18 research outputs found

    Estimation of Cell Cycle States of Human Melanoma Cells with Quantitative Phase Imaging and Deep Learning

    Get PDF
    Visualization and classification of cell cycle stages in live cells requires the introduction of transient or stably expressing fluorescent markers. This is not feasible for all cell types, and can be time consuming to implement. Labelling of living cells also has the potential to perturb normal cellular function. Here we describe a computational strategy to estimate core cell cycle stages without markers by taking advantage of features extracted from information-rich ptychographic time-lapse movies. We show that a deep-learning approach can estimate the cell cycle trajectories of individual human melanoma cells from short 3-frame (~23 minute) snapshots, and can identify cell cycle arrest induced by chemotherapeutic agents targeting melanoma driver mutations

    The Role of Melanoma Cell-Stroma Interaction in Cell Motility, Invasion, and Metastasis

    Get PDF
    The importance of studying cancer cell invasion is highlighted by the fact that 90% of all cancer-related mortalities are due to metastatic disease. Melanoma metastasis is driven fundamentally by aberrant cell motility within three-dimensional or confined environments. Within this realm of cell motility, cytokines, growth factors, and their receptors are crucial for engaging signaling pathways, which both mediate crosstalk between cancer, stromal, and immune cells in addition to interactions with the surrounding microenvironment. Recently, the study of the mechanical biology of tumor cells, stromal cells and the mechanics of the microenvironment have emerged as important themes in driving invasion and metastasis. While current anti-melanoma therapies target either the MAPK signaling pathway or immune checkpoints, there are no drugs available that specifically inhibit motility and thus invasion and dissemination of melanoma cells during metastasis. One of the reasons for the lack of so-called “migrastatics” is that, despite decades of research, the precise biology of metastatic disease is still not fully understood. Metastatic disease has been traditionally lumped into a single classification, however what is now emergent is that the biology of melanoma metastasis is highly diverse, heterogeneous and exceedingly dynamic—suggesting that not all cases are created equal. The following mini-review discusses melanoma heterogeneity in the context of the emergent theme of mechanobiology and how it influences the tumor-stroma crosstalk during metastasis. Thus, highlighting future therapeutic options for migrastatics and mechanomedicines in the prevention and treatment of metastatic melanoma

    FGFR2-activating mutations disrupt cell polarity to potentiate migration and invasion in endometrial cancer cell models

    Get PDF
    Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that control a diverse range of biological processes during development and in adult tissues. We recently reported that somatic FGFR2 mutations are associated with shorter survival in endometrial cancer. However, little is known about how these FGFR2 mutations contribute to endometrial cancer metastasis. Here, we report that expression of the activating mutations FGFR2N550K and FGFR2Y376C in an endometrial cancer cell model induce Golgi fragmentation, and loss of polarity and directional migration. In mutant FGFR2-expressing cells, this was associated with an inability to polarise intracellular pools of FGFR2 towards the front of migrating cells. Such polarization defects were exacerbated in three-dimensional culture, where FGFR2 mutant cells were unable to form well-organised acini, instead undergoing exogenous ligand-independent invasion. Our findings uncover collective cell polarity and invasion as common targets of disease-associated FGFR2 mutations that lead to poor outcome in endometrial cancer patients

    Pain-causing stinging nettle toxins target TMEM233 to modulate NaV1.7 function

    Get PDF
    Voltage-gated sodium (NaV) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived NaV channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at NaV channels, and that co-expression of TMEM233 modulates the gating properties of NaV1.7. These findings identify TMEM233 as a previously unknown NaV1.7-interacting protein, position TMEM233 and the dispanins as accessory proteins that are indispensable for toxin-mediated effects on NaV channel gating, and provide important insights into the function of NaV channels in sensory neurons

    The role of melanoma cell-stroma interaction in cell motility, invasion, and metastasis

