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ABSTRACT 

 

Visualization and classification of cell cycle stages in live 

cells requires the introduction of transient or stably 

expressing fluorescent markers. This is not feasible for all 

cell types, and can be time consuming to implement. 

Labelling of living cells also has the potential to perturb 

normal cellular function. Here we describe a computational 

strategy to estimate core cell cycle stages without markers 

by taking advantage of features extracted from information-

rich ptychographic time-lapse movies. We show that a deep-

learning approach can estimate the cell cycle trajectories of 
individual human melanoma cells from short 3-frame (~23 

minute) snapshots, and can identify cell cycle arrest induced 

by chemotherapeutic agents targeting melanoma driver 

mutations. 

 

Index Terms— cell cycle, deep learning, melanoma, 

quantitative phase imaging, ptychography 

 

1. INTRODUCTION 

 

The cell cycle is a tightly controlled sequential process that 
ensures near-perfect replication of a cell’s genetic blueprint 

[1]. In healthy cells, disruption to cell cycle regulatory 

components leads to activation of intrinsic safety protocols 

that force cell cycle arrest, DNA repair, or apoptosis 

(programmed cell death) [2]. If cell cycle checkpoints are 

missed, this can result in abnormal cell divisions, leading to 

accumulation of harmful mutations, oncogenic cell 

transformation, and eventually the formation of cancers or 

other diseases [2]. Comparison of cell cycle progress in 

different cell types, cells treated with different 

chemotherapeutic agents, or between healthy and diseased 

cells, can provide insights into function, treatment 

effectiveness, or help to identify new drug targets, 

respectively [2-3]. Typically, the cell cycle is divided into 

four core stages (Fig. 2a): the growth stage (G1) when the 

cell gathers and synthesizes nutrients required for genomic 

replication, the DNA synthesis and replication stage (S), a 

second growth stage (G2) where the cell ensures it has all 

material required for division, and finally mitosis (M) where 

the cell divides into two new daughter cells [4]. When a cell 

is not cycling it is said to be in a quiescent (G0) state.  

Fig 1. (a) Observed (left) and estimated (right) intensities of 
a full unseen cell track from the untreated test set (made up 

of adjacent estimations for individual frames plotted 

temporally). (b) Visualization of QPI images from the same 

cell track as above with (6 frames shown, equally spaced 

along the full track). Scale bar ≈ 75µm. 



To identify these important stages of the cell cycle in 

live cells, researchers have, until now, been wholly reliant 

on fluorescent indicators which are imaged using high-

powered microscopy [4]. Such markers are required because 

cells only show subtle changes in appearance throughout 

most of the cell cycle, and are mostly transparent using 

conventional imaging techniques [5]. Unfortunately, the 

introduction of fluorescent molecules, and their 

visualization by means of high-powered light emitters, can 

disrupt normal biological activity and cause cell cycle arrest 

or death through phototoxic stress [6]. This inevitably 
makes labelling living cells problematic, and can lead to 

biased results or failed biological experiments. 

Quantitative phase imaging (QPI) techniques are forms 

of microscopy that can extract detailed information from 

cells without the need for fluorescent labelling of cellular 

components or stimulation with high-powered lamps [5]. In 

this research we utilize ptychography, a form of QPI where 

a low-energy 650nm red laser is moved iteratively over a 

target region of interest, providing an array of overlapping 

diffraction patterns that can be used to estimate the phase 

shift (related to refractive index and thus material density) at 

each pixel [7]. 
In this study we used the popular fluorescence 

ubiquitination cell cycle indicator (FUCCI) system to 

visualize the cell cycle in a human melanoma cell line [4]. 

The FUCCI system relies on the introduction of genes that 

stably express two different fluorescently tagged fusion 

proteins. For legibility we refer to the fusion proteins by 

their fluorescent tags: monomeric Kusabiro Orange 2 

(mKO2) and monomeric Azami Green (mAG) for the 

remainder of this paper (see 2. Biological Methods for full 

details). These express in the cell nucleus at different levels 

to indicate specific stages of the cell cycle (Fig. 1 & 2a). We 
captured both fluorescence channels, along with correlative 

ptychographic reconstructions of cells, and used a deep 

residual convolutional neural network (CNN) to estimate 

each fluorophore’s expression levels based solely on QPI 

data from single segmented cells. We use the true FUCCI 

signals as ground truth to train our model, and evaluate its 

performance on unseen test data representing both typical 

cell cycle trajectories and G1-arrested cells.  

Inspired by the success of recent studies [8-9], we chose 

to estimate expression levels of mKO2 and mAG rather than 

use this information to indirectly annotate stages (i.e. 

perform classification of G1, S, G2, and M). This was firstly 

to avoid subjectivity in judging stage transitions, and risk 
introducing artificial transition points that do not reflect true 

cell state; and secondly to assess whether the model might 

be powerful enough to detect more subtle information about 

cell cycle state, such as expression of specific proteins. 

