20 research outputs found

    Insights from transient absorption spectroscopy into electron dynamics along the Ga-gradient in Cu(In,Ga)Se2 solar cells

    Get PDF
    Cu(In,Ga)Se2 solar cells have markedly increased their efficiency over the last decades currently reaching a record power conversion efficiency of 23.3%. Key aspects to this efficiency progress are the engineered bandgap gradient profile across the absorber depth, along with controlled incorporation of alkali atoms via post-deposition treatments. Whereas the impact of these treatments on the carrier lifetime has been extensively studied in ungraded Cu(In,Ga)Se2 films, the role of the Ga-gradient on carrier mobility has been less explored. Here, transient absorption spectroscopy (TAS) is utilized to investigate the impact of the Ga-gradient profile on charge carrier dynamics. Minority carriers excited in large Cu(In,Ga)Se2 grains with a [Ga]/([Ga]+[In]) ratio between 0.2–0.5 are found to drift-diffuse across ≈1/3 of the absorber layer to the engineered bandgap minimum within 2 ns, which corresponds to a mobility range of 8.7–58.9 cm2 V−1 s−1. In addition, the recombination times strongly depend on the Ga-content, ranging from 19.1 ns in the energy minimum to 85 ps in the high Ga-content region near the Mo-back contact. An analytical model, as well as drift-diffusion numerical simulations, fully decouple carrier transport and recombination behaviour in this complex composition-graded absorber structure, demonstrating the potential of TAS.Y.-H.C. Chang thanks the Ministry of Education of Taiwan for her Ph.D. scholarship, and Dr. Michael Sachs for fruitful discussions on TA data. J.R.D. would like to thank the UKRI Global Challenge Research Fund project SUNRISE (EP/P032591/1). L.S. acknowledges funding from the European Research Council (H2020-MSCA-IF-2016, Grant No. 749231). This work received financial support from the Swiss State Secretary for Education, Research and Innovation (SERI) under contract number 17.00105 (EMPIR project HyMet). The EMPIR programme is co-financed by the Participating States and by the European Union’s Horizon 2020 research and innovation programme

    Ultrathin Buffer Layers of SnO2 by Atomic Layer Deposition: Perfect Blocking Function and Thermal Stability

    No full text
    This study pinpoints the advantages of ultrathin electron 15 selective layers (ESL) of SnO2 fabricated by atomic layer deposition (ALD). These layers recently caught attention in planar perovskite solar cells and appear as powerful alternatives to other oxides such as TiO2. Here, we carry out a thorough characterization of the nature of these ultrathin ALD SnO2 layers providing a novel physical insight for the design of various photoelectrodes in perovskite and dye-sensitized solar cells and in photoelectrochemical water splitting. We use a combination of cyclic voltammetry, electrochemical impedance spectroscopy, Hall measurements, X-ray photoelectron spectroscopy, atomic force microscopy, and electron microscopy to analyze the blocking behavior and energetics of as-deposited (low-temperature) and also calcined ALD SnO2 layers. First, we find that the low-temperature ALD-grown SnO2 layers are amorphous and perfectly pinhole-free for thicknesses down to 2 run. This exceptional blocking behavior of thin ALD SnO2 layers allows photoelectrode designs with even thinner electron selective layers, thus potentially minimizing resistance losses. The compact nature and blocking function of thin SnO2 films are not perturbed by annealing at 450 degrees C, which is a significant benefit compared to other amorphous ALD oxides. Further on, we show that amorphous and crystalline ALD SnO2 films substantially differ in their Hatband (and conduction band) positions a finding to be taken into account when considering band alignment engineering in solar devices using these high-quality blocking layers

    Ultrathin Buffer Layers of SnO<sub>2</sub> by Atomic Layer Deposition: Perfect Blocking Function and Thermal Stability

