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DIGITAL ADAPTIVE CONTROLLERS
FOR VTOL VEHICLES--VOLUME 1
Gary L. Hartmann, Gunter Stein, and Stephen G. Pratt

Honeywell Inc.
Systems and Research Center
Minneapolis, Minnesota

SECTION 1
INTRODUCTION

Background

The VT OL Approach and Landing Technology (VALT) program of the
National Aeronautics and Space Administration is developing a technology
base for future VTOL systems. This research includes the development
of a navigation, guidance, and control system to permit automatic flight
along complex four-dimensional (space and time) mission profiles from
takeoff to landing under all weather conditions,

One area of the overall program is developing digital control design
procedures for VI'OL aircraft and demonstrating these methods by applica-
tion to a VALT research aircraft. This aircraft is a modified CH-47B, a
tandem-~-rotor, medium-transport helicopter. Its size is representative of
future passenger-carrying VI'OL aircraft, This aircraft was previously
used in the United States Army's Tactical Aircraft Guidance System (TAGS)

program. 1

A large floating-point computer is part of the present on-board digital
control system. This computer's capability permits in-flight evaluation of

Anon. , '"Tactical Aircraft Guidance System Advanced Development Pro-
gram Flight Test Phase Report,' Vols. Iand II, USAAMRDL TR-73-89A, B,
Ft. Eustis, Virginia, April 1974,




a variety of guidance and control algorithms by simply programming the
software in FORTRAN. Control commands are transmitted from the com-

puter to the helicopter's mechanical linkages by electrohydraulic actuvators.

As part of this research activity, Honeywell initiated work in 1977 under
contract NAS1-14921 to provide a system of digital adaptive control laws
for flight evaluation. The control laws are self-adaptive in that they modify
the control law on the basis of existing feedback signals. The use of air
data sensors was specifically excluded from the control system. The control
system was specified to be an attitude command system and was to interface

with existing guidance algorithms.
Candidate Adaptive Concepts

Two different adaptive concepts were selected at the outset for evalua-
tion using a design based on the CH-47's longitudinal axis. For maximum
research value, one implicit method and one explicit method were selected.

Explicit parameter estimation. -The Maximum -Likelihood Estimation
(M LE) algorithm recently developed for the F-8 Digital Fly-by-Wire pro-
gram was selected as the explicit concept. 2

This algorithm is superior to other explicit identification concepts in
several respects. It is not subject to estimation bias in the presence of gust
inputs which is a problem for designs based on weighted least-squares-
output error-matching techniques. The MLE procedure differs from the
output-error least-square technique by minimizing a residual sequence
rather than the measurement error. By using a Kalman filter, the random
inputs (gusts) are properly accounted for. The algorithm can also be tailored

for real-time parameter estimation,

2Hartmann, G. L., et al,, "F-8C Adaptive Flight Control Laws, NASA CR-
2880, September 1977.




The MLE algorithm has been implemented in a parallel-channel con-
figuration to eliminate the need for multiple on-line iterations and eliminates

the need for convergence tests.

In an explicit identification approach, an algorithm is required for ad-
justing the control law on the basis of parameter estimates. For application
to the VALT helicopter, the control laws were structured to provide an
attitude command system. Estimates of helicopter parameters (obtained
on-line from MLE) perform the gain adjustment,

Implicit model reference. -An implicit model-following design was the
second approach investigated. Model-following systems, per se, have been

popular for flight control, since it is often convenient to express the desired
closed-loop response of the vehicle in the form of an idealized model, 3
VTOLs are no exception. As parameters in the plant vary, adjustments to
the feedforward and feedback gains are made to maintain a response closely
matching the model. The model used was formulated from the attitude com-

mand response specifications.
Document Organization

This report is divided into 11 sections. Section 2 contains the list of
symbols used throughout., Ground rules and requirements for the adaptive
designs are set forth in Section 3. The helicopter model used for design is
given in Section 4. The control structure common to both adaptive concepts
is described in Section 5. Sections 6 and 7 contain design details for the
MLE and the Model reference concepts, respectively. Section 8 compares
the concepts and presents the design recommended for flight test. Section

3La.nda.u, 1.D., "A Survey of Model Reference Adaptive Techniques--Theory

and Application,' Automatica, Vol. 10, p. 353, 1974,




9 covers the guidance interface. Section 10 summarizes results of the off-
line processing of flight data. Conclusions and recommendations are pre-
sented in Section 11,
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SECTION 2
LIST OF SYMBOLS
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Greek Symbols

Lower Case (cont.)

5i - aerodynamic surface positions i =B,C,S, R
€ Bey - generic likelihood filter states
i - ij element of T
C ‘ - dummy argument for values of parameter vector
c
n - white noise process
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M : - exp (-At/T)
v - Kalm‘an filter residuals
g - white noise process
p - air density
o, 0, - standard deviation of variable x
T - time constant
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SECTION 3
DESIGN GROUND RULES AND REQUIREMENTS

The primary application of the adaptive controller is in automatic tra-
jectory-following. A candidate VALT flight path is shown in Figure 1, It
is representative of the terminal portion of a VTOL!s flight, It includes a
number of heading changes and concludes with a constant-velocity descent
followed by a decelerating descent to a hover condition, The adaptive con-
troller will accept commands from an existing guidance law, An overall
block diagram is shown in Figure 2, An attitude control mode was specified.

The performance requirements for attitude control are given in Table 1,

The adaptive control algorithm shall fit in a reasonable allocation of
the on-board ROLM-1664 digital computer. As a design goal the adaptive
software will operate at 10 samples per second, Sensor outputs sampled

at 40 sps are available should a faster update rate be required,

The sensors were limited to the present VALT sensor complement, ex-
cluding air data, The sensors are listed in Table 2,

The adaptive algorithm used estimates of the three Euler angles (6, ¢,
Y ), the body angular rates (p, q, and r), and vertical velocity., These signals
were supplied by existing onboard estimates that combined the various sensor
outputs,

Position information about the aircraft is supplied to the guidance algo-
rithm from a barometric altimeter and a radar/laser tracking system located

on the ground,

The adaptive controller will operate with the unaugmented vehicle.
Finally, the adaptive controller must not interfere with the normal mission

of the aircraft by requiring large test signals,
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TABLE 1. -ATTITUDE COMMAND SPECIFICATIONS

Parameter

Requirement

a) Angle commands {6, ¢ Y):

Rise time criterion

Overshoot criterion

Settling time criterion

b) V, command:

Rise time criterion

Overshoot criterion:

¢) Minimal cross-axis response

Amplitude >90% of final value
within 1,5 s,

Overshoot <15% of final value,

Amplitude within 5% of final
value in 5 s or less,

Amplitude >90% of final value
within 2 s,

Overshoot <5% of final value
for 0 < Vx < 10 kt,

Overshoot <0.5 Vx % of final
value for 10 < Vi < 40 kt,

Overshoot <0,5 Vx % of final
value for 10 < Vx < 40 kt,

Overshoot <20% of final value
for Vx > 40 kt,
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TABLE 2. -SENSORS FOR VALT RESEARCH AIRCRAFT

Location with respect to c. g.

S Variable . D .
ensor measured Dynamic model x(in, ) y(in.) z(in.) ynamic range
(m) (m) (m)
1 10 0 -20 2
Accelerometer ay, a,, a 1.005s + 1 0.254) | (0) (-0.508) | 0-5g (£4.9 m/s")
2
(100) -110 20 30 o
Angular rate gyro (3) P, 4, r _ +30° (0, 52 rad)
s2 +2(0.,65) (100)s + (100)2 | (-2.8) [ (0.508) [ (0.762)
Vertical gyro: 1 -110 20 30
Pitch 6 (2.8) (0.508) [ (0.762) [ ,30° (40,52 rad)
Roll ® +45° (40, 78 rad)
(100)2
Gyromagnetic compass ' 3 3 Not specified 0 to 360° (0 to 6,28 rad)
s“ + 2(0, 65) (100)s + (100)*
Instantaneous vertical z Tsl-l-—l Not specified +200 kt (+103 m/s)
speed indicator (IVSI)
Barometric altimeter h "—1—— Pressure ports at 0 to 5000 ft
0.07s + 1 (0 to 1524 m)
280 40 -10 ° m
(7.11) (1.018) | (-0.254)
. . 1 .
Calibrated airspeed - 0,055 + 1 Aircraft nose 50 to 200 kt

(25.74 m/s to 103 m/s)




SECTION 4
MODELS AND SIMULATION

CH-47 Model

The helicopter model used for analysis and design consists of linear
differential equations and a corresponding set of stability derivatives.

The tables of stability derivatives are taken from Appendix E (pp. 85-
93) of ref. 4.*
numbered consecutively such that each flight condition corresponds to a

They were used to define 99 flight conditions. These are

column of Table E2. The state vector, x, and the control vector, §, for

the model are defined below:

State Vector Control Vector
u 6B differential collective
v ' 5C collective
w GS cyclic
P GR differential cyclic
q
r
©
]
%

4Ostroff, A.J., Downing, D.R., and Root, W.J., "A Technique Using a
Nonlinear Helicopter Model for Determining Trims and Derivatives,
NASA TN D-8159,
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For control design purposes, the model was decoupled into separate
longitudinal and a lateral-directional models. For the pitch-axis model,
the u and v velocities were rotated to earth-referenced coordinates, x and =z.
This was done to permit direct evaluation of guidance command responses.

The variables, control inputs, and guidance commands are given in Table 3.

TABLE 3.-CH-47 VARIABLES

Parameter Pitch model Lateral-directional
model

Vi Vv

Vv z p
Variable

q r

2] @

o} o]
Control B S

5C i} R

6 0]
Command

Vz 1/

Each of the uncoupled models is represented by a linear model in the

usual form
X = Ax + B§

Thirty-three trim points (flight conditions) were selected for design and
analysis purposes. These 33 flight conditions cover the range of the CH-47's

operating envelope shown in Figure 3.
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Figure 3. -CH-47 flight conditions.

Actuator and Rotor Models

The rotor and actuator model used for design is shown in Figure 4. This
configuration evolved from the CH-47 TAGS systems as modified for the
NASA Langley VALT program. The gain K1 was introduced to convert any
stick deflection into standard CH-47 stick inches compatible with the set of
stability derivatives,

Simulations

A digital simulation of the CH-47 was developed for use at Honeywell
in designing the adaptive controllers, It operates with a specified sample
rate and integrates the differential equations to compute CH-47 time histories
in response to commands and/or disturbances, The simulation uses constant
parameters representing a fixed flight condition. The simu]atibn has the
option of representing either longitudinal, lateral-directional, or coupled

longitudinal-lateral dynamics.
A random-number generator is used to represent sensor noise, and

random sequences shaped by 1-second first-order lag filters are used to
represent forward and vertical gusts.