Accordingly, we show that a CNN can estimate markers of 

cell cycle stage directly from ptychographic images, without 

using any fluorescent tagging. 

 

 

2. BIOLOGICAL METHODS 

 

The human melanoma cell line WM164 was genotypically 
characterized [10-11] and grown as described [12]. To 

generate a stable melanoma cell line expressing the FUCCI 

constructs, mKO2-hCdt1 (30-120) and mAG-hGem (1-110) 

[4] were subcloned into a replication-defective, self-

inactivating lentiviral expression vector system as described 

in [13]. The lentivirus was produced by co-transfection of 

human embryonic kidney 293T cells. High-titer viral 

solutions for mKO2-hCdt1 (30-120) and mAG-hGem (1-

110) were prepared and used for co-transduction into 

WM164 cells and subclones were generated by single cell 

sorting [12,14,15]. Cell line authentication was 
accomplished by STR fingerprinting (QIMR Berghofer 

Medical Research Institute, Herston, QLD, Australia). 

Fig 2. (a) The FUCCI system: during G1 of the cell cycle, the mAG tagged fusion protein is actively degraded, whereas the 

mKO2 tagged protein is able to express at high levels causing red-orange fluorescence. As the cell enters S phase, inhibition 

of the mAG tagged protein is relaxed, whilst the mKO2 tagged protein is degraded. During this time the cell expresses both 

fluorophores at similar levels causing signals to temporarily overlap. As the cell enters G2/M only mAG is observable 

causing the cell to appear green. (b) Short 3-frame QPI stacks (representing ~23 mins) were passed to the residual network, 

with scaled sum fluorescence intensities for mKO2 and mAG associated with the middle frame used as ground truth. The 

model estimates mKO2 and mAG fluorescence corresponding with their nuclear expression levels. 



Mycoplasma contamination on all cell lines was ruled out 

via PCR at Garvan Institute. WM164-FUCCI cells were 

cultured in DMEM (Gibco) supplemented with 10% FBS 

(Gibco), 100 µg/ml penicillin streptomycin (Gibco) and 

0.1mM non-essential amino acids. Just prior to imaging 
cells were treated with 100 nM of the BRAF V600E 

inhibitor dabrafenib (Selleckchem) and compared with 

DMSO‐treated control cells. These doses were chosen so as 

to induce G1 arrest but low amounts of cell death. 

 

3. IMAGING AND DATA ACQUISITION 

 

QPI and correlative fluorescence images were captured 

every 7.5 minutes over ~60 hours on a PhaseFocus LiveCyte 

ptychographic imaging system at 10X magnification. 

Imaging regions of interest (ROI) were 750x750µm. 
Fluorophores were excited with a pE-300white broad-

spectrum LED illumination source and were detected using 

TxRed and FITC Olympus filter cubes. Power and 

exposures were 25% for 4 seconds and 35% for 10 seconds 

for mKO2 and mAG, respectively. Individual cells were 

initially segmented and tracked using the LiveCyte’s Cell 

Analysis Toolbox software (using its proprietary fuzzy c-

means approach), then manually corrected to ensure high 

quality segmentation and cell tracking throughout the time-

lapse. Cells crossing the image border were ignored. FUCCI 

signals for individual cells were obtained from 16-bit 

fluorescence images in ImageJ by first subtracting 
background using a sliding paraboloid rolling ball function 

(50 pixel radius), then adjusting the mean intensity threshold 

to eliminate remaining background and ensure that only 

nuclear signal was visible (minimum: 200 for mKO2, 500 

for mAG). The sum of pixel intensities inside individual 

nuclei was then recorded for each cell in each image. 

 

4. DATA PREPROCESSING 

 

As fusion protein transfection efficiencies, and therefore 

general expression levels, likely differ slightly from cell to 
cell, mKO2 and mAG sum nuclear fluorescence signals 

were scaled between 0 and 1 for each cell, by dividing their 

recorded intensities by the maximum observed intensity for 

that cell throughout its entire cell cycle trajectory. Hence, 

incomplete cell tracks were discarded, and only full cell 

tracks representing a single completed cell cycle (from G1 to 

M) were used in the final dataset. Individual QPI images of 

segmented cells were redrawn onto blank backgrounds, and 

then stacked so that QPI information from the previous, 

current, and next frames of the time-lapse were available to 

the model (i.e. sets of 3 consecutive time lapse frames, 

representing ~23 minutes each in total). The final dataset 
contained 30 full cell-tracks, consisting of 5477 3-frame 

clips, represented as 3-channel 16-bit image stacks 

(150x150x3), with the FUCCI ground truth associated with 

the central channel. The mean cell cycle duration was 185 

frames with a standard deviation (SD) of 28 frames (~23±3 

hours). 80% of the full cell tracks (24 cells, 4405 examples) 

were used for training, whilst 20% (6 cells, 1072 examples) 
were held out for testing (i.e. no frames from the same cell 

track were ever included in both the training and test sets). 

