distributions (possibly, as
attractors).

The Leibnitz rule provides a simple tool for studying models composed of correlated
binary random variables, and enabled the exact calculation of their limiting functions.
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As already addressed in [13], this rule cannot be uniquely related to non-extensive
thermostatistics. Indeed, Leibnitz-like triangles exist which precisely lead to q-Gaussians
(as shown in the present paper) as well as to other limiting probability functions (as
shown in [13], and also here). Additionally, the present second family of triangles (with
asymptotic but not strict scale invariance) also tended to a q-Gaussian. The scenario
which emerges is that asymptotic validity of the Leibnitz rule might represent a necessary
but surely not sufficient condition for the system to tend to q-Gaussians as limiting
distributions when N → ∞.

The fact that different implementations of correlations between the variables of a
system can lead to the same function—q-Gaussians in the present case—can be seen as a
hint of these functions being attractors for a variety of different systems, and so supports
the demand of generality of the q-generalized central limit theorem presented in [1]–[4].
However, to assure the applicability of this central limit theorem, the stability of the q-
Gaussians as limiting functions of the systems presented here needs to be proved, either
by establishing that the correlations correspond to q-independence, or by introducing, for
example, weak perturbations.
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