15
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Stick

converter

.y_
Smin

Volts

Ky

CH-46 Stick conversion factors

Channel Ky

Collective 0.75
Differential collective 1.08
Cyclic 0.64
Differential cyclic 1.44

[e====-=——=

Figure 4. -Model of CH-47 VALT control system for control system design,

TAGS TAGS
actuator
H pi rate limit
[}
[ YA TAGS in. TAGS In.
0.4 in/V > > 3in/s .
Y
Feedback signals )
Volts ?
Conversion Rotor dynamics
TAGS dyn. to 47 in. 02 .
1 TAGS in. 1 LJ 5 47 1In.)
Ty 5tl 0.4KTK + 2¢0,s + 0, !
TA=1/80s 0 =24 d/s
(=0.6



The simulation includes the linear model for the rotor dynamics from
Figure 4. Rate limiting of the actuator was included, since this nonlinearity

tends to affect the stability of command responses and thus is important.

The simulation used for design verification was the nonlinear six-degree-
of-freedom VALT simulation at NASA Langley Research Center. It operates
in real time on a Control Data CYBER computer and has the capability of
interfacing with the actual flight computer.

The control laws designed for this program are described in the next

section.
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SECTION 5
CONTROL LAW STRUCTURE

A design procedure based on state-variable feedback was used to design
the attitude command system, The design procedure uses an algebraic
model-following method and includes integral control to eliminate steady -
state errors and improve decoupling. Uncoupled controllers were designed

for the pitch and lateral-directional axes. Each design is discussed below.
Longitudinal Control

The specified 6 attitude response is essentially a second-order response,
Consideration of the desired speed of response leads to a requirement for
w> 1.3 rad/s and £> 0.5 in a second-order response, The closed-loop
pole corresponding to the integral was placed at -0, 8, which is sufficiently
fast so that the response is dominated by the complex pair of poles, If the
integrator pole is moved further left, rate-limiting problems are encoun-
tered, A feedforward gain was used to add a zero at -0.8, cancelling the
closed-loop integrator pole. Thus, the desired transfer function for a 6
command is:

6 _ 6 (s +0.8)
6

c (sz+33+6)(s+0.8)
Similarly, the first-order vV, response has a desired transfer function:

v, 2 (s + 1)
v, T (s +2) (s + 1)
(o]

18




where the feedforward is again used to cancel the closed=-loop integrator

pole.

The addition of integral control adds two additional states, Thus, the

pitch-axis design involves six states and two command inputs:

X = (VX’ VZ' q, 6: Il’ 12)
where
Il = Vz -Vz
c
I2 = GC-G
and
vl - (v ,0)
z,' ¢

The desired transfer functions can be put in state form:
X = Amx + Bmu

where x and u are as defined above. This yields:

- e e e e = 0 0
0 -3 0 0 2 O 2 0
0 0 -4 -9 0 6 0 6

A = B =

m 6c 0 1 0 0 O m 0 0

0o 0 0 -1 0 © 1 0
0 -0,80 0 0 O 0 0.8
— — - —d
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to realize the desired 6 and VZ transfer functions. (The first row of Arn
has been ignored, since Vx is not being controlled.)

The vehicle model has the form:
X = Ax +B§

where the actuator commands (§) are
6 = Kxx + KuU

The control design task is to specify feedback gains, Kx’ and feedforward
gains, Ku’ |

The block diagram is shown in Figure 5.

0 <
1
- o1
1.0 I2
) ] 2 ' Kx2
0.8 5 Fm——m———e——— -
Guidance 1 CH=47 model :
commands 1 1
1 I vy
V2 s 1 ! \
ec . Ky > Actuator » B —%_ ’ : qz
c
i : | N
. ! I
K, = [le | sz] . Kjis partitioned to conveniently . ' A !
separate feedback from vehicle states and integrator states. $ !
4
le

Figure 5. -Pitch-axis block diagram.
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The feedback gains were computed algebraically from

=)-1(5—
<, =[5 (5,7 2
where B is a 2 x 2 submatrix containing rows two and three of B, and rows
two and three of Am - A are used (indicated by overbar),

Similarly,

(2)

The 12 elements of the gain matrix were computed at 33 flight conditions
using Equations (1) and (2), The values are plotted in Appendix A, An
analysis of the gains indicated they could be made simple functions of Vx‘
These schedules are given in Table 4 and also plotted in Appendix A, For
convenience, the scheduling parameter was defined as forward velocity
normalized by its maximum value (v), Thus, -0.25 < v < 1,0,

Transients responses for 6 and VZ commands based on these gain
schedules satisfy the specification and exhibit very little cross coupling,
Figures 6 and 7 show a representative response and the specification enve-
lope for a VZ and a 6 step command, respectively,

Lateral-Directional Axes

A lateral-directional controller was designed for the CH=-47 to accept
¢ and Y guidance commands, The feedback and feedforward gains were
computed to provide the desired command responses and to minimize the
cross-axis response, The controller incorporates integral control for each
command and uses measurements of p, r, ¢, and ¢ in the feedback, The
controller outputs are Gs (cyclic) and 6R (differential cyclic) commands,

21




The lateral-directional controller also has the functional block diagram

shown in Figure 8, where

5 = (6S, 5R) are the actuator commands
u- = (¢c, :,[/c) are command inputs from guidance
X = A(Vl p, r, ¢, w: 13: 14)

and two command error integrators have been appended to the vehicle

states:
13 = ¢c -9
Iy = Yo~ ¥
TABLE 4. -PITCH-AXIS GAIN SCHEDULE
ele}x<r¥ent Function

(1,1 0

Q,2) -0.25v v < 0.5
-0.125 v 20.5

(1,3) -7.6 +1.5v

a, 4 -27+6 v

(1,5) 0.14v v<0.5
0.07 v=20.5

(1, 6) 17.5 -5v

(2, 1) 0

(2,2) 0.3 -0.12v

2,3) -1.0v v<0.5
-0.5 v=20.5

2,4 -18 v

(2, 5) -0.23+0.08v

(2, 6) 2v v<0.4
1.04 - 0.6v v=20.4
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Figure 7, -Typical command response at flight condition
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The desired gain values were determined in a manner analogous to the
design of the pitch axis. The desired transfer function for ¢ and ¢ com-
mands is identical to the 6 transfer function. A model with system matrices
Am and Bm was defined that provides uncoupled ¢ and  responses that
satisfy the transient response specification. The gains were determined by
the relations:

K
X

"

i
(St

o

r—

>
8

1

>
| S

Ku

1l
"o
=

ot
os!
B

As the CH=-47 parameters (A, B) change with flight condition, the de-
sired gain will vary. Appendix B presents a plot of the desired gains for

33 flight conditions covering the CH=-47's flight envelope, The gains are
defined as:

6 K11 Kyo K3 Kyy Ky Kyg Kyg

Naius SR SL I

where 13 and 14 are the command error integrators,

It is worth noting that there is no strong dependence on forward velocity
as there was in the pitch axis, The variation of gains over the 33 flight con-
ditions is also rather limited. The major trend in the data seems to be a
variation of gaing with vertical velocity for forward speeds greater than
41,1 m/s (135 ft/s). This is probably due to similar variations in elements
of the B matrix,
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As a first design, the 14 gains were held constant over the flight
envelope, (Gains on sideslip were set to zero.) The responses to & and
¢ commands were evaluated over the flight envelope using a coupled pitch
and lateral simulation. The ¢ and {y responses meet specifications and
exhibit minimal cross~axis response even at forward airspeeds greater
than 41 m/s, In addition, no interaction was observed between the pitch
and lateral-directional controller, Representative ¢ and ¢ time histories
are contained in Appendix C. A representative response is shown in Fig-

ure 9.

It is concluded that fixed lateral gains are completely satisfactory
and there is no advantage to adjusting them, Thus, the system recommended
for flight test consists of an adaptive pitch controller and a fixed=-gain
lateral-directional controller,

The next two sections describe details of each of the adaptive algorithms

evaluated,
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Figure 9, -9 and ¥ Normalized versus time.
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SECTION 6
THE MAXIM UM - LIKELIHOOD A LGORITHM

This section presents the design of an explicit parameter estimation
algorithm. It was combined with algebraic gain computation to serve as
one of the candidate adaptive concepts.

First, a review of the MLE Algorithm is presented, then the design
issues are discussed. This is followed by a summary of the simulator per-

formance of the algorithm,
Overview of Algorithm

Parameter uncertainties in aircraft generally take the form of unknown
parameters in an otherwise known model structure (i.e., coefficients of
linearized equations of motions). Their range of uncertainty is largely due
to widely varying flight environments (dynamic pressure, velocity, angle of
attack) and configuration variations (center of gravity, fuel, payload). How-
ever, the individual coefficients are strongly interrelated and only a few
must be known accurately for control law design. The explicit identification

problem then is:

Given a continuous plant

x = A(c)x + B(c)u + I'(c)E

with discrete measurements

Yi = I—I(c)xi + D(c)ui +m;
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find the unknown parameter vector, ¢c. The g is a white noise process

driving gust states and the n; are sensor measurement noise.

There is a variety of explicit identification methods. If the inputs and
outputs of a plant are known, a least-squares equation error is appropriate.
If the outputs are noisy, then an output error method will provide unbiased
estimates, Finally if the plant has stochastic inputs and noisy measurements,

a Kalman filter approach provides unbiased estimates.

If the parameters are modeled as states and the resulting filter is non-
linear, approximations can be implemented (see ref. 5 for an aircraft
example). 5 If one is interested in the first and second moments, then a
maximum likelihood procedure can be used, This approach was attractive
because it provides unbiased estimates (in the limit) with random inputs and
noisy measurements,

The general process of maximum-likelihood identification is to find
parameter estimates which maximize the a posteriori probability distribu-
tion for the observed outputs conditioned on the unknowns and the measured

inputs; i. e. :
§ = Arg {mzéx p(yl, y2, . e . yn | c=Csu ’Iul’ . un-l)}

When the unknowns are constant and the plant dynamics are linear, this
maximization problem leads to the solution shown in Figure 10. 6 The

5 . . R .
Gelb, et al., Applied Optical Estimation, The MIT Press, Cambridge,
Mass., 19717.

