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1

Chapter 1

Introduction

The electrical power network is one the most complex and important technical
creations that we know. However, provisioning energy has become increasingly
complicated due to several reasons, including the increased share of renewables.
For example, in the Irish power grid, which has a high penetration of wind power,
“only” up to the 65% of generation is allowed from renewable energy sources based
on a comprehensive stability analysis [72]. One of the main challenges presented by
significant renewable penetration is their intermittency. Consequently, the large-
scale introduction of renewable energy sources will enhance the need for not only
the flexibility of conventional power plants but also the flexibility of the demand
side. Using the load as an additional degree of freedom is not entirely new but
affordable global communication infrastructure and embedded systems make it
now possible to add a certain portion of “smart” to the loads. Therefore, demand
side management receives increasing attention by research and industry [78].
However, the coordination of both power generation and consumption requires
novel control algorithms which enable a fair sharing of respectively costs and
utilities, and to keep the system stable. In particular, from a network perspective,
capacity management is essential to maintain frequency and voltage stability
throughout the system. Furthermore, the design of these new control algorithms
to stabilize the network and to let it function near its capacity limits also requires
a deep understanding of the physical power network and its components.

In this research, we develop a unifying approach for the modeling, analysis
and control of smart grids based on energy functions. Since energy is the main
quantity of interest in power networks, this is a natural approach to deal with
the problem. The underlying mathematical framework is based on the theory of
port-Hamiltonian systems [76, 117]. This approach is based on modeling multi-
physical systems by the energy flows between the components (via ports) in the
network and utilizes energy functions (also called Hamiltonians) for representing
the energy storage in the individual elements. Since energy is the lingua franca
between all different physical domains [50], this approach allows us to view different
electrical and mechanical components of the smart grid from the same perspective.
Furthermore, as energy is a scalar quantity, this provides an insightful starting
point for dealing with general stability issues.



2 Chapter 1. Introduction

1.1 Welfare maximization and grid stability

The flexibility on the demand and supply side has to be coupled with economic
criteria. This includes determining how the supply of energy should be allocated
between the providers to decrease operation costs and, similarly, how power
available from renewables should be shared among the different consumers in such
a way that the overall economic utility is maximized. Dynamic pricing has been
identified as an effective approach to deal with these aspects and for the power
network it was already studied a few decades ago [2]. However, many existing
dynamic pricing algorithms neglect the physical constraints and dynamics of the
grid. The aim in this thesis is to fill this gap by proposing a unifying framework in
which the two aspects (physical modeling based on energy functions on one hand,
and dynamic pricing on the other hand) are merged. This provides a natural
setting where smart grids can be analyzed and new control algorithms can be
designed allowing for economic efficiency and coping with potential instabilities
resulting from the intermittency and uncertainty in renewable generation.

Designing control algorithms for power networks modeled in an energy-based
port-Hamiltonian form can be guided by intuitive physical considerations. In
particular, control algorithms for the grid must be distributed, namely they must
use measured quantities that are available locally at the place where the control
algorithm is running. Hence, it is important that the mathematical model includes
explicitly the topology of the network. Port-Hamiltonian models naturally do so.
The aim with dynamic pricing algorithms is to steer the system to an equilibrium
that corresponds to the optimal social welfare. This mechanism can be viewed
as an “energy-balancing” control which is at the core of many control design
techniques for port-Hamiltonian systems [62, 76]. Hence, the port-Hamiltonian
framework also lends itself to modeling the economic aspects involved in the control
of smart grids.

A large part of the research in this thesis focuses on the use of this integrated
physical-economical model of the smart grid to design distributed controllers that
achieve stability of the network along with (constrained) social welfare maximiza-
tion. As a first step, the social welfare will be modeled via the introduction
of suitable utility and cost functions. To increase the use of renewable energies
despite the uncertainty related with their availability, prices, or related control
variables that admit such an interpretation, will be used in real-time to match the
demand and supply, and also to route the power flow in an optimal manner.

1.2 Competitive real-time electricity markets

There are also other challenges in the design of real-time market mechanisms
for control purposes. For example, as there may be an inherent uncertainty in
allowing producers and consumers to react to price signals, stability of the grid
may be compromised and can lead to a volatile market [83, 85, 86]. These aspect
have to be taking into account in the design of new market architectures. The
selfish behavior of market players can also affect the market equilibrium, such as
in Cournot competition [51], with a loss of global efficiency as a result. Therefore,
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we should also bear in mind the competitive nature of electricity markets and thus
study this game-theoretic aspect.

