683 research outputs found

    Effects of Neighboring Nectar-Producing Plants on Populations of Pest Lepidoptera and Their Parasitoids in Broccoli Plantings

    Get PDF
    Eggs and larvae of the imported cabbageworm, Pieris rapae, were much more abundant in broccoli interplanted with nectar-producing plants than in broccoli monoculture. More diamondback moth larvae, Plutella xylostella, occurred in broccoli interplanted with or adjacent to nectar-producing plants than in broccoli monoculture. Density of cabbage looper larvae, Trichoplusia ni, was similar among the three types of broccoli plantings. For Cotesia rubecula, established in Michigan after introduction from Yugoslavia, pupae were more numerous in broccoli interplanted with nectar-producing plants than in other plots. High parasitism rates of diamondback moth, mainly by Diadegma insulare, were observed in every plot, but there were no differences in parasitism of diamondback moth between the treatments. Results indicate that the interactions between pests, parasitoids and nectar-producing plants are complex and may be different for each species

    Journal Staff

    Get PDF
    The aluminum–zinc-vacancy (Al Zn −V Zn ) complex is identified as one of the dominant defects in Al-containing n -type ZnO after electron irradiation at room temperature with energies above 0.8 MeV. The complex is energetically favorable over the isolated V Zn , binding more than 90% of the stable V Zn ’s generated by the irradiation. It acts as a deep acceptor with the (0/− ) energy level located at approximately 1 eV above the valence band. Such a complex is concluded to be a defect of crucial and general importance that limits the n -type doping efficiency by complex formation with donors, thereby literally removing the donors, as well as by charge compensation

    TWINLATIN: Twinning European and Latin-American river basins for research enabling sustainable water resources management. Combined Report D3.1 Hydrological modelling report and D3.2 Evaluation report

    Get PDF
    Water use has almost tripled over the past 50 years and in some regions the water demand already exceeds supply (Vorosmarty et al., 2000). The world is facing a “global water crisis”; in many countries, current levels of water use are unsustainable, with systems vulnerable to collapse from even small changes in water availability. The need for a scientifically-based assessment of the potential impacts on water resources of future changes, as a basis for society to adapt to such changes, is strong for most parts of the world. Although the focus of such assessments has tended to be climate change, socio-economic changes can have as significant an impact on water availability across the four main use sectors i.e. domestic, agricultural, industrial (including energy) and environmental. Withdrawal and consumption of water is expected to continue to grow substantially over the next 20-50 years (Cosgrove & Rijsberman, 2002), and consequent changes in availability may drastically affect society and economies. One of the most needed improvements in Latin American river basin management is a higher level of detail in hydrological modelling and erosion risk assessment, as a basis for identification and analysis of mitigation actions, as well as for analysis of global change scenarios. Flow measurements are too costly to be realised at more than a few locations, which means that modelled data are required for the rest of the basin. Hence, TWINLATIN Work Package 3 “Hydrological modelling and extremes” was formulated to provide methods and tools to be used by other WPs, in particular WP6 on “Pollution pressure and impact analysis” and WP8 on “Change effects and vulnerability assessment”. With an emphasis on high and low flows and their impacts, WP3 was originally called “Hydrological modelling, flooding, erosion, water scarcity and water abstraction”. However, at the TWINLATIN kick-off meeting it was agreed that some of these issues resided more appropriately in WP6 and WP8, and so WP3 was renamed to focus on hydrological modelling and hydrological extremes. The specific objectives of WP3 as set out in the Description of Work are

    Design Features to Accelerate the Higher-Order Assembly of DNA Origami on Membranes

    Get PDF
    Nanotechnology often exploits DNA origami nanostructures assembled into even larger superstructures up to micrometer sizes with nanometer shape precision. However, large-scale assembly of such structures is very time-consuming. Here, we investigated the efficiency of superstructure assembly on surfaces using indirect cross-linking through low-complexity connector strands binding staple strand extensions, instead of connector strands binding to scaffold loops. Using single-molecule imaging techniques, including fluorescence microscopy and atomic force microscopy, we show that low sequence complexity connector strands allow formation of DNA origami superstructures on lipid membranes, with an order-of-magnitude enhancement in the assembly speed of superstructures. A number of effects, including suppression of DNA hairpin formation, high local effective binding site concentration, and multivalency are proposed to contribute to the acceleration. Thus, the use of low-complexity sequences for DNA origami higher-order assembly offers a very simple but efficient way of improving throughput in DNA origami design.Published as part of The Journal of Physical Chemistry virtual special issue “W. E. Moerner Festschrift”

    Re-Inventing Public Education:The New Role of Knowledge in Education Policy-Making

    Get PDF
    This article focuses on the changing role of knowledge in education policy making within the knowledge society. Through an examination of key policy texts, the Scottish case of Integrated Children Services provision is used to exemplify this new trend. We discuss the ways in which knowledge is being used in order to re-configure education as part of a range of public services designed to meet individuals' needs. This, we argue, has led to a 'scientization' of education governance where it is only knowledge, closely intertwined with action (expressed as 'measures') that can reveal problems and shape solutions. The article concludes by highlighting the key role of knowledge policy and governance in orienting education policy making through a re-invention of the public role of education

    Multi-objective optimization of RF circuit blocks via surrogate models and NBI and SPEA2 methods

    Get PDF
    Multi-objective optimization techniques can be categorized globally into deterministic and evolutionary methods. Examples of such methods are the Normal Boundary Intersection (NBI) method and the Strength Pareto Evolutionary Algorithm (SPEA2), respectively. With both methods one explores trade-offs between conflicting performances. Surrogate models can replace expensive circuit simulations so enabling faster computation of circuit performances. As surrogate models of behavioral parameters and performance outcomes, we consider look-up tables with interpolation and Neural Network models

    Parallel high-performance grid computing: Capabilities and opportunities of a novel demanding service and business class allowing highest resource efficiency

    Get PDF
    Especially in the life-science and the health-care sectors the huge IT requirements are imminent due to the large and complex systems to be analysed and simulated. Grid infrastructures play here a rapidly increasing role for research, diagnostics, and treatment, since they provide the necessary large-scale resources efficiently. Whereas grids were first used for huge number crunching of trivially parallelizable problems, increasingly parallel high-performance computing is required. Here, we show for the prime example of molecular dynamic simulations how the presence of large grid clusters including very fast network interconnects within grid infrastructures allows now parallel high-performance grid computing efficiently and thus combines the benefits of dedicated super-computing centres and grid infrastructures. The demands for this service class are the highest since the user group has very heterogeneous requirements: i) two to many thousands of CPUs, ii) different memory architectures, iii) huge storage capabilities, and iv) fast communication via network interconnects, are all needed in different combinations and must be considered in a highly dedicated manner to reach highest performance efficiency. Beyond, advanced and dedicated i) interaction with users, ii) the management of jobs, iii) accounting, and iv) billing, not only combines classic with parallel high-performance grid usage, but more importantly is also able to increase the efficiency of IT resource providers. Consequently, the mere "yes-we- can" becomes a huge opportunity like e.g. the life-science and health-care sectors as well as grid infrastructures by reaching higher level of resource efficiency
    • 

    corecore