6Balakrishnan, A.V., "1dentification and Adaptive Control: An Application

to Flight Control Systems,'' J, Optimization Theory and Applications, Vol.
9, No. 3, March 1972,
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solution consists of a Kalman filter designed for the true system structure
but with parameters equal to an estimate, ¢ = {. The filter tracks the true
system outputs and generates a residual sequence {vk =Yy - §’k k=1, 2,

. }. This sequence is accumulated into a likelihood function:

L, N) & -2n(y,, Yor « - o ¥g le=Cug, uy, ooou )

which is then minimized over the parameter estimate, {. At first glance,
this solution appears ideal for onboard applications. The Kalman filter is
relatively simple and runs recursively, processing data samples as they
appear. The same is true for the likelihood accumulation operation. The
difficulty, of course, is the last step of the solution: the minimization. This
requires repeated or parallel processing through the data and adds signifi-
cantly to computational complexity, Two algorithms were considered for

the likelihood minimization operation: 1) iterative Newton-Raphson cal-

culations, and 2) parallel noniterative calculations.

Inputs _
u
k ———————————————————
r Kalman filter -—l
' |
| I
Disturbances s
True system Yk by vy K Model system Yk !
gk c = £t l > > —> c=¢ > I
! |
| .
Outputs | l4——— Residuals :
|
4 |
b e e e e e e e - J

N 5 2
L =kz_,“ [”Vk” B, -1 +  tndetBy +” g-t_:oH P, -1

—

Parameter
estimates

Minimization

Figure 10. -Maximum-likelihood estimation.
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The first algorithm begins by collecting a sequence of input/output data,
The Kalman filter is then run with parameters ¢ equal to a priori estimates,
c = go =C. This generates the likelihood function, L., At the same time,

a set of sensitivity equations is processed which permits calculation of first-
and second-partial derivatives, VL and V2L (some form of approximation

is usually used to simplify equations for the latter). These derivatives are
then used to obtain a new parameter estimate using a standard Newton-
Raphson formula. The filtering, accumulation, and Newton-Raphson opera-
tions are performed repeatedly for the same data set until convergence is

achieved. The data set itself is usually kept current by a "sliding window"'
process. This algorithm has been implemented successfully for various

postflight data processing applications. 6

The second algorithm replaces iterative calculations with parallel ones.
The sequence of input/output observations is sent simultaneously to M Kal-
man filter channels, each with its own sensitivity calculations and likelihood
accumulations., The channels are distinguished by their assumed parameter
values. Each one operates with a different parameter estimate, ¢ = g(i),
and hence computes, L(i), VL(i), and V2 L(i) at a different fixed point in param-
eter space. The likelihood functions at these points are then compared to
find the approximate minimum point, and a single Newton-Raphson step
is taken from there to estimate the true extremum. A.s in Algorithm 1,
some procedure must generally be added to keep the processed data current.
This is done by highpass operations which provide exponential de-weighting of
past accumulated data samples. General parallel estimation structures have

. 7,8
been suggested in several references. ’

7Stein, G. and Saridis, G.N., "A Parameter Adaptive Control Technique, "
‘Automatica, Vol. 5, pp. 731-739, 1969,

8Lainiotis, D, G., "Optimal Adaptive Estimation: Structure and Parameter
Adaptation,' IEEE Trans. Auto. Control, Vol. AC-14, No. 2, April 1959.
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As criteria for onboard application, the recursiveness and fixed struc-

ture of Algorithm 2 make it ideally suited for real-time operation,
Filter, Sensitivity, and Likelihood Equations
The basic data processing equations which must be resolved by each
filter channel are summarized in this subsection. They are stated in terms
of general symbols corresponding to the following discretized plant equa-
tions:
Xpee] + Axk + Buk + l"nk

Y = ka + Duk + Ngk

The matrices A, B, I', H, D, and N should all be thought of as dependent

functions of the parameter vector ¢c. Then the channel equations are:

e TFilter equations:

xk_}_1 = Axk + Buk
Viebl = Ykl T B¥pp1 T PV
Xerl = Frtr ¥ Brrr Vil

e Sensitivity equations for each component cp of ¢ (derived by dif-

ferentiating with respect to cp):

Vpxk+1 = Avpxk + (VpA)xk + (VpB)uk
VoVker = THYpEgp T (xR - (VD
Vo¥ke1 T Vpfktl T B YpVrir t (K11
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e Filter gains:

- _ T
Pk+1 = A PkA + I'T
_ - T T
Bk+1 = (HPk+1H +NN7)
- B G 1
K1 7 P B By
Pro1 © Pryr - B B Py
° Likelihood accumulation:
L = pL, +1/2 ] |v ||2B "l iindet B, ]
k+1 k k+1 k+1 k+1
_ T -1
Vopir = BV + Wi Brel T Vkn
+ 1/2 Trace (v, , ,V T. B, ) V(B -1)
k+1 "k+1 k+1 k+1
2 _ 2 T -1
VoL 5 BV D+ W Brrr T YWk

with p = exp (-At/7) for exponential deweighting of past data. The choice of
T is discussed in this section.

These equations warrant two explanatory comments. First, there are
no sensitivity equations for the filter gains. This is because the matrix VK
was computed by numerical differentiation throughout the design program;
i.e.:

vpK = [K(c +>\pep) - K(g)]’xp

where e_ is a unit vector in the ith coordinate direction and Kp was chosen

small compared to the range of cp.
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Second, since \72L includes approximations, all second-partial deriva-
tives and products of derivatives have been ignored. This is a common
approximation for so-called modified Newton-Raphson procedures and has
the important advantage of eliminating second-partial derivative sensitivity
equations. It is also common practice to eliminate the last term of the VL
equation and to replace the filter gain equations with their steady-state

solutions. -
Parameterization
The CH-47 model was parameterized for several reasons:

e Some "structure' must be imposed on the model if the identi-
fication is to work at all. If each of the elements of the A
and B matrix are treated as independent variables, one simply

cannot learn much by processing 5 to 10 seconds of data.

e Real-time computing constraints demand that only a limited
number of parameters be identified. With a software structure
like PCM LE, the computer time and memory required grow
linearly with the number of parameters we try to estimate.

e From a control viewpoint, only a few '"dominant'" characteris-
tics are important for adjusting the control law. For the
CH-47, as shown in Section 5, the v parameter turns out to be

the most important factor for this function.

The CH-47 pitch axis model was parameterized by expressing all the
A and B elements in terms of the v parameter plus individual perturbations
to this function, The initial uncertainty was estimated from the range of the
parameters over the flight envelope, Identifiability then indicates how much
reduction in the initial uncertainty can be expected by processing practical

amounts of sensor data from a physically realistic noisy environment,
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Plots of the longitudinal model coefficients are contained in Appendix D
for 33 flight conditions that completely cover the CH-47's operating envelope.
The parameters are plotted against forward airspeed (-20.5 to +82. 3 m/s)
for three values of vertical velocity (-10.0 m/s, 0, and +10.3 m/s). Each
of these 18 model parameters was characterized in a manner analogous to the
F-8 Adaptive Study. 2 Parameters showing a strong dependence on normalized
forward airspeed (v) were made a function of v plus a perturbation parameter
c;. If the parameter didn't show a v dependence it was defined as a constant
(which could be zero) plus the perturbation quantity. This method of param-
eterization is used to reduce the initial parameter uncertainty. The param-
eterization being used is given in Table 5 and is also plotted in Appendix D,

A model based on this parameterization was used in the following identifia-

bility analyses,
Identifiability Analysis

The design issues are primarily resolved with an "identifiability

amalysis. "

A linear system identification problem is formulated to estimate
a parameterized model from closed-loop input/output records generated by

a simulation. As shown in the literature, 9 the theoretical accuracies attain-
able are bounded from below by the "Fisher information matrix," Thus, this
matrix is computed for various operational situations é.nd its accuracy bounds

are used to structure the identifier.

The model shown in Figure 11 was used for the pitch-axis identifiability
analysis. This model includes first-order gusts models for forward and
vertical gusts. The bandwidth of each gust process is one rad/s.

9Tse, E., "Information Matrix and Local Identifiability of Parameters,"
JACC, Columbus, Ohio, 1973.
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TABLE 5, -CH-47 PARAMETERIZATION

Function

11
12
13

14

22
23
24
31
32
33
34
11
12
21
22
31

32

21

-2
-0.018 - 0.034 v + c,

-2
0.048 v + Cg

2.8+c4

-2
-32.2 + (14 + 05) v

(0.18 + cg) (—M()-—7()5)'-7i)- sgnv

-0.5 +c7

Cg

-180 v + cq

€10

0.02 v+c11

-1.5 + Cio

4 Wl +cyq

0. 12+cl4

C15

0.7Ov+c16

-7.8-3v+c1,7
0.35+0.12V+c18

0.24 v+c19

. 04

.25

.02

. 006

.25

. 06

.25

.05

.08
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Figure 11. -CH-47 model for identifiability analysis.

For the majority of the analysis, the sensor rms noise magnitudes

were selected as:

(o] = 1,3m/s

v, :

O'q = 0,0026 rad/s
0p = 0,017 rad

The CH-47 was modeled with v as a dominant parameter plus smaller
perturbation parameters yielding 19 parameters. Adding two parameters
for X and Z gust intensity plus the six initial conditions on the state results

in a total of 27 longitudinal parameters.
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The identification problem was then formulated to estimate these param-
eters from closed-loop input (GB, 5c) and output Vz’ q, 9) time histories.

For the majority of runs, 5 seconds of data were used.

Qualitative characteristics of the identifiability analysis are given in
Table 6, The results basically show that under most conditions about five
to nine of the perturbation parameters can be identified (parameter uncer-
tainty reduced by at least a factor of two). The quality of the identification
does not vary much with flight condition. The gust levels can be estimated
only when they dominate command and sensor noise effects. (This was
observed on F-8 also.)