For example, what would happen if prosumers do not act as price-takers
(which is commonly assumed in the literature) but instead as price-setters? In its
simplest form such behavior is analyzed by a model describing the competition in
prices which is often termed Bertrand competition in the economic literature. For
power systems, in [24] a market architecture is proposed where distributed energy
resources can cooperate under an aggregator while the aggregators compete among
each other in such a price-competition. There it was shown how market players
reach a cost efficient equilibrium in which each player is not willing to deviate from
(this is often called a Nash equilibrium). We proceed along similar lines with the
addition that we also take into account the physical frequency deviation, bringing
the market close to real-time operation.

1.3 Contributions

In this section we briefly state the main contributions of this thesis, and more
details are stated in the introductions of each individual part of this dissertation.

The key contribution in part I of this thesis consists of the port-Hamiltonian
modeling of multi-machine systems with varying order of complexity. In partic-
ular, by showing that the energy functions of the reduced order models indeed
correspond to the first-principle model, port-Hamiltonian representations of the
6th, 3rd and 2nd-order models are obtained, which clearly reveal the nontrivial
interconnection and damping structure of these systems. Moreover, by verifying
that the models are dissipative, shifted passivity of these systems is shown. This
allows these systems to be steered towards a nontrivial equilibrium in a convenient
manner as shown in parts II and III.

Part II shows that market dynamics in the form of real-time dynamic pricing
can also be cast in the port-Hamiltonian framework. We show that (distributed)
dynamic pricing algorithms are obtained by applying a continuous-time gradient
algorithm to a social welfare maximization problem. We establish the shifted
passivity property of such systems and prove its convergence to an optimizer
under milder assumptions compared to the existing literature. One of the key
contributions is the interconnection of dynamics pricing algorithms with the
physical dynamics in a passivity preserving manner, achieving both frequency
regulation and optimal power sharing. For the underlying social welfare problem
we consider the power balance, nodal power constraints, line congestion and
transmission costs. For the physical system we considered not only the 2nd-
order swing equations, but also the 3rd-order (network-reduced and structure-
preserving) models and the 6th-order multi-machine model, which are much more
complex than what is considered in the current literature.

In Part III we consider the unique intersection of game theory, power net-
work dynamics and optimization (in the form of an economic dispatch problem)
which has no precedent in the literature. There we propose novel discrete- and
continuous-time frequency-aware bidding mechanisms in which generators are
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involved in a price-competition game. We define the notion of an efficient Nash
equilibrium and show that such equilibrium exists and corresponds to an optimizer
of an economic dispatch problem. By using the frequency as a feedback signal in
the negotiation process, the bidding scheme is coupled with the physical swing
equations. Our contribution is to show that the closed-loop system is (input-
to-state) stable, and that convergence to an efficient Nash equilibrium, economic
dispatch and zero frequency deviation is achieved.

1.4 Outline of this thesis

This thesis consists of three parts, studying respectively (i) the modeling of power
networks, (ii) its integration with and design of welfare maximizing (market-based)
controllers, and (iii) the competitive aspect of electricity markets. The first part of
this thesis focuses on the port-Hamiltonian modeling of multi-machine networks,
with specific attention to synchronous machine modeling. In particular, the
derivation of different synchronous machine models with varying complexity and
accuracy is discussed together with the underlying assumptions and limitations.
Furthermore, energy characteristics of the different models are discussed and their
port-Hamiltonian representations are derived from this. This chapter has partly
a tutorial value but mainly highlights the effectiveness of the port-Hamiltonian
framework for the analysis of these complex multi-physics models.