    No full text
    The importance of studying cancer cell invasion is highlighted by the fact that 90% of all cancer-related mortalities are due to metastatic disease. Melanoma metastasis is driven fundamentally by aberrant cell motility within three-dimensional or confined environments. Within this realm of cell motility, cytokines, growth factors, and their receptors are crucial for engaging signaling pathways, which both mediate crosstalk between cancer, stromal, and immune cells in addition to interactions with the surrounding microenvironment. Recently, the study of the mechanical biology of tumor cells, stromal cells and the mechanics of the microenvironment have emerged as important themes in driving invasion and metastasis. While current anti-melanoma therapies target either the MAPK signaling pathway or immune checkpoints, there are no drugs available that specifically inhibit motility and thus invasion and dissemination of melanoma cells during metastasis. One of the reasons for the lack of so-called “migrastatics” is that, despite decades of research, the precise biology of metastatic disease is still not fully understood. Metastatic disease has been traditionally lumped into a single classification, however what is now emergent is that the biology of melanoma metastasis is highly diverse, heterogeneous and exceedingly dynamic—suggesting that not all cases are created equal. The following mini-review discusses melanoma heterogeneity in the context of the emergent theme of mechanobiology and how it influences the tumor-stroma crosstalk during metastasis. Thus, highlighting future therapeutic options for migrastatics and mechanomedicines in the prevention and treatment of metastatic melanoma

    CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover

    No full text
    Turnover of integrin-based focal adhesions (FAs) with the extracellular matrix (ECM) is essential for coordinated cell movement. In collectively migrating human keratinocytes, FAs assemble near the leading edge, grow and mature as a result of contractile forces, and disassemble underneath the advancing cell body. We report that clustering of microtubule-associated CLASP1 and CLASP2 proteins around FAs temporally correlates with FA turnover. CLASPs and LL5β, which recruits CLASPs to FAs, facilitate FA disassembly. CLASPs are further required for FA-associated ECM degradation, and matrix metalloprotease inhibition slows FA disassembly similar to CLASP or LL5β depletion. Finally, CLASP-mediated microtubuletethering at FAs establishes a FA-directed transport pathway for delivery, docking and localized fusion of exocytic vesicles near FAs. We propose that CLASPs couple microtubule organization, vesicle transport and cell interactions with the ECM, establishing a local secretion pathway that facilitates FA turnover by severing cell-matrix connections

    Bcl-2 inhibitors enhance FGFR inhibitor-induced mitochondrial-dependent cell death in FGFR2-mutant endometrial cancer

    No full text
    Endometrial cancer is the most commonly diagnosed gynaecological malignancy. Unfortunately, 15-20% of women demonstrate persistent or recurrent tumours that are refractory to current chemotherapies. We previously identified activating mutations in fibroblast growth factor receptor 2 (FGFR2) in 12% (stage I/II) to 17% (stage III/IV) endometrioid ECs and found that these mutations are associated with shorter progression-free and cancer-specific survival. Although FGFR inhibitors are undergoing clinical trials for treatment of several cancer types, little is known about the mechanism by which they induce cell death. We show that treatment with BGJ398, AZD4547 and PD173074 causes mitochondrial depolarization, cytochrome c release and impaired mitochondrial respiration in two FGFR2-mutant EC cell lines (AN3CA and JHUEM2). Despite this mitochondrial dysfunction, we were unable to detect caspase activation following FGFR inhibition; in addition, the pan-caspase inhibitor Z-VAD-FMK was unable to prevent cell death, suggesting that the cell death is caspase-independent. Furthermore, while FGFR inhibition led to an increase in LC3 puncta, treatment with bafilomycin did not further increase lipidated LC3, suggesting that FGFR inhibition led to a block in autophagosome degradation. We confirmed that cell death is mitochondrial-dependent as it can be blocked by overexpression of Bcl-2 and/or Bcl-XL. Importantly, we show that combining FGFR inhibitors with the BH3 mimetics ABT737/ABT263 markedly increased cell death in\ua0vitro and is more effective than BGJ398 alone in\ua0vivo, where it leads to marked tumour regression. This work may have implications for the design of clinical trials to treat a wide range of patients with FGFR-dependent malignancies
    corecore