Assuming reduced sensor noise does not dramatically change the results,
note that for many of the model parameters, knowledge of v yields a good
estimate. The perturbation parameters with very small uncertainties are
not important., Experiments with estimating a subset of seven parameters
have shown little degradation in their accuracy due to the parameters not

being estimated (also observed on F-8),

In our initial identifiability analyses, most of the data used both A6 and
AVZ commands and predicted accuracy results were good. However, when
AVZ commands only are used, the predictions get substantially poorer, par-
ticularly when reduced-parameter identification is attempted. Results for

this AVz-only case are presented below,

Figure 12 shows the reduction in the v uncertainty using 5 seconds of
data containing AVZ commands only. The reduction is shown as a function
of the parameter set identified. Even with all the parameters estimated,
the theoretical bound is ¢ = 0. 15, which is not too good. Our baseline
parameter set has g = 0.3, and a better four-parameter set for Vz com-
mands would give ¢ = 0. 17, which is nearly as good as estimating all the

parameters.
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TABLE 6. -SUMMARY OF PITCH-AXIS IDENTIFIABILITY

Number of
Fugl‘::on Command T\S{tss Sneorizr paramested Parameters identified Comments
con g estimated
55 A8 =10° 0 . No All v, a a b b Command is doublet with
' 731 38 31t a2 4-sec period,
55 AV_ =10ft/s 0 No All ¥V, @40, (240),bas, b Command is doublet with
z 22 327 731 32 4-sec period,
A9 =10° u_=1ft/s _ )
55 _ Yes Al v, (a a a a b b Commands push gust estimate
AVz =10 ft/s Wg = 11ft/s * 722707310 7320 33’ T31° a2 to lower than actual value,
A6 = 10° u_=11t/s _
55 AV =10ft/s|w. =1ft/s Yes ;bi;l::tlf\ed V, 834, 234, 833, b31, bgs agy and agy degraded when
z g subset estimated; ag still
improves,
o -
55 46 =10 u = 1ft/s Yes All %, (a..), b b Only 1s of data used,
8V, =10 ft/s L 1ft/s » 19337 “31° V32 Response on ¥,bg,, by,
is very fast,
55 A6 = 10° ug =1ft/s
_ _ No All v, (a,,), a Qng, @ b b Gust estimates go even closer
AVz =10 ft/s wg =1ft/s 227 *31° *32 33* 731’732 to zero than row 3,
. |ae=1° u_=1ft/s
- A_=0,06g rms
55 No Al V, (aqq),(aq,), boy, b z
AVz =1ft/s wg = 1ft/s 3177333 31 32 6 = 0.75° rms
v,=0.8 ft/s rms
u_ =1ft/s ~ =
55 | None o o 1rys| Yes All @), ag, Ay =0.047 g rms
g 6 = 0,025° rms
Vz = 0,55 ft/s rms
Random A6 [} No All (v), baq, (bay) A_=0,05g rms
55 |Random AV S z .
z 6 =0,083° rms
v, = 0.17 ft/s rms
Note lower bandwidth of Vz and
8 loops results in less excitation
with random inputs,
Amplitude 0 No All v, (333), bays b32 More low-frequency test signal
55 doubled from -would be better.
above
A9 = 10° u_=1ftfs| Yes All V, {ag9), 8y, 8q0, {34,) Doublet commands compare with
5 22 31 32 33 row 3 (Fe 55)
AVz = 10 ft/s wg =11ft/s (a34), (b22), b31, b32
03 A9 = 10° ug =1ft/s | Yes All ¥, agy. agq, (a32)' agg Doublet commands compare with
= = row 3 (Fc 55).
AVz =10 ft/s wg = 1ft/s (334), (a22), b3qs bgy
= ° b
47 49 =10 No No All v, a3, (a33), (a34), b31 Doublet commands
47 av, =10 ft/s No No Al v, aggs (B53)s agys bypibygibay Doublet commands
86 = 10° ug = 11t/s _
41 8V, = 101t/s [w = 11t/s Yes All v, (agy), agys aggs agg (ag,) Doublet commands
€ (b,,), bay, b
22 31 32
‘4 A = 10° u_= 10 ft/s| Yes All Same as above plus u and w Doublet commands
BV, = 101t/s [w_ = 101t/ gust intensity

() Indicates improvement in initial uncertainty
but by less than a factor of two.

39




/— Initial
5 by Fc 51 (80 kb
"\ AV, = 10 ft/s doublet
4 - AR z
\‘\ 4 5 s of data
.3 - \ ‘\{ No gusts or sensor noise
oz ‘\ e
2 \.. N
4' / ---\— —- = =l
-
T T T L g T
0 1 4 5 13 21
No. of parameters identified
Parameter sets
1 =
9 =y, a3, bgq, b32 (baseline set)
4' =V, a3p, b3y, bsp
5 = v, a3y a33: b3y, by
13 = v, 215, 355, 337, 9330 334/ bpys Byps bays bap, ugs Wy

Figure 12, -Theoretical 1-sigma accuracy in v as function of
parameter set estimated,.

Subsequent analysis of the likelihood function indicated that the pitch rate
residuals are heavily weighted. Much of the identification is therefore based
on the pitching moment response. For AVZ responses, the coupling term
ago is important, Figure 13 shows the influence of this parameter on v
accuracy for the baseline set of four parameters. (This confirms the dif-

ference between set 4 and 4' in Figure 12).

On the basis of Figure 12, several runs were made with the PCMLE
algorithm modified to estimated agq rather than az,. There was no improve-
ment in the estimate for the VX = 135 ft /s flight condition, although (theore-
tically) the 1-sigma accuracy bound is smaller. If the A and B matrices cor-

respond to the parameterization, then v is correctly estimated. A number
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of experiments with varying elements of the A and B matrices lead to the
conclusion that errors in parameters not estimated shift the minimum of the
likelihood function from the correct value of v. Furthermore, this effect is
not caused by one or two parameters but is the effect of all the parameters

contributing to the uncertainty of v.

.5
] e
Nominal ,,
/
g- //
v y
1/
-—-—'”
0 .0006..0024 .006 .01
a.
433

Figure 13. -Uncertainty in v as a function of uncertainty
in agg model coefficient (four-parameter
identification, V, commands).

For comparison, Figure 14 shows the reduction in v uncertainty with A
doublets (no gusts or sensor noise). The baseline set of four has ¢ = 0. 12
compared with ¢ = 0. 075 for estimating all the parameters. Set 4', which
looked better with Vz commands, does not perform as well as the baseline

set for A6 commands,

Finally, Figure 15 shows that the theoretical accuracy level is relatively
constant over the flight envelope.

Analysis of Likelihood Function Contours
An important aspect of MLE parameter estimation concerns the shape
of the likelihood function away from the correct parameter values. This

significantly influences the region of parameter space that can be estimated

from any given channel.
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Figure 14. -Theoretical 1-sigma accuracy in v as function of
parameter set measured,

5 Initial
"
4 46 = 10° doublet
| aV,= 10 ft/s doublet
3 1 ft/s gusts
) Sensor noise
o-
.2 4
.14

0 80 160

Figure 15, -Theoretical uncertainty level for estimating all
parameters as a function of flight condition.




Representative contours produced by the initial filter designs are shown
in Figure 16. The major problem is near hover. Here a very sharp notch
results because the filter has the forward and vertical gust states decoupled
from q and @ states at hover. This problem was remedied by redesigning the
filter. Figure 17 shows PCMLE estimates from simulation data based on our
v parameterization of the CH-47 pitch axis. Note the minimum occurs
at the correct parameter value, the shapes are approximately quadratic, and
the gradients computed away from the true parameter point to the correct

answer (parameter value corresponding to minimum).

By plotting likelihood functions, it was determined that v could not be
estimated accurately by minimizing the likelihood function with this single
parameter, This effect is shown in Figure 18 which illustrates minimizing
only along the v direction, assuming the perturbation parameters (ci) are
zero gives an erroneous v estimate, Thus, it was found to accurately esti-
mate v required estimating three additional parameters. This is discussed

further in the next section.
Identifier Design for CH-47

An identifier was developed for the pitch axis in view of the identifiability
results and the control requirements for gain adjustment. The identifier
uses the parallel minimization algorithm previously discussed. It is based
on a reduced parameter set and identifies four parameters -- v plus pertur-
bations on B(3, 1), B(3, 2), and A(3, 3) (recall state equations of vehicle).
Four state, constant-gain Kalman filters are used. Three filters are used

in the baseline configuration to cover the operating envelope.
The major design issues include:

° The identification model

° Channel selection
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Likelihood function

2000 -

_ Input: 8 commands
v=0 data

1000 +

v=0.4 data

v=1 data
100 4 \/

0 -.25 0 25 4 5 .75 1. 1.25

Values of v

Figure 16. - Likelihood contours from simulation data.




Stimulation data based on v
jzation. -
parameterization 5= 0 data

Input: 8 doublets.

300 4
s
2 200 -
Q
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E
5
100 -

v=1 data
-.25 0 .25 .5 .75 1. 1.25
.4
Valaes of v

Figure 17. -Modified likelihood contours.
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e Kalman filter design
e Adaptation to noise statistics

° Likelihood filters for deweighting old data.
Each of these items will be briefly discussed.

Contours of constant-
A likelihood functions
c

c*
i
True minimum at:
v=1
0 - ¢ = c¥

Incorrect minimum at the
wrong value due to other
parameters being in error.

Figure 18, ~-Multiparameter likelihood contour.

Identification model. -Pitch-axis dynamics are modeled as:

Vi 217 239 273 34| |Vl JPyp 06 ¥y, OO
d [ Vz| _ [P21 222 223 24| Vz|  |P21 P22| |0 a2 0
at =

q 0 agy ag3 23414 bg; b3y 0 0 Yg4

(o Lo o 1 o]le] L 0

where the individual elements (aij’ bij) are parameterized as given in Table
5.
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The parameters Yll and Y22 represent gust disturbances as defined
below.
The Dryden gust spectrum

. .Y 2y

was approximated by

: 2V
Vg =~ oM
A gust model was used in the x and z axes.

The bandwidth of the gust filter was set at 1 second; thus:

v, =\Ve2 o,

Yo = V2 %,

The Y33 term was added to improve the shape of the likelihood functions as

described previously:

2
Y = e—(0.020. +0.010_)
33 a33 xg zg

Measurements were modeled as

Vz 0100 Vx cVz 0 0 §k
q = {0 010 Vz +10 o0gq O
0 0001 q 0 0 g

6
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The sensor noises are modeled as independent and identically distributed

random variables. Their magnitudes, gy » © and og, as well as the dis-
Z

q’

turbance magnitudes, Ox + C were treated as design parameters,
g

Zg’

The trim values of the states and controls were eliminated from the
identification problem by highpassing all the data with a second-order filter,
The break frequency was set at 2 rad/s.

Channel selection. -The problem of channel selection is to choose both

the number and location of points in parameter space. Some insight into this
problem is provided by the shape of the likelihood function away from the

true parameter va_lué. The shape and curvature indicate how well interpola-
tion can be done from each channel. Some experimentation with the simulation

is also useful in selecting the channels.

The baseline design used three channels spaced at v=0, 0.5, and 1.0,
as shown in Table 7,

TABLE 7. -NOMINAL CHANNEL LOCATION

Parameters in Kalman Filter
Chamnel 1 @) | cylaagy) | cglabg) | cylabyy)
1 1.0 -0. 045 -0.05 -0.07
2 .5 0 0 0
3 0 0 0 0

Kalman filter design. -According to Algorithm 2, a fixed set of Kalman

filter and sensitivity equations must be operated at each set of parameter
values, The design of these filters is straightforward, since steady-state
gains can be used. Hence, the gains are solved off-line for their steady-state

values. Stored values of K and VK are used in the on-line identifier,.
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Adaptation to proportional noise statistics. ~-We noted in the filter design

section that fixed statistics were used to compute filter gains. This is de-
sirable because it generates an invariant set of gains for each channel which
can be computed off-line and stored for on-line use. Invariant gains are
actually obtained under slightly less restrictive circumstances, namely,
when the disturbance and noise statistics remain in constant relationship to
one another. This means that a filter for disturbances statistics and sensor
noise statistics remains unchanged when both statistics are scaled by the
same factor, Asa result, the total identification algorithm designed for one
set of statistics can still be valid when those statistics are scaled up or
down, provided only that the likelihood functions are also scaled. This was
done adaptively as described by Hartmann, et al. 2 Assume that all statistics
are known to within a constant scale factor, 0. This parameter is estimated
and used to scale the likelihood functions before a comparison is made to

select the minimum channel.