The second and main part of this thesis focuses on the optimization and
control of power networks. In particular, we consider several variations of the
social welfare problem formulated as a mathematical optimization problem. We
start with the simplest optimization problem only considering the power balance
constraint in Chapter 3, resulting in a centralized control algorithm based on the
so-called primal-dual gradient algorithm. In Chapter 4 a distributed version of
this controller is designed and a comparison made with an alternative consensus-
based control architecture. Later extend the primal-dual based control design in
Chapter 5 to include generator limits, line constraints and transmission costs in
the optimization problem. On the physical side we also consider several variations
including the classical swing equations (Chapter 3) and the 3rd-order model for
the power network (Chapter 5). In addition, we consider structure-preserving
models where a distinction is made between generator and load nodes (Chapter 6)
and we also show that high-order multi-machine models lend themselves for the
interconnection with passive (consensus-based) control algorithms (Chapter 7).
Finally, Chapter 8 focuses on the stability properties of primal-dual dynamics
of general convex optimization problems, while relaxing the strict convexity
assumptions for the convergence of the associated projected dynamical system.

The third part of this thesis takes into account the competitive nature of the
electricity market. The chapters that are presented in this part have been the result
of a fruitful 3-month collaboration with the University of San Diego, California.
Here we merged our approach adopted in part II of the thesis with their work on
iterative bidding in electricity markets. This allows us to show how frequency-
aware iterative bidding leads to optimal power dispatch, a state that corresponds
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to a Nash equilibrium and to frequency regulation. In the first chapter of part
III (Chapter 9) we focus on continuous-time bid update schemes and frequency
dynamics and analyze in more detail the game-theoretic framework. In Chapter
10 we discretize the bidding algorithm resulting in a hybrid system with discrete
updates in the bidding mechanism and continuous-time swing dynamics of the
physical system. We also establish bounds on the inter-event times that guarantee
the convergence of the closed-loop hybrid system.

1.5 List of publications

Journal papers:

• T.W. Stegink, C. De Persis, A.J. van der Schaft. “An energy-based analysis
of reduced-order models of (networked) synchronous machines.” Mathemati-
cal and Computer Modelling of Dynamical Systems, under review. (Chapter
2)

• T.W. Stegink, C. De Persis, A.J. van der Schaft. “A unifying energy-
based approach to stability of power grids with market dynamics.” IEEE
Transactions on Automatic Control 62.6 (2017): 2612-2622. (Chapter 5)

• A.J. van der Schaft, T.W. Stegink. “Perspectives in modeling for control of
power networks.” Annual Reviews in Control 41 (2016): 119-132.

• T.W. Stegink, A. Cherukuri, C. De Persis, A.J. van der Schaft, J. Cortés.
“Frequency-driven market mechanisms for optimal dispatch in power net-
works.” IEEE Transactions on Automatic Control, under review. (Chapter
9)

• T.W. Stegink, A. Cherukuri, C. De Persis, A.J. van der Schaft, J. Cortés.
“Hybrid interconnection of iterative bidding and power network dynam-
ics for frequency regulation and optimal dispatch.” IEEE Transactions
on Control of Network Systems, to be published, 16 July 2018, DOI:

10.1109/TCNS.2018.2856404. (Chapter 10)

Conference papers:

• T.W. Stegink, C. De Persis, A.J. van der Schaft. “Port-Hamiltonian formu-
lation of the gradient method applied to smart grids.” IFAC-PapersOnLine
48.13 (2015): 13-18. (Chapter 3)

• T.W. Stegink, C. De Persis, A.J. van der Schaft. “Stabilization of structure-
preserving power networks with market dynamics.” IFAC-PapersOnLine
50.1 (2017): 6737-6742. (Chapter 6)

• T.W. Stegink, C. De Persis, A.J. van der Schaft. “A port-Hamiltonian
approach to optimal frequency regulation in power grids.” 54th IEEE Annual
Conference on Decision and Control (CDC), 2015. pp. 3224-3229 (Chapter
4)
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• T.W. Stegink, C. De Persis, A.J. van der Schaft. “Optimal power dispatch
in networks of high-dimensional models of synchronous machines.” IEEE
55th Annual Conference on Decision and Control (CDC), 2016. (Chapter 7)

• T.W. Stegink, T. Van Damme, C. De Persis, “Convergence of projected
primal-dual dynamics with applications in data centers.” 7th IFAC Work-
shop on Distributed Estimation and Control in Networked Systems (NecSys),
2018. (Chapter 8)

• T.W. Stegink, A. Cherukuri, C. De Persis, A.J. van der Schaft, J. Cortés.
“Stable interconnection of continuous-time price-bidding mechanisms with
power network dynamics.” Proceedings of the 20th Power Systems Compu-
tation Conference (PSCC), 2018. (Chapter 9)