 

5. DEEP RESIDUAL MODEL 

 

For this research we used ResNet-50 [16] initiated with 

weights pre-trained on ImageNet [17] (source: 

github/fchollet). We added a global average pooling (GAP) 

layer after the last convolutional layer, followed by 2 

neurons activated by sigmoid functions (Fig. 2b). Our 

resulting model, therefore, outputs 2 separate estimations 
representing 0-1 scaled mKO2 and mAG sum fluorescence 

levels for each 3-frame QPI clip passed to the model. To 

avoid overfitting during training we introduced 50% dropout 

after the GAP layer. We also performed data augmentation 

using simple mirroring and rotations to increase the training 

set size and make our model more robust to changes in 

orientation. This expanded our training dataset by 16X to 

70480 examples. 

We validated the model using 5-fold cross validation 

and used the median lowest loss as a guide to the number of 

epochs for training the final model (Fig. 3a). Cross 

validation folds were split on the list of individual cell 
tracks, not 3-frame clips, to ensure QPI frames from the 

Fig 3. (a) Learning curves showing the median result of 5-

fold cross-validation, error margins represent 1 median 
absolute deviation. The thick arrow indicates the epoch 

were the lowest median loss was obtained, and the early 

stopping point chosen for final model training. (b) KDEs 

representing the distributions of mKO2 and mAG recorded 

(left) versus estimated (right) values; arrows indicate 

direction of typical cell cycle trajectories. 



same cell were never used for both training and validation at 

the same time. The final model was trained for 45 epochs 

using stochastic gradient descent with Nesterov momentum 

of 0.9 and decay of 1e-6. We used a learning rate of 1e-5. 

Our loss function was mean absolute error (MAE). Training 
was performed using a single Nvidia GeForce GTX 1080 

(8GB). 

 

5. RESULTS 

 

5.1. General Performance 

 

MAE was 0.11 for mKO2, and 0.06 for mAG.. Disparities 

between estimated and ground-truth fluorescence 

distributions are visualized in Fig. 3b using bivariate kernel 

density estimations (KDE) with bandwidth bw defined by 

Scott’s rule (log(bw)= −log(n)/(d+4)) where n is the 

number of points and d the number of dimensions [18].  

Correlations between estimated and ground-truth 

FUCCI confirmed that mKO2 estimations show a weaker 

correlation with observed mKO2 signal (Pearson’s r: 0.56) 

than mAG estimations with recorded mAG (0.70); although 

both cases showed statistically significant correlations with 

the ground truth (P < 0.001). 

 

5.2. Performance on G1 arrested cells 

 

Dabrafenib is a small molecule inhibitor of mutated forms 

of the oncogene BRAF often found in aggressive melanoma 

[19]. Treatment with dabrafenib causes G1 cell cycle arrest 

in mutated cells, including the WM164 cell line [15,20,21]. 

We wanted to observe whether our model could detect this, 

so we measured FUCCI fluorescence in 3 cell tracks (703 

examples) representing melanoma cells blocked with 

dabrafenib. Cells were tracked following mitosis of a 

mother cell for at least the mean typical cell cycle duration 

(see: 3.1). Because mAG would never be expressed at 
mitotic levels in arrested cells, to generate ground truth we 

instead scaled the detected mAG fluorescence by the mitotic 

mAG observed in the mother cell of each arrested cell 

studied. Encouragingly our model estimated FUCCI levels 

corresponding to G1 arrest (Fig. 4) in these cells, with an 

MAE of 0.12 for mKO2 and 0.01 for mAG. Linear 

correlations would not be meaningful for this experiment, 

given such low variation in ground truth mKO2 and mAG 

fluorescence. 

 

6. CONCLUSIONS 
 

We have shown that deep-learning can be used to extract 

important features from QPI data. Such information enables 

estimation of the expression levels of cell cycle associated 

proteins, and detection of cell cycle arrest in cancer cells 

treated with small molecule therapeutics. Our estimations 

are currently limited to a single cell line but show great 

promise. Conducting further work on a large scale, using 

data from several different cell types, could lead to a 

generalizable tool for use in the investigation of the cell 

cycle in a label-free manner. Such a tool would be a 
powerful platform for evaluating potential new therapeutics. 
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