Likelihood filters. -Highpass filtering of the accumulated likelihoods in
each channel keeps the accumulations current by exponentially deweighting

past data. The rate at which deweighting occurs (or the choice of time con-

stants for the highpass filter) is determined by two conflicting requirements:

1) A well-defined, correct minimum of the likelihood function re-

quires slow deweighting.

2) Small tracking errors when aircraft parameters change re-

quires fast deweighting.

The first requirement exists because likelihood functions do not neces-
sarily have minima in the correct place (i.e., at ¢ = ¢,) for short data
samples. 2 It should be noted that this phenomenon is not inconsistent with
maximum likelihood theory. The theory guarantees correct answers only

asymptomatically,
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The second requirement is less esoteric. As the aircraft changes flight
condition, its parameters change in ramp-like fashion. The accumulated
likelihood functions will then be out of date and cause parameter estimates
to lag behind the true parameter values. The faster we deweight accumulated
data, the less the lag.

The design compromise for these requirements resulted in a time con-

stant of 5 seconds,

In addition to low-frequency deweighting of accumulated likelihoods, it
was also found desirable to prevent very-high-frequency data (such as sharp-
edged gust or command responses) from being accumulated. This was done
by adding a relatively high-frequency, lowpass filter to the accumulation and
highpass network, The total likelihood filter then takes the (digital) form
shown in Figure 19, The symbols Aek, ZEk' and €) denote generic inputs,
intermediate states, and outputs, respectively. The filter is actually used
to generate all likelihood functions, L(i) i=1,2,...N, and all components of

vL and V2L,

Aek — A€k+1 = I.12A€k+(1 'uz)Ask P €k+1 = uCk + A—Gk —>

Unity gain lowpass Accumulation and
highpass

r = 0.6s r =5s

Hoy = exp (-4/0.6) p =exp (~-A/5)

Figure 19. -Filter for likelihood functions.
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Gain adjustment. -Adaptive control techniques that use explicit parameter

identification require a gain schedule based on the parameter estimates. This
section describes the gain adjustment portion of the PCMLE adaptive algorithm.

Derivation of gains: Since the VALT performance specification was given
in terms of desired command responses, it was straightforward to specify
gains to match a desired closed-loop model. A gain matrix was computed at

each flight condition based on the desired closed-loop characteristics.

Plots of these gains versus flight condition (forward velocity) are contained
in Appendix A (pitch axis) and Appendix B (lateral axis). Examination of the
pitch-axis plots shows a strong dependence on forward airspeed for the
majority of the elements. Simple functions of v (normalized velocity) were
used to approximate the desired set of gains and thus define a ''schedule."

The schedule was given in Table 4 and was checked at a number of flight

conditions,

The benefit of extending the gain calculation to a function of four variables
was examined using a least-squares measure of fit. A '"fit error' for each
gain element was computed as the normalized sum of squares between the
schedule and the desired gain value. The sum was done over 33 flight con-
ditions and the fit error was normalized by the fit error for zero gains.

Results are given in Table 8. The first column shows the fit of the v
schedule, (Note J =1 for K11 and K21,
feedback.) Column 2 shows the improvement if all four of the parameters

since the schedule is zero for Vx

estimated by PCMLE are used for updating gains. Gain elements K12’ K15’
and K26 shows some relative improvement., Columns 3, 4, and 5 of the table
show the improvement in the fit if each of the three extra parameters are

used one at a time with v. Consideration of these data shows that the improve-
ment in fit is due to including parameter Cg ('ab3 1); thus, three gains will fit
better if the basic v schedule is augmented with Cgy dependence. The new
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schedule was computed as:

K

12

K5

Kog

Next, the command responses with and without the Cg function were evaluated

Ko (V) - 0.6071 ¢
Kis (v) + 0.582 ¢

K26 (v) +2.574 ¢

at a number of flight conditions.

show any benefit of using Cg. Thus, although Cq improves the fit of several
gains, this effect is not important in the closed-loop responses.

only the v dependence is retained.

3

Evaluation of these time histories did not

TABLE 8. -FIT ERRORS IN PITCH-AXIS GAIN SCHEDULE

Gain J(v) J(v + 3) Jv + 67) Jv + 69) Mv+@;

K(1,1) | 1.0 0.61 0. 88 0.75 1.0
(1,2) | 0.25 0.017 0.25 0.25 0. 062
(1,3) | 0.033 0. 0096 0.021 0.022 0. 029
(1,4) | 0.022 0. 004 - 0.022 0. 004 0.020
(1,5) | 0.45 0. 037 0.45 0.45 0.10
(1,6) | 0.020 0. 002 0.02 0.002 0.02
(2,1) | 1.0 0.93 0.98 0.98 0.98
(2,2) | o.012 0. 004 0.01 0. 005 0.012
(2,3) | 0.83 0.70 0.72 0. 83 0.83
(2,4) | 0.0155 | 0.0033 0.0158 0. 0167 0. 004
(2,5) | 0.011 0.008 0.01 0.009 0.01
(2,6) | 0.37 0.20 0.37 0.36 0.27

Note: PCMLE estimates v and §, where

5 =
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Gain schedules as a function of parameter accuracy: Inthe VALT de-
sign, gain adjustment is used to improve command responses and minimize
cross coupling, not to maintain stability. Thus, it is logical to evaluate a
"best'' fixed-gain system. The best fixed gains can be determined by formally

solving an optimization problem.

The function being minimized by a weighted least-squares fit was ex-

pressed as:

2
J = Ejk wjk(A + BK - Am)jk
where

A, B = Vehicle model matrices

Am = Desired closed-loop matrix
wjk = Weight factor for jk element of matrix (A - BK - Am)

K = Gain matrix

The matrix K can be determined by following the usual least-squares pro-
cedure: set -gTJ{' = 0 and solve for K. If only one flight condition is selected,
this algorithm returns the set of gains for this condition, Summing over
multiple flight conditions produces a weighted least-sciuares fit. In the fol-
lowing analysis, the Vz = 0 flight conditions were given three times the

weight over Vz # 0 conditions in determining the gains,

The weighting factors were computed as follows. An individual weight-
ing was applied to each of 16 gain elements. The weighting of each gain ele-
ment was determined from the sensitivity of four responses to various errors
in the closed-loop matrix. The four responses are:
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n

1 V _ due to V_command (direct)
zZ Z

r, = 6duetoV, command (cross coupling)
rs = Vz due to 6 command (cross coupling)
ry = 6 due to 8 command (direct)
Define:
_ ori srsos . .
6i'k = 3a = Sensitivity of response ito change in
J ik gain element jk
Evaluate at
peak of re-
sponse
and
_ 2
Wik = 215 ijk (sum over the four responses)

Then W, the matrix of elements ij, is the weighting used in our least-

squares algorithm.

It turned out that each a; was important to only one of the four responses.
Recall also that feedback is affecting only the VZ (row 2) and the q (row 3)
rows of the closed-loop system matrix. The elements of the system matrix
and their respective weighting are given below:

a

a a

22 223
a

Closed-loop parameters = 24
a

a a

32 733 734 35

0.04 0.25E-04 0.25E-04 0.01 0.6E-05 0.06 0.25E-04

16,0 0.01 0.01 4.0 0.25E-02 144, 0.06
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The elements of the W matrix are themselves interesting. The b,. element,

31
which is the feedforward from the 6 command to the collective and differen-
tial collective, is the most sensitive. Errors in this parameter show upas a

large AVZ response to a 6 command.

The gain schedules derived earlier in this section implicitly assume
perfect knowledge of the scheduling parameter, v. If the uncertainty level
of this parameter is known, it may be desirable to modify the gain schedule,
(In an extreme case, the fixed gain configuration may perform better than
a schedule if the scheduling parameter is in error.) This latter possibility
was examined by computing the "best'" fixed gains over an interval. The
interval represents a +2-sigma bound on the estimate. Inthe VALT design
it was found that the gain schedule should be a function of the uncertainty level
of the scheduling parameter.

The accuracy of the scheduling parameter has been included by deter-
mining a family of gain schedules for different accuracies of the parameter

estimates.
Three sets of gains were computed with the above procedure:

o ILow-sigma - Fit gains for flight conditions over an interval
+0. 25 v about the nominal v.

e High-~sigma - Fit gains for flight conditions over an interval

+0. 5 v about the nominal v,

e Constant-gain - Fit gains over all flight conditions.

Plots of the originalv schedule, the functions for high- and low-v
accuracy and the best constant value are contained in Appendix E. Note as
the accuracy degrades (high sigma), the curves tend toward the best fixed-
gain schedule. »
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Implementation: The preceding gain computation method has been imple-
mented as a table lookup. The PCMLE v estimate and its accuracy estimate

will be quantized and a gain matrix selected from the table.

Performance on adaptive controllers on VALT simulation. -The PCMLE
adaptive controller for the pitch axis was evaluated on the NASA-LRC VALT
simulation. The performance agreed with linear simulations run at Honeywell

in Minneapolis. This section contains a number of cases to illustrate the
salient performance features of the algorithm. The PCMLE estimator uses
a baseline set of three filters (channels) and estimates four parameters.
The three channels correspond to models at the following flight conditions:

Channel 1: v

1.0

Channel 2: v

0.5

Channel 3: v = 0 (hover)

The PCMLE cases are summarized in Table 9. In these cases, the

estimator was evaluated open-loop. A measured v was used by the gain

schedule.
TABLE 9. -VALT SIMULATION TEST CASES
. crs PCMLE Time history
Flight condition Input channel used trace
_
Hover A9, AVZ step commands 1,2 Figs. 20, 21
Vx =19.5m/s A6 step commands 3 Figs., 22, 23
(63 ft/s)
V, =41.2 m/s 48, AV, step commands 1,3 Figs. 24, 25
(135 ft/s)
V, =41.2 m/s AB, gusts, sensor noise 2 Figs. 26, 27
(135 ft/s)
Vx = 79.3 m/s A0, AVz step commands 2 Figs, 28, 29
(260 ft/s)
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Simulation traces for each of these cases are shown in Figures 20 through
29. Figures 20, 22, 24, 26, and 28 show the helicopter variables:

6 - pitch attitude

o - differential collective command
6; - collective command

g - differential collective position

q - pitch rate

6. - collective position

x - forward velocity (earth reference)
z - vertical velocity (earth reference)

Figures 21, 23, 25, 27, and 29 show selected PCMLE variables:

cH - channel (1, 2, or 3) being used for estimate
Vz - estimate of Vz from selected channel

a - estimate of q from selected channel

TJ(l) -

TJ(2) - Likelihood functions for the three channels
TJ@3) -

21 - estimate of v parameter

Zq - estimate of 5b32 parameter

Figure 20 shows that 8 and Vz command responses at hover meet speci-
fications. The step responses satisfy our criteria and there is no noticeable
cross-axis response. Figure 21 shows that the likelihood function is mini-

-~

mum for channel 3 (hover). The * estimate should be zero and it is close
to zero when estimating from either channel 1 or 2. This confirms the

gradient calculations,
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Figures 22 and 23 show 0 responses at v = 0.23 (37 kt). Channel 3
still fits best as expected. The v estimate is a little low, but still acceptable,

Figure 24 shows 6 and V, command ata v = 0.5 (80 kt), Again the com-
mand responses are good and there is no cross-axis response. Figure 25
shows v estimated from channel 1 and channel 3. The parameter v should
be 0.5 at this condition and the estimate is reasonably close. Channel 2
should have the minimum TJ, but as a result of errors in other parameters,
TJ(1) and TJ(2) are very close.

