research

Asymptotic Exit Location Distributions in the Stochastic Exit Problem

Abstract

Consider a two-dimensional continuous-time dynamical system, with an attracting fixed point SS. If the deterministic dynamics are perturbed by white noise (random perturbations) of strength ϵ\epsilon, the system state will eventually leave the domain of attraction Ω\Omega of SS. We analyse the case when, as ϵ→0\epsilon\to0, the exit location on the boundary ∂Ω\partial\Omega is increasingly concentrated near a saddle point HH of the deterministic dynamics. We show that the asymptotic form of the exit location distribution on ∂Ω\partial\Omega is generically non-Gaussian and asymmetric, and classify the possible limiting distributions. A key role is played by a parameter μ\mu, equal to the ratio ∣λs(H)∣/λu(H)|\lambda_s(H)|/\lambda_u(H) of the stable and unstable eigenvalues of the linearized deterministic flow at HH. If μ<1\mu<1 then the exit location distribution is generically asymptotic as ϵ→0\epsilon\to0 to a Weibull distribution with shape parameter 2/μ2/\mu, on the O(ϵμ/2)O(\epsilon^{\mu/2}) length scale near HH. If μ>1\mu>1 it is generically asymptotic to a distribution on the O(ϵ1/2)O(\epsilon^{1/2}) length scale, whose moments we compute. The asymmetry of the asymptotic exit location distribution is attributable to the generic presence of a `classically forbidden' region: a wedge-shaped subset of Ω\Omega with HH as vertex, which is reached from SS, in the ϵ→0\epsilon\to0 limit, only via `bent' (non-smooth) fluctuational paths that first pass through the vicinity of HH. We deduce from the presence of this forbidden region that the classical Eyring formula for the small-ϵ\epsilon exponential asymptotics of the mean first exit time is generically inapplicable.Comment: This is a 72-page Postscript file, about 600K in length. Hardcopy requests to [email protected] or [email protected]

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019