• T.W. Stegink, A. Cherukuri, C. De Persis, A.J. van der Schaft, J. Cortés.
“Integrating iterative bidding in electricity markets and frequency regula-
tion.” American Control Conference (ACC), 2018, pp. 6182-6187. (Chapter
10)

• P. Monshizadeh, C. De Persis, T.W. Stegink, N. Monshizadeh, A.J. van der
Schaft. “Stability and Frequency Regulation of Inverters with Capacitive
Inertia.” IEEE 56th Annual Conference on Decision and Control (CDC),
2017.

1.6 Notation

For A ∈ Rm×n, we let ‖A‖ denote the induced 2-norm. Given v ∈ Rn, A = AT ∈
Rn×n, we denote ‖v‖2A := vTAv. Given a symmetric matrix A ∈ Rn×n, we write
A > 0 (A ≥ 0) to indicate that A is a positive (semi-)definite matrix. The set of
positive real numbers is denoted by R>0 and likewise the set of vectors in Rn whose
elements are positive by Rn>0. For u, v ∈ Rn we write u ⊥ v if uT v = 0. We use the
compact notational form 0 ≤ u ⊥ v ≥ 0 to denote the complementarity conditions
u ≥ 0, v ≥ 0, u ⊥ v. The notation 1 ∈ Rn is used for the vector whose elements are
equal to 1. Given a twice-differentiable function f : Rn → Rn then the Hessian
of f evaluated at x is denoted by ∇2f(x). We use the notation sin(.), cos(.)
for the element-wise sine and cosine functions respectively. Given a differentiable
function f(x1, . . . , xN ), xi ∈ Rni , then ∇f(x1, . . . , xN ) denotes the gradient of f
evaluated at x1, . . . , xN and likewise ∇xif(x1, . . . , xN ) = ∂f

∂xi
(x1, . . . , xN ) denotes

the gradient of f with respect to xi. Given a solution x of ẋ = f(x), where
f : Rn → Rn is a Lebesgue measurable function and locally bounded, the omega-
limit set (or just limit set) Ω(x) is defined as [26]

Ω(x) :=
{
x̄ ∈ Rn | ∃{tk}∞k=1 ⊂ [0,∞) with lim

k→∞
tk =∞ and lim

k→∞
x(tk) = x̄

}
.

We use the notation Im for the set {1, . . . ,m}. For vectors u ∈ Rn, v ∈ Rm,
we interchangeably write (u, v) = col(u, v) = [ uv ] and likewise for three or more
vectors.
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1.7 Preliminaries

In this section we state some preliminaries on dynamical systems, convex opti-
mization and game theory that are used in the development of various results
appearing in this thesis.

1.7.1 Nonlinear systems

Stability of autonomous systems

Let us consider the system

ẋ = f(x) (1.1)

with x ∈ Rn and locally Lipschitz function f : Rn → Rn. We assume that x̄ is an
equilibrium of (1.1), i.e. f(x̄) = 0 ∈ Rn, unless specified otherwise. Often, we are
interested in the stability of such an equilibrium.

Definition 1.7.1 (Lyapunov stability). An equilibrium x̄ of system (1.1) is called
Lyapunov stable, if for any ε > 0 there exists a δ > 0 such that given a solution
x(t) to the system, ‖x(0)− x̄‖ < δ implies that ‖x(t)− x̄‖ < ε for all t ≥ 0.

Lyapunov stability of an equilibrium is guaranteed by the existence of a
Lyapunov function which we define next.

Definition 1.7.2 ((local) Lyapunov function). Let 0 ∈ Rn be an equilibrium of
(1.1). Let V : D → R be a continuously differentiable function on the domain
D ⊂ Rn, {0} ∈ D. Then V is called a local Lyapunov function if

1. V (x) ≥ 0 for all x ∈ D where equality holds if and only if x = 0.

2. d
dtV (x) = (∇V (x))T f(x) ≤ 0 for all x ∈ D.

If D = Rn, then V is called a (global) Lyapunov function. If item 2 holds strictly
for all x ∈ D, x 6= 0, we say that V is a strict (local) Lyapunov function.