Figures 26 and 27 present a repeat of the v = 0.5 flight condition with
gusts and sensor noise, The v estimate is slightly lower than 0.5, but accept-
able. Channel 2 should be minimum, but the likelihood function of channel

3 is slightly smaller.

Finally, Figures 28 and 29 show the performance at the maximum
velocity, v = 1 (160 kt). Again, 6 and VZ responses are very good, with a
barely detectable cross-axis response, The estimate of v is close to 1 as
it should be. Again, channel 3 is minimum, although channel 1 should be at

this condition,

This section has presented a design based on explicitly identifying four
CH-47 pitch-axis parameters (v plus perturbation parameters on the B(3, 1),
B(3, 2) and A (3, 3) coefficients). This section described the analysis used to
select the parameters to be identified and the channel structure to be used
in the algorithm. Next, the use of the v estimate in scheduling the gains was
considered., The resulting gain schedule was implemented as a table lookup
that uses the v estimate as well as its indicated accuracy. Finally, the per-
formance of the identifier on the VALT simulation was considered. The
accuracy of identifying v was consistent with predictions. It was observed
that in some situations the minimum channel is not at the correct value of
v (even though the estimate is reasonable). This result is investigated in

Section 10 where the results of processing actual flight data are presented.
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SECTION 7
MODEL REFERENCE ADAPTIVE ALGORITHM

The block diagram of the model reference (MR) algorithm as applied

to the CH-47 longitudinal axis is shown in Figure 30. Note the command

model is lower order than the vehicle model,

Overview of Algorithm
Consider the CH-47 longitudinal axis in the form given in Section 4:
X = Ax +Bp

and a model

xrn = Amxrn +B _u
where
X = (VX: VZ, g, 6)

(aB, 50) are the actuator commands

6 =
u- = (V. , Gc) are the command inputs from guidance
c
T _
Xm = (VZ ] qm.' em)
m

The three-state model provides the desired ec and Vz command
c

response is first=
m
Including integral control on each command error adds two states

responses, The em response is second-order, the VZ

order,
to the control law,
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The control law has the form discussed in Section 5;
5 = Kxx +Kuu

which gives a closed~loop:

x = (A+ BKx) x + BK u.
Here x includes the two command error integrator states.

The function of the adaptive algorithm is to adjust the gains so the

closed-loop matrices match the model,

As A and B vary with flight conditions, KX and Ku need to be continually
adjusted for the plant to match the model., The gain matrices Kx and Ku
contain a total of 10 individual terms.

In the MR algorithm, the gains are adjusted to force a Liapanov func-
tion of model-following errors and parameter errors to zero, It is well-
known that a Liapanov-derived gain adjustment rule is stable in the error,
e. If the parameter errors do not go to zero, they remain bounded, 3

The first form of a Liapanov function used in the study was:

= T T T
V = 1/2e " Pe+1/2 Tr(AAAA™) +1/2 TR(ABAB™)

where AA and AB are the difference between the model and the Vehicle.

Taking the appropriate time derivatives yields adjustment rules of the

form:
AA = -PexT
AB = -Peul
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where x is the measured state, u is the input and e is the error between
model and plant states,

Since the adptation is implemented as an adjustment of feedforward
and feedback gains, the adjustment rules need to be expressed as AK func-
tions rather than direct changes to the plants A and B matrices:

d T
3t (A + BKX) = =Pe'x (3)
K = -B-lPeTx
d - T
at (BKu) = «Pe~u
K, = B 1peTy (4)

The above form implies a B-l can be found that works sufficiently
well over the flight envelope, since in this application B also varies with
flight conditions.

The P matrix is determined from usual stability considerations:

T -
P+PA_ = Qs 0 (5)

A
m
If Q= )‘Qo’ where \ is an arbitrary scaling parameter, then the P
matrix in Equations (3) and (4) is also scaled, Thus, P is a somewhat

arbitrary design parameter [as long as Equation (5) is satisfied].

In past applications, problems with the gain adjustment equations arose
because they are sensitive to the signal levels of e, x, and u, 2 (If a P was
found that worked well with large commands, the adaptation was too slow
with small inputs; if tuned to work well with small inputs, then it became
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very oscillatory with large inputs and usually diverged due to numerical
difficulties.)

It was recognized that monotonic functions of the basic Liapunov func-
tion could also be used and these forms could be used to ''normalize' signal
levels in the K equations., Thus, by using different Liapunov functions,
different forms of the gain adjustment equations are obtained., The three
forms investigated are given in Table 10, The third form is the one finally

selected for implementation,

TABLE 10. -MODIFIED LIAPUNOV FUNCTIONS

Liapunov function . Adjustment rule
. _~1
V = ePeT +1/2 Tr AA AAT K1 = -B PeTx
+1/2 TrABAB I'<2 - -l peTy
- T
V = 1/2 4n (e " Pe +1) ; 5!
K, = - PeTx-
T T 1 T
+1/2 TrAAAA™ +1/2 TrABAB (e " Pe + 1)
) _ -1
K2 = - TB PeTu
(e"Pe +1)
V = eTPe + 1 . -1 T
o ——
T T K1 = - Pe " x
+1/2 TrAAAA™ +1/2 TrABAB \ ‘TPe+1
. -1
K, = - B PéTu

73




Simulation Results

A number of experiments were conducted using the CH-47 longitudinal
model to develop the MR algorithm, This included considerations for
model=-following errors caused by states not being controlled and the ef-
fects of various design parameter on performance,

The model is

VZ ) 2
Vv T s +2
c .

o _ 7

ec 52 + 4s + 7

w = 7 rad/s

p = 0,76
0.25 0 0

P =\ 0 0,1944 0,0833
0 0.0833  1.4167

N = 300

A fixed set of Ky and Ko is used as starting gains at each flight con-
dition. (They are given in Figure 30,) These gains then adjust based on
the update rules. K1 and K2 are presently adjusted with the rule shown in
row 3 of Table 11,
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TABLE 11, -VALT SIMULATION TEST CASES

Model Time

Flight Inout reference history
condition P mode trace
Hover Vz’ 0 step commands Fixed gain Fig, 31

V_=41.2m/s | V_, 9 step commands| Fixed gain Figs. 32, 33
X (135 ft/s) z g

V. =79.3m/s V_, 6 step commands Fixed gain Figs., 34, 35
X (260 ft/s) z.

V,=79.3m/s | 6, V_step commands Adapting Figs. 36, 37
X (260 ft/s) z &
V,=79.3m/s | 6, Gusts and sensor Adapting Figs. 38, 39
(260 ft/s) noise

Performance of MR Algorithm on VALT Simulation

The performance of this algorithm on NASA-LRC's simulation is sum-
marized in this subsection, This algorithm adjusts gains based on errors
between the model states and three measured helicopter states (VZ, q, 9).
The starting set of gains was selected to work well at hover, In practice,
they work well up to forward speeds of 41.2 m/s (80 kt). The major perfor-
mance degradation occurs at the maximum forward speed of 79.3 m/s (160
kt) and is manifested primarily by large cross-axis responses. Thus, the
model reference adaptation is shown at the high-speed condition, since its

effects are most apparent there.
Simulation traces for these cases are shown in Figures 31 through 37,

Figures 31, 32, 34, and 36 show the same helicopter variables as the PCMLE
runs do, Figures 33, 35, and 37 show the following variables:
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U - VZ command input to model

Z
U6 - 6 command input to model
- V_ model state
z z
m
- 06 model state
m
Ev - Vz error between model state and helicopter
Z
Eq - q error between model state and helicopter
EO - 0 error between model state and helicopter

It should be noted that the inputs to the model are high-passed so steady-
states do not appear on the traces. (Basically, this is required to remove

trim effects. )

Figure 31 shows VZ and 6 command responses at hover, They meet
requirements and show no cross=-axis response,

Figures 32 and 33 show 6 and Vz command responses at the 41,2 m/s
(80 kt) and 79.3 m/s (160 kt’) with the starting gains fixed. At the 79,3 m/s
condition, some cross-axis response is present; otherwise, the command

responses are reasonable,

Figures 34 and 35 show the 79.3 m/s condition with the gains adapting.
Note the reduction in the cross-axis response for 6 command, Also note
that the Vz command that follows has a very slow response because some

gain values moved to accommodate the 6§ command,
Figures 36 and 37 illustrate the fundamental problem with this algo-

rithm. The system is at the high-speed (79,3 m/s) condition with gusts
and sensor noise, After operating for several minutes, a sequence of 6
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commands is applied. The random disturbances had caused the gains to
drift sufficiently that an unstable combination resulted,

This section has presented the design of a model reference algorithm,
The structure of the control law is identical to the adaptive design of Sec-
tion 6, The difference lies in the method used for determining the gain
matrices, In this des ign, the gain is adjusted with a Liapunov procedure
to drive the response errors toward zero, Simulation studies indicated
good performance except when measurement noise is present. In this situa-
tion, the gains continue to drift in response to the measurement noise,
This result is discussed further in the next section which compares the two
candidate adaptive designs.
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SECTION 8
CONCEPT COMPARISON AND SELECTION

The two designs from Sections 6 and 7 are compared in Table 12, This
comparison summarizes the simulation performance, the design process,

the complexity of the algorithm, and its simulation performance.

The PCMLE adaptive design was recommended for flight evaluation
based on its superior performance with gust and sensor noise present, In
addition, the digital formulation of the algorithm offers better numerical
stability than discretization of the model-following equations.

