452 research outputs found

    Statistical complexity of reasons for encounter in high users of out of hours primary care:analysis of a national service

    Get PDF
    Background: Managing demand for urgent and unscheduled care is a major problem for health services globally. A particular issue is that some patients appear to make heavy use of services, including primary care out of hours. We hypothesised that greater variation (statistical complexity) in reasons for attending primary care out of hours services may be a useful marker of patients at high risk of ongoing heavy service use. Methods: We analysed an anonymised dataset of contacts with the primary care out of hours care for Scotland in 2011. This contained 120,395 contacts from 13,981 high-using patients who made 5 or more contacts during a calendar year. We allocated the stated reason for each encounter into one of 14 categories. For each patient we calculated measures of statistical complexity of reasons for encounter including the count of different categories, Herfindahl index and statistical entropy of either the categories themselves, or the category transitions. We examined the association of these measures of statistical complexity with patient and healthcare use characteristics. Results: The high users comprised 2.4% of adults using the service and accounted for 15% of all contacts. Statistical complexity (as entropy of categories) increased with number of contacts but was not substantially influenced by either patient age or sex. This lack of association with age was unexpected as with increasing multi-morbidity one would expect greater variability in reason for encounter. Between 5 and 10 consultations, higher entropy was associated with a reduced likelihood of further consultations. In contrast, the occurrence of one or more contacts for a mental health problem was associated with increased likelihood of further consultations. Conclusion: Complexity of reason for encounter can be estimated in an out of hours primary care setting. Similar levels of statistical complexity are seen in younger and older adults (suggesting that it is more to do with consultation behaviour than morbidity) but it is not a predictor of ongoing high use of urgent care.</p

    Stabilization of structure-preserving power networks with market dynamics

    Get PDF
    This paper studies the problem of maximizing the social welfare while stabilizing both the physical power network as well as the market dynamics. For the physical power grid a third-order structure-preserving model is considered involving both frequency and voltage dynamics. By applying the primal-dual gradient method to the social welfare problem, a distributed dynamic pricing algorithm in port-Hamiltonian form is obtained. After interconnection with the physical system a closed-loop port-Hamiltonian system of differential-algebraic equations is obtained, whose properties are exploited to prove local asymptotic stability of the optimal points.Comment: IFAC World Congress 2017, accepted, 6 page

    Stability and Frequency Regulation of Inverters with Capacitive Inertia

    Get PDF
    In this paper, we address the problem of stability and frequency regulation of a recently proposed inverter. In this type of inverter, the DC-side capacitor emulates the inertia of a synchronous generator. First, we remodel the dynamics from the electrical power perspective. Second, using this model, we show that the system is stable if connected to a constant power load, and the frequency can be regulated by a suitable choice of the controller. Next, and as the main focus of this paper, we analyze the stability of a network of these inverters, and show that frequency regulation can be achieved by using an appropriate controller design. Finally, a numerical example is provided which illustrates the effectiveness of the method

    Energy-based analysis and control of power networks and markets:Port-Hamiltonian modeling, optimality and game theory

    Get PDF
    This research studies the modeling, control and optimization of power networks. A unifying mathematical approach is proposed for the modeling of both the physical power network as well as market dynamics. For the physical system, several models of varying complexity describing the changes in frequency and voltages are adopted. For the electricity market, various dynamic pricing algorithms are proposed that ensure a optimal dispatch of power generation and demand (via flexible loads). Such pricing algorithms can be implemented in real-time and using only local information that is available in the network (such as the frequency). By appropriately coupling the physical dynamics with the pricing algorithms, stability of the combined physical-economical system is proven. This in particular shows how real-time dynamic pricing can be used as a control method to achieve frequency regulation and cost efficiency in the network
    corecore