In many cases, one is also interested in the attractivity of an equilibrium.

Definition 1.7.3 (Asymptotic stability). An equilibrium x̄ of system (1.1) is
called asymptotically stable if it is Lyapunov stable and there exists δ > 0 such
that if ‖x(0)− x̄‖ < δ, then limt→∞ ‖x(t)− x̄‖ = 0.

Next, we state the classical Lyapunov stability theorem.

Theorem 1.7.4 (Lyapunov stability theorem [56]). Let x̄ = 0 be an equilibrium
of (1.1) let V be a Lyapunov function with domain D ⊂ Rn, such that {0} ∈ D.
Then x̄ is (Lyapunov) stable. Moreover, if V is a strict Lyapunov function, then
x̄ is (locally) asymptotically stable.

Often it is difficult to find a strict Lyapunov function for a system and one can
only construct a (nonstrict) Lyapunov function. The following lemma can help in
determining the asymptotic behavior of a nonlinear system.
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Proposition 1.7.5 (LaSalle’s invariance principle [91]). Let Ψ be a positive
invariant set of (1.1), i.e., x(0) ∈ Ψ implies x(t) ∈ Ψ for all t ≥ 0. Suppose
that every solution starting in Ψ converges to a set E ⊂ Ψ and let M be the largest
invariant set contained in E. Then, every bounded solution starting in Ψ converges
to M as t→∞.

When used together with the existence of a Lyapunov function we obtain
following stability result.

Proposition 1.7.6 ((Pointwise) asymptotic convergence). Let X̄ = f−1(0) 3 0
be the set of equilibria of (1.1) and suppose it admits a local Lyapunov function
V with domain D 3 {0}. Suppose furthermore that there exists a sublevel set
Υ = {x : V (x) ≤ c ∈ R>0} ⊂ D of V around the origin. Then each trajectory of
(1.1) initialized in Υ converges to the largest invariant set M contained in

E := {x ∈ Υ | (∇V (x))T f(x) = 0}.

If furthermore each point in M is Lyapunov stable, then this trajectory converges
to a point in M [42].

(Shifted) passivity of nonlinear systems

Above we considered autonomous systems. Now we will consider dynamical
systems with inputs and outputs. These are written in the form

ẋ = f(x, u)

y = h(x, u)
(1.2)

with state x ∈ Rn, input u ∈ Rm, y ∈ Rm. An important property of such systems
is passivity which is closely related to stability.

Definition 1.7.7 (Passivity [117]). We say that system (1.2) with x ∈ D is
passive if there exists a differentiable storage function V : D → R≥0 satisfying the
differential dissipation inequality [117]

d

dt
V (x(t)) = (∇V (x(t)))T f(x(t), u(t)) ≤ (u(t))T y(t) (1.3)

along all solutions x(.) corresponding to input functions u(.).

For physical systems, the right-hand side of (1.3) is usually interpreted as the
supplied power, and V (x) as the stored energy of the system when being in state x.
Most systems considered in this thesis admit another more useful property called
shifted passivity, sometimes also referred to as equilibrium-independent passivity
[45].

Definition 1.7.8 (Shifted passivity). The system (1.2), with x ∈ D, is shifted
passive if there exists a differentiable storage function V : D → R≥0 satisfying the
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differential dissipation inequality

d

dt
V (x(t)) = (∇V (x(t)))T f(x(t), u(t)) ≤ (u(t)− ū)T (y(t)− ȳ)

for all (x̄, ū, ȳ) such that f(x̄, ū) = 0, ȳ = h(x̄, ū), x̄ ∈ D and for all solutions x(.)
corresponding to input functions u(.).

Port-Hamiltonian systems

We refer to (1.2) as an (input-state-output) port-Hamiltonian system if it can be
written in the form

ẋ = (J(x)−R(x))∇H(x) + g(x)u

y = g(x)T∇H(x)

for some skew-symmetric matrix J(.) ∈ Rn×n, symmetric positive semi-definite
matrix R(.) ∈ Rn×n, matrix g(.) ∈ Rn×m and (strictly) convex Hamiltonian H :
Rn → R. The matrices J,R are often referred to as the interconnection and
damping matrix respectively because these reflect the energy routing and energy
dissipation structure of a system. By construction, port-Hamiltonian systems are
passive using the Hamiltonian as the storage function.