The PCMLE algorithm for real-time parameter estimation is relatively
complex compared with current flight control software. The various PCMLE
subroutines are written in FORTRAN with an emphasis on speed of execution.
During development, the software was run on a CDC-6600 and a Honeywell

H-6080 computer in Minneapolis,

Load maps from CDC=-6600 compilations show that about 5K of memory
are required (about 1, 6K of this represents labeled common blocks). Timing
checks made on the H-6080 indicate a maximum of 5.6 ms, with minor

variation between the five subcycles.
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TABLE 12, ~-CONCEPT COMPARISON

Parameter

PCMLE adaptive
controller

Model reference
adaptive controller

a)

Command responses
(AVz, A0)

Both designs satisfy response specifications,

Command

responses are nearly identical for nominal conditions

(no gusts or sensor noise).

b)

Stability of control-
ler

Equal for nominal operation.

c)

Stability of adaptive
portion of algorithm

Estimator stable and
unbiased. Only plants
that do not exhibit
approximately linear per-
turbation responses would
cause problems.

Theoretical. In practice,
numerical problems can
cause algorithm to diverge.
Related to item f below.

d)

Effects of turbulence

No problem. It is accounted
forin Kalman filter design.

Causes drift in some gain
elements,

4 parameters estimated).

e) Effects of sensor No problem. &t is accounted Causes drift and biases
noise for in Kalman filter design. in some gain elements,
f) Implementation a) Explicit gain adjustment. a) Implicit gain adjustment.
philosophy gR:ic;lu:(.:‘;xsegsli:%?:egdaon b) Discr-etization of analo.g
rameter estimates equations. Problems in
pa ‘ integrating continuous
b) Direct digital formulation. equations with large At.
c) Offers the lowest sample c¢) Problem not well-posed
rate. if perfect model-follow-
ing is not possible,
g) Complexity (real- 1602 core FORTRAN code. 452 core FORTRAN code.
time code only) 1608 core common blocks. 256 core common blocks.
h) Computation time 6 ms per cycle (3 channels - Less than 1 ms per cycle.
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SECTION 9
GUIDANCE INTERFACE

As discussed previously, the controller was designed for 6, ¢, ¢, and
Vz commands., Since the existing VALT guidance algorithm generates
velocity commands, an interface was required to convert velocity commands

to attitude commands. The guidance interface is shown in Figure 38.

s/0.5+1
/5.0 +1
Lateral velocity =
error —P K¢ ¢C “o 0.02
K, =0.2
Ke = ‘0.04
’N
Longitudinal velocity KI
eror  —a—pf — Kg |—> Lead-lag |—P 6,

Figure 38. -Guidance interface.

The bank-angle command is generated from a sum of lateral velocity
error and the nominal bank angle computed by the guidance law.

The pitch-attitude command is more difficult to generate, since a

nominal 8 is not available, The longitudinal velocity error is applied to a
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proportional plus integral and used as the attitude command. A lead-lag
filter was added to improve the dynamic response of the coupled guidance/
control system, A root-locus analysis predicted the closed-loop response

to a velocity command should have a damping ratio of 0, 5.

A time history of trajectory-following using the attitude controller and
the guidance coupler is shown in Figure 39, The performance is satisfactory.
An overshoot of approximately 20 percent can be observed in the forward-

velocity trace as the vehicle completes the trajectory and comes to a hover,
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SECTION 10
ESTIMATION OF PARAMETERS FROM FLIGHT DATA

The PCMLE algorithm was evaluated against prerecorded flight data
to assess the performance of the explicit identifier, Multiple iterations of
the Newton-Raphson parameter steps were used to obtain the best possible
convergence, This section describes the sensor data, the procedure used
to obtain parameter estimates, and draws conclusions from.the results,

Analysis of Sensor Data

Recorded flight data for a number of maneuvers was available from an
earlier flight test program, The variables of interest for the PCMLE algo-
rithm are vertical velocity, pitch rate, pitch attitude, and the two controls,
differential collective and collective, A functional diagram of the pitch
axis is shown in Figure 40, The variables Z13, Z16, and Z19 were used
to obtain approximations for 60 and 6B by assuming the actuators have unity

transfer functions,
Thus, 50 = Z19 and 5B = 716 + Z13,

The flight data, which had been recorded at 40 sps, was highpass fil-
tered to eliminate unwanted trim values in both control inputs and measure-~
ments, (This highpass operation is part of the PCMLE algorithm,) Initial
processing was performed to validate scale factors and establish reasonable

sensor noise levels,

Since the stability augmentation system (SAS) had not been cancelled in
these flight tests, its effect had to be included., The recorded variable Z13
was compared with an estimate computed from the SAS transfer function and

the measured pitch rate,
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Figure 40. -Recorded sensor outputs from flight records.

The two signals differed by a scale factor which changed with maneuver.
The decision to retain the recorded version was made following test cases
in which its use resulted in better matches to the recorded measurements.
Further analysis of the measurement residuals showed that in these calibra-
tion runs they were dominated by the vertical velocity measurement., Re-
moval of this term from the observation equations resulted in acceptable
residuals for the two remaining sensors: pitch rate and pitch attitude. The
estimation process was insensitive to assumed noise statistics for these

measurements over a wide range of values,

A processing rate of 10 sps (every fourth data point) was investigated
to reduce computation time, Although this rate seemed well within required
sampling limits, there were significant res iduals that indicated that a higher
rate was required. Therefore, the original sample rate of 40 sps was used,
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Procedure

The basic MLE algorithm used in the identifiability analysis was used.,
Some numerical problems were encountered in finding solutions to the
Ricatti equation, This occurred since our algorithm for solving the Ricatti
equation requires that the initial set of Kalman gains stabilize the system.,
This was often difficult to do in view of the parameter adjustments occurring
at each iteration, In retrospect, it would have been more efficient to solve
the Ricatti equations with a method such as Potter's algorithm which removes
the requirement for initial stabilizing gains.

Because of the apparent small gust levels, a number of runs were made
using zero filter gains, Using zero gains often caused the parameter errors
to diverge. This occurs because the pitch-axis model is unstable at a num-
ber of flight conditions, In this situation, the residuals diverge and the
likelihood functions have such steep sides that it is very difficult from a
numerical viewpoint to locate the minimum with Newton-Raphson steps,

The ""zero gain'' procedure was modified as follows,

Once an initial set of parameters was obtained, gains were added, with
the hope that parameter updates would be small enough to allow use of the
same stabilizing initial gains, In most cases this proved to be true, How-
ever, for the final parameter identification experiments, the "zero-gain"

procedure was not used.

The ill=-behaved nature of the likelihood function necessitated careful
attention to the allowable search directions in maximization., After a number
of unsuccessful attempts at parameter localization with various data runs,
it was decided to abandon v (forward speed estimate) as the fundamental
parameter for purposes of function optimization, Perturbation parameters
on agq and b31 appeared to be much more closely related to the quality of
fit, In the final set of parameter identification runs, ¥ was set to nominal
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value and Qgas b31 were allowed to find their best values., Once localized

in the parameter space in this manner, all the other perturbation parameters
plus initial conditions were estimated. The final model used in the Kalman
filter consisted of a fourth-order state representation of the longitudinal-
axis dynamics with two control inputs as in the baseline PCMLE algorithm,

A third "control" was added to simulate the effect of highpass filtering the

contribution due to the initial conditions,

The final noise model was developed to account for uncertainties in the
control inputs and the two sensors used (pitch rate and pitch attitude), State
noise with an rms value of 2 percent of the control matrix was added to
account for random perturbations of the recorded control inputs. Response
measurements of pitch rate and pitch attitude were assigned noise statistics

crq = 0,01 rad/s and g6 = 0.01 rad, respectively.
Results
The final set of 12 maneuvers analyzed is defined in Table 13,

The procedure described resulted in the parameter estimates shown
in Table 14 for each of the 12 maneuvers analyzed. The Aquality of fit is
rather good. Plots of fit for each maneuver are contained in Appendix F.
Three plots are used to describe each maneuver, The first plot shows the
two control inputs, The second and third plots show the highpassed measure=-
ments of 0 and q and their corresponding residuals for the final iteration.
It should be emphasized that only two parameters significantly improve over
their a priori uncertainty., Table 15 illustrates the reduction in parameter
uncertainty for a typical case (maneuver 7), Note that only agqg and b31
(plus two initial conditions) are significantly improved.
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TABLE 13. -MANEUVERS ANALYZED WITH
FLIGHT DATA

. Flight condition
No. Data run Se;'fu;illgo. VX (m/gs) T V: (m/s)
]=1 5 34007 0 0
2 9 31017 0 0
3 13 34031 0 0
4 17 35001 10.3 +7, 63
5 25 31005 20. 6 0
6 27 35008 20.6 -5.08
7 29 31017 20.6 -2.54
8 31 31023 20.6 +2.54
9 33 31026 20. 6 +5. 08
10 39 33010 30.9 0
11 41 30010 30.9 +2. 54
12 43 33012 30.9 +2.54

The basic conclusions are that near the correct value of ¥, good param=-
eter estimates can be obtained, If ¥ is wrong, the algorithm may find
another local minimum and erroneous parameter estimates are obtained.