    No full text
    This study pinpoints the advantages of ultrathin electron selective layers (ESL) of SnO<sub>2</sub> fabricated by atomic layer deposition (ALD). These layers recently caught attention in planar perovskite solar cells and appear as powerful alternatives to other oxides such as TiO<sub>2</sub>. Here, we carry out a thorough characterization of the nature of these ultrathin ALD SnO<sub>2</sub> layers providing a novel physical insight for the design of various photoelectrodes in perovskite and dye-sensitized solar cells and in photoelectrochemical water splitting. We use a combination of cyclic voltammetry, electrochemical impedance spectroscopy, Hall measurements, X-ray photoelectron spectroscopy, atomic force microscopy, and electron microscopy to analyze the blocking behavior and energetics of as-deposited (low-temperature) and also calcined ALD SnO<sub>2</sub> layers. First, we find that the low-temperature ALD-grown SnO<sub>2</sub> layers are amorphous and perfectly pinhole-free for thicknesses down to 2 nm. This exceptional blocking behavior of thin ALD SnO<sub>2</sub> layers allows photoelectrode designs with even thinner electron selective layers, thus potentially minimizing resistance losses. The compact nature and blocking function of thin SnO<sub>2</sub> films are not perturbed by annealing at 450 °C, which is a significant benefit compared to other amorphous ALD oxides. Further on, we show that amorphous and crystalline ALD SnO<sub>2</sub> films substantially differ in their flatband (and conduction band) positionsa finding to be taken into account when considering band alignment engineering in solar devices using these high-quality blocking layers

    Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting

    No full text
    Due to its abundance, scalability, and nontoxicity, Cu2O has attracted extensive attention toward solar energy conversion, and it is the best performing metal oxide material. Until now, the high efficiency devices are all planar in structure, and their photocurrent densities still fall well below the theoretical value of 14.5 mA cm(-2) due to the incompatible light absorption and charge carrier diffusion lengths. Nanowire structures have been considered as a rational and promising approach to solve this issue, but due to various challenges, performance improvements through the use of nanowires have rarely been achieved. In this work, we develop a new synthetic method to grow Cu2O nanowire arrays on conductive fluorine-doped tin oxide substrates with well-controlled phase and excellent electronic and photonic properties. Also, we introduce an innovative blocking layer strategy to enable high performance. Further, through material engineering by combining a conformal nanoscale p-n junction, durable protective overlayer, and uniform catalyst decoration, we have successfully fabricated Cu2O nanowire array photocathodes for hydrogen generation from solar water splitting delivering unprecedentedly high photocurrent densities of 10 mA cm(-2) and stable operation beyond 50 h, establishing a new benchmark for metal oxide based photoelectrodes

    Understanding the role of underlayers and overlayers in thin film hematite photoanodes

    Full text link
    Recent research on photoanodes for photoelectrochemical water splitting has introduced the concept of under- and overlayers for the activation of ultrathin hematite films. Their effects on the photocatalytic behavior were clearly shown; however, the mechanism is thus far not fully understood. Herein, the contribution of each layer is analyzed by means of electrochemical impedance spectroscopy, with the aim of obtaining a general understanding of surface and interface modifications and their influence on the hematite photoanode performance. This study shows that doping of the hematite from the underlayer and surface passivation from annealing treatments and an overlayer are key parameters to consider for the design of more efficient iron oxide electrodes. Understanding the contribution of these layers, a new design for ultrathin hematite films employing a combination of a gallium oxide overlayer with thin niobium oxide and silicon oxide underlayers is shown to achieve a photocurrent onset potential for the photoelectrochemical oxidation of water more negative than 750 mV versus the reversible hydrogen electrode (RHE) at pH 13.6, utilizing Co-Pi as a water oxidation catalyst. It is demonstrated that multilayer hematite thin film photoanodes are a strategy to reduce the overpotential for this material, thereby facilitating more efficient tandem cells

    Impact Of Synthesis Route on the Water Oxidation Kinetics of Hematite Photoanodes

    No full text
    Operando spectroelectrochemical analysis is used to determine the water oxidation reaction kinetics for hematite photoanodes prepared using four different synthetic procedures. Whilst these photoanodes exhibit very different current / voltage performance, their underlying water oxidation kinetics are found to be almost invariant. Lower photoanode performance was found to correlate with the observation of optical signals indicative of charge accumulation in mid-gap oxygen vacancy states, indicating these states do not contribute directly to water oxidation.</p
    corecore