29,499 research outputs found

    Composite oscillator systems for meeting user needs for time and frequency

    Get PDF
    Frequency standards are used in most navigation and telecommunications systems to provide a long term memory of either frequency, phase, or time epoch. From a systems point of view, the performance aspects of the frequency standard are weighed against other systems characteristics, such as overall performance, cost, size, and accessibility; a number of examples are very briefly reviewed. The theory of phase lock and frequency lock systems is outlined in sufficient detail that total oscillator system performance can be predicted from measurements on the individual components. As an example, details of the performance of a high spectral purity oscillator phase locked to a long term stable oscillator are given. Results for several systems, including the best system stability that can be obtained from present commercially available 5-MHz sources, are shown

    The Effects of Weak Spatiotemporal Noise on a Bistable One-Dimensional System

    Full text link
    We treat analytically a model that captures several features of the phenomenon of spatially inhomogeneous reversal of an order parameter. The model is a classical Ginzburg-Landau field theory restricted to a bounded one-dimensional spatial domain, perturbed by weak spatiotemporal noise having a flat power spectrum in time and space. Our analysis extends the Kramers theory of noise-induced transitions to the case when the system acted on by the noise has nonzero spatial extent, and the noise itself is spatially dependent. By extending the Langer-Coleman theory of the noise-induced decay of a metastable state, we determine the dependence of the activation barrier and the Kramers reversal rate prefactor on the size of the spatial domain. As this is increased from zero and passes through a certain critical value, a transition between activation regimes occurs, at which the rate prefactor diverges. Beyond the transition, reversal preferentially takes place in a spatially inhomogeneous rather than in a homogeneous way. Transitions of this sort were not discovered by Langer or Coleman, since they treated only the infinite-volume limit. Our analysis uses higher transcendental functions to handle the case of finite volume. Similar transitions between activation regimes should occur in other models of metastable systems with nonzero spatial extent, perturbed by weak noise, as the size of the spatial domain is varied.Comment: 16 page

    Digital adaptive controllers for VTOL vehicles. Volume 1: Concept evaluation

    Get PDF
    A digital self-adaptive flight control system was developed for flight test in the VTOL approach and landing technology (VALT) research aircraft (a modified CH-47 helicopter). The control laws accept commands from an automatic on-board guidance system. The primary objective of the control laws is to provide good command-following with a minimum cross-axis response. Three attitudes and vertical velocity are separately commanded. Adaptation of the control laws is based on information from rate and attitude gyros and a vertical velocity measurement. The final design resulted from a comparison of two different adaptive concepts--one based on explicit parameter estimates from a real-time maximum-likelihood estimation algorithm, the other based on an implicit model reference adaptive system. The two designs were compared on the basis of performance and complexity

    Effects of cannabinoids on gene expression

    Get PDF

    Digital adaptive controllers for VTOL vehicles. Volume 2: Software documentation

    Get PDF
    The VTOL approach and landing test (VALT) adaptive software is documented. Two self-adaptive algorithms, one based on an implicit model reference design and the other on an explicit parameter estimation technique were evaluated. The organization of the software, user options, and a nominal set of input data are presented along with a flow chart and program listing of each algorithm

    Noisy Classical Field Theories with Two Coupled Fields: Dependence of Escape Rates on Relative Field Stiffnesses

    Full text link
    Exit times for stochastic Ginzburg-Landau classical field theories with two or more coupled classical fields depend on the interval length on which the fields are defined, the potential in which the fields deterministically evolve, and the relative stiffness of the fields themselves. The latter is of particular importance in that physical applications will generally require different relative stiffnesses, but the effect of varying field stiffnesses has not heretofore been studied. In this paper, we explore the complete phase diagram of escape times as they depend on the various problem parameters. In addition to finding a transition in escape rates as the relative stiffness varies, we also observe a critical slowing down of the string method algorithm as criticality is approached.Comment: 16 pages, 10 figure

    Asymptotic Exit Location Distributions in the Stochastic Exit Problem

    Full text link
    Consider a two-dimensional continuous-time dynamical system, with an attracting fixed point SS. If the deterministic dynamics are perturbed by white noise (random perturbations) of strength ϵ\epsilon, the system state will eventually leave the domain of attraction Ω\Omega of SS. We analyse the case when, as ϵ→0\epsilon\to0, the exit location on the boundary ∂Ω\partial\Omega is increasingly concentrated near a saddle point HH of the deterministic dynamics. We show that the asymptotic form of the exit location distribution on ∂Ω\partial\Omega is generically non-Gaussian and asymmetric, and classify the possible limiting distributions. A key role is played by a parameter μ\mu, equal to the ratio ∣λs(H)∣/λu(H)|\lambda_s(H)|/\lambda_u(H) of the stable and unstable eigenvalues of the linearized deterministic flow at HH. If μ<1\mu<1 then the exit location distribution is generically asymptotic as ϵ→0\epsilon\to0 to a Weibull distribution with shape parameter 2/μ2/\mu, on the O(ϵμ/2)O(\epsilon^{\mu/2}) length scale near HH. If μ>1\mu>1 it is generically asymptotic to a distribution on the O(ϵ1/2)O(\epsilon^{1/2}) length scale, whose moments we compute. The asymmetry of the asymptotic exit location distribution is attributable to the generic presence of a `classically forbidden' region: a wedge-shaped subset of Ω\Omega with HH as vertex, which is reached from SS, in the ϵ→0\epsilon\to0 limit, only via `bent' (non-smooth) fluctuational paths that first pass through the vicinity of HH. We deduce from the presence of this forbidden region that the classical Eyring formula for the small-ϵ\epsilon exponential asymptotics of the mean first exit time is generically inapplicable.Comment: This is a 72-page Postscript file, about 600K in length. Hardcopy requests to [email protected] or [email protected]

    The Order of Phase Transitions in Barrier Crossing

    Full text link
    A spatially extended classical system with metastable states subject to weak spatiotemporal noise can exhibit a transition in its activation behavior when one or more external parameters are varied. Depending on the potential, the transition can be first or second-order, but there exists no systematic theory of the relation between the order of the transition and the shape of the potential barrier. In this paper, we address that question in detail for a general class of systems whose order parameter is describable by a classical field that can vary both in space and time, and whose zero-noise dynamics are governed by a smooth polynomial potential. We show that a quartic potential barrier can only have second-order transitions, confirming an earlier conjecture [1]. We then derive, through a combination of analytical and numerical arguments, both necessary conditions and sufficient conditions to have a first-order vs. a second-order transition in noise-induced activation behavior, for a large class of systems with smooth polynomial potentials of arbitrary order. We find in particular that the order of the transition is especially sensitive to the potential behavior near the top of the barrier.Comment: 8 pages, 6 figures with extended introduction and discussion; version accepted for publication by Phys. Rev.

    Relationships Between the Performance of Time/Frequency Standards and Navigation/Communication Systems

    Get PDF
    The relationship between system performance and clock or oscillator performance is discussed. Tradeoffs discussed include: short term stability versus bandwidth requirements; frequency accuracy versus signal acquisition time; flicker of frequency and drift versus resynchronization time; frequency precision versus communications traffic volume; spectral purity versus bit error rate, and frequency standard stability versus frequency selection and adjustability. The benefits and tradeoffs of using precise frequency and time signals are various levels of precision and accuracy are emphasized
    • …
    corecore