It appears that reasonably good fits can be obtained at a number of values of
¥v. When the baseline PCMLE algorithm was simulated, similar results

were obtained,
Based on our analysis of flight data, we have concluded that ¥ is pro-

bably not a good dominant parameter. If the baseline PCMLE algorithm
had been flight-tested, it probably would have experienced problems with
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TABLE 14. -PARAMETER VA LUES FOR PITCH-AXIS IDENTIF ICATION

No.| % MR EE R R [ 22a [ 21 | 2 [ 233 | 2as [P0 [ Pz | bay [ 22 |bs1 | s
110 -0,0181 | -0,000134 | 2,41 | -32.2 | -0,180 -0, 499 0,00594 | -0,0685 | 0,0113 '0.000324 0,460 0,981 | 0,121 | -0,000818 | 0.0000724 | -7.80 ] 0,272 0,000119
2 0 -0,0181 | -0,000069 2,41 | -32,2 -0.180 -0,500 0.00151 | -0.0141 | 0,0144 0.0000988| 0.313 0.974 0.121 0 -0, 0000254 -7.80 | 0,272 0
3 0 -0,0181 | -0,000136 2,40 | -32.2 -0.180 -0, 499 0,00281 | -0.0293 | 0,0109 0.000308 | 0.369 0,929 0,120 | -0, 000562 0,0000347 -7.80 ] 0.277 | -0.0115
42 0,125 -0,0186 | -0,000814 2,41 | -32,0 -0,150 -0, 494 0,00231 | -22,4 0.000823] 0,00227 |-0,187 1,46 0.120| -0.000703 0,0870 -8,18 | 0.269 0,0289
5 0,25 -0,0202 | -0.00318 2,40 | -31.3 -0,120 -0.549 0.00108 | -45.3 0.00764 |-0,00333 0.128 1,07 0,121 0.00953 0,176 -8.60 | 0,285 | -0.0110
6| 0.25 -0,0198 | -0.00403 2,42 | -31,3 | -0.122 -0,825 | -0.0144 -53,7 0,0216 0,0000202] 0.198 | 2,12 0.119| -0, 163 0,211 -8,20 | 0.298 0,0189
1 0.25 -0,0203 | -0,00328 2.42 | -31.3 -0,120 -0,498 0,00201 | -45.0 0. 0201 0,000373 | 0.284 2,18 0,122 0, 00228 0.175 -8.55 | 0.295 0, 00587
8 0,25 -0.0203 | -0,00368 2,40 | -31,3 -0.120 -0,989 | -0.00705 | -43,7 0,0142 }-0,0186 0,151 1.19 0,124}] -0,0189 0,136 -0,40 | 0,265 | -0, 00277
9 0,25 -0,0203 | -0,00429 2,40 | -31,3 -0,120 -1.19 -0,0256 -42,1 0,0222 |-0,0245 0.209 0.783 0.128( -0,0164 0.117 -9,83 ] 0.258 0, 00740

102 0.375 -0,0229 | -0.00286 2,37 | -30,2 -0,0899| -0,0671] -0,0664 -66,4 -0.00499 [-0,00114 0,282 2,56 0.121 0.158 0,242 -8,84 ] 0.295 0. 0409
113 0,375 | -0.0229 -0.00286 2,37 | -30.2 | -0.0899] -0.0671| -0, 0664 -66.4 -0,00499 [-0.00114 0.282 | 2.56 0.121)] 0,158 0.242 -8.84 | 0,295 0. 0409
128 0,375 | -0.0229] -0.00286 2,371 -30.2 | -0.0899| ~0.0671| -0, 0664 -66.4 -0.00499 [-0,00114 0,282 | 2,56 0,121 0,158 0,242 -8.84 | 0.295 0, 0408
aUnable to find filter gain solution for next update, Error has probably not been minimized.




TABLE 15, -PARAMETER UNCERTAINTIES FOR TYPICAL
CASE (A PRIORI AND A POSTERORYI)

Parameter Oo of
a; 0. 0045 0. 00460
ag 0.009 0. 00914
a3 |l 0.4 0.401
a14 3.0 3.00
a5, 0.04 0. 0400
ags 0.25 0.250
asg 1.6 1. 600
294 10.0 10.0
agy 0.02 0. 0531
aqg 0.006 0.00913
a3 1,25 0. 102
244 0.5 1.82
by, 0.06 0.0609 -
b12 0.3 0.322
b21 0.25 0.250
b22 0.8 0. 800
b31 0.25 0. 0471
b32 0.08 0.119
X0(1) 1.0 0. 855
X0(2) 1.0 1,00
X0(3) 0.017 0.133
X0(4) 0.017 0.00873




local minimum as our off-line processing did. Perhaps, better parameter-
ization would use the control effectiveness parameters (b31, b32) as dom=
inant, since they are most easily identified,

One of the reasons Vv was selected as the dominant parameter was that
analysis of the gains over the flight envelope showed a ¥ dependence, In
fact, a gain schedule based on velocity was evaluated and it performed well,
The performance differences of the attitude control system with and without
gain scheduling are primarily in the area of decoupling. Use of a gain sched-
ule improves the decoupling of the A6 and AVZ responses, Since the de-
coupling is dominated by the control input matrix, it is expected that a gain
schedule could be expressed in terms of the B matrix, This would then be
a more natural schedule to use with an explicit parameter identifier,

97




SECTION 11
CONCLUSIONS

Good command responses exhibiting desired speed of response and
minimal cross coupling were obtained in the pitch axis with simple gain
schedules based on forward airspeed, In the lateral-directional axes no
gain adjustment was required, These control laws were successfully flight
tested at the Wallops Island facility using the CH=-47,

Use of velocity guidance with an attitude command system generally
did not result in as tight a trajectory-following capability as may be desired,.
The guidance algorithm should be designed in conjunction with the control

system for optimum performance,

Adaptation for vehicles like the CH=-47 is marginally useful and mar-
ginally successful. The identifiability analyses based on computed Cramer-
Rao lower bounds showed that only about 7 of 26 longitudinal parameters
can be extracted from the sensor data. Relatively large maneuvers are
required to obtain significant improvement over a priori knowledge. The
dominant scheduling parameter (forward airspeed) can be found to an ac-
curacy no better than 20 to 30 kt (about 15 to 20 percent of maximum speed),
Off-line evaluation of the identifier supported these identifiability results,
This evaluation also indicated that the fundamental parameter identification
problem is plagued with local minima, Initial estimates must be reasonably

close in order to converge to the correct parameter set,

These experiments suggest real-time parameter estimation is feasible
in modern flight control., Whether it offers benefits for a particular applica=-
tion depends on the nature and magnitude of plant uncertainties and alternate

methods available to achieve successful control,
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APPENDIX A
GAINS FOR LONGITUDINAL AXIS

Actuator commands have the form:
§ = K. x+K u
X u

This appendix contains design values for K, and Ku for 33 flight con-
ditions plus the v gain schedule. The design values were computed using the
procedure described in Section 5, The two columns of matrix Ku equal col-
umns 5 and 6 of matrix KX so only KX is plotted. Thus, individual terms are

denoted as

g K11 Kyo Kyg Ky Ki5 Kig] | Vi Ki5 K1) | Va
= V + c
z
S Ka1 Kag Koz Kpy Ky Kpgl [ Kos Kagl 16,
6
I
I

The data, in the form of computer plots, are presented in Figures 41
through 52,
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APPENDIX B
GAINS FOR LATERAL-DIRECTIONAL AXES

Actuator commands have the form:
§ = K.x+K.u
X u

This appendix contains design values for Kx and Ku for 33 flight con-
ditions plus the ¥ gain schedule, The design values were computed using
the procedure described in Section 5. The two columns of matrix Ku equal
columns 6 and 7 of matrix Kx so only Kx is plotted,. Thus, individual terms

are denoted as

o Ce T <

The data, in the form of computer plots, are presented in Figures 53
through 66.
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Apperdix B

v, Nomalized forward speed

lateral-directional axes.
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APPENDIX C
LATERAL-DIRECTIONAL TIME HISTORIES

This appendix contains time histories of the lateral-axis controller in
response to ¢ and {y commands, The traces were generated with the VALT
simulation at NASA-LRC, Three flight conditions are given: hover, 41,2
m/s forward velocity, and 79.3 m/s forward velocity,

The data are presented in Figures 67, 68, and 69,
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APPENDIX D
CH-47 MODEL PARAMETERS

This appendix contains plots of the elements of the A and B matrices
for the longitudinal axis of the CH-~47, The parameterization of these ele-

ments in terms of v (normalized forward airspeed) is also shown,

The vehicle model has the form (see ref, 4):

Vel 1211 212 213 214 | Vx by Pya og
g | Ve| |21 222 223 24| |V, byy byg 0e
T = +
t 1a 231 33 233 334 |4 P31 b3y

6 o 0o 1 0 6

The data, in the form of computer plots, are presented in Figures 70
through 87, '
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v, Nomalized forward speed
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v, Normalized forward speed
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v, Nomalized forward speed
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Vv, Nomalized forward speed
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APPENDIX E

LONGITUDINAL=~AXIS GAIN SCHEDULE
WITH ESTIMATED VELOCITY

This appendix presents the ideal gain schedule, the best fixed gains,
and the gain schedules for two levels of uncertainty in the scheduling param-
eter (v)., This analysis is described in Section 6,

The data, inthe form of computer plots, are presented in Figures 88
through 101.
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Figure 100. -Element K,, versus V -- longitudinal-axis gain schedule,
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v, Normalized forward speed

g versus v -- longitudinal-axis gain schedule,
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APPENDIX F

PARAMETER ESTIMATION USING
RECORDED FLIGHT DATA

This appendix presents plots of 12 maneuvers analyzed in Section 10,
For each maneuver the two controls, pitch rate and its residual and pitch
attitude and its residual, are plotted. These plots have been normalized.

The normalization factors are

Controls (5B, 5c): 1 =2,54cm
Pitch rate: 1 =1 rad/s
Pitch attitude: 1 =1 rad

The data, in the form of computer plots, are presented in Figures 102
through 137,
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Figure 102. -Control input versus time -- maneuver no. 1.
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Figure 103. -Pitch rate versus time -- maneuver no. 1.
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Figure 104. -Pitch attitude versus time -- maneuver no. 1.
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Figure 105. -Control input versus time -- maneuver no. 2.
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Figure 106. -Pitch rate versus time -- maneuver no. 2.
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Figure 107. -Pitch attitude versus time -- maneuver no. 2.
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Figure 108. -Control input versus time -- maneuver no. 3,
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Figure 109. -Pitch rate versus time -- maneuver no, 3.
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Figure 110, -Pitch attitude versus time -- maneuver no. 3.
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Figure 111, -Control input versus time -- maneuver no. 4.
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Figure 112. -Pitch rate versus time -- maneuver no. 4.
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Figure 113. -Pitch attitude versus time -- maneuver no. 4.
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-]

n

Time, s

19

171




Appendix F

5}

Pitch rate

i |

—0.18 T T Y T T

Time, s

Figure 115. -Pitch rate versus time -- maneuver no. 5,
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Figure 116. -Pitch attitude versus time -- maneuver no. 5.
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Figure 117, -Control input versus time -- maneuver no. 6.
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Figure 118. -Pitch rate versus time -- maneuver no. 6.
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Figure 119, -Pitch attitude versus time -- maneuver no. 6,
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Figure 120. -Control input versus time -- maneuver no. 7.
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Figure 121, -Pitch rate versus time -- maneuver no. 7.
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Figure 122, -Pitch attitude versus time -- maneuver no. 7.
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Figure 123. -Control input versus time -- maneuver no. 8.
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Figure 124. -Pitch rate versus time -- maneuver no. 8.
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Figure 125, -Pitch attitude versus time -- maneuver no. 8.
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Figure 128, -Pitch attitude versus time -- maneuver no. 9.
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Figure 133. -Pitch rate versus time -- maneuver no. 11.

.89

.81

-. 04

-.02

Figure 134, -Pitch attitude versus time ~-- maneuver no, 11,
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Figure 135. -Control input versus time -- maneuver no. 12.

.
I

Pitch rate

Time, s

Figure 136, -Pitch rate versus time -- maneuver no. 12.
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