Incrementally port-Hamiltonian systems

In a large part of this thesis, we consider systems that can be written in the form

ẋ = (J −R)∇H(x) + g1u+ g2eR

y = gT1 ∇H(x)

fR = gT2 ∇H(x),

eR = ∇S(fR)

(1.4)

with J = −JT ∈ Rn×n, 0 ≤ R = RT ∈ Rn×n, g1 ∈ Rn×m, g2 ∈ Rn×p where
S : Rp → R is continuously differentiable concave function. We will refer to such
a system as an incrementally port-Hamiltonian system although the definition
adopted in [117] is for systems in a more general form. In particular, (1.4) admits
the following maximal monotone relationship (more details are found in [117])

(eR1 − eR2)T (fR1 − fR2) ≤ 0

for all eR1 , fR1 , eR2 , fR2 ∈ Rp that satisfy (1.4). Under some mild assumptions this
allows us to show that the system (1.4) is shifted passive.
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Proposition 1.7.9 (System (1.4) is shifted passive). Let (x̄, ū, ȳ) and (ēR, f̄R)
satisfy (1.5) and suppose that ∇2H(x̄) > 0.

0 = (J −R)∇H(x̄) + g1ū+ g2ēR

ȳ = gT1 ∇H(x̄)

f̄R = gT2 ∇H(x̄),

ēR = ∇S(f̄R)

(1.5)

Then (1.4) is shifted passive with respect to input-output pair (u − ū, y − ȳ). In
particular, its (local) storage function is given by the shifted Hamiltonian

H̄(x̄) := H(x)− (x− x̄)T∇H(x̄)−H(x̄). (1.6)

1.7.2 Convex optimization and game theory

Mathematically, an optimization problem is defined by

minimize
x

f(x)

subject to x ∈ X
(1.7)

where f : X → R is called the objective function, X is the set of feasible solutions
and x is often referred to as a primal variable. The aim is to find x̄ ∈ X that
minimizes the objective function f , i.e., f(x̄) ≤ f(x),∀x ∈ X . In this thesis
we assume that X ⊂ Rn and X is a closed and convex set, and that f is a
continuously differentiable convex function. In such a case (1.7) is referred to as
a convex optimization problem. In many applications, the feasibility set has an
explicit form given by

X = {x ∈ Rn | Ax = b, gi(x) ≤ 0, i = 1, . . . , q},

where A ∈ Rm×n, b ∈ Rm, and gi : Rn → R, i = 1, . . . , q are continuously differen-
tiable convex functions. Without loss of generality we assume that ker(AT ) = {0},
implying that the equality constraints formed by Ax = b are linearly independent.
Using this explicit form of the feasibility set, the minimization problem (1.7) can
also be written as

minimize
x

f(x) (1.8a)

subject to Ax = b (1.8b)

g(x) ≤ 0 (1.8c)

where we use the notation g(x) = col(g1(x), . . . , gq(x)) and the inequality (1.8c)
holds element-wise.

As mentioned before, the quantity x is referred to as the primal variable of
(1.8). The dual variables of (1.8) are often introduced via the Lagrangian function.
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Definition 1.7.10 (Lagrangian function). The Lagrangian function of (1.8) is

L(x, λ, µ) = f(x) + λT (Ax− b) + µT g(x)

where λ, µ are referred to as Lagrange multipliers or dual variables of (1.8).

Using the definition of the Lagrangian, we can formulate the so-called dual
problem associated with (1.8).

Definition 1.7.11 (Dual problem). The dual problem of (1.8) is

maximize g(λ, µ) (1.9a)

subject to µ ≥ 0 (1.9b)

where

g(λ, µ) := inf
x
L(x, λ, µ) = inf

x
(f(x) + λT (Ax− b) + µT g(x)).

Definition 1.7.12 (Primal-dual optimizer). A triple (x∗, λ∗, µ∗) is a primal-dual
optimizer if x∗ is an optimizer of the primal problem (1.8) and (λ∗, µ∗) is an
optimizer of the dual problem (1.9).

It is a standard result that for any primal-dual optimizer (x∗, λ∗, µ∗) we have
g(λ∗, µ∗) ≤ f(x∗) which is often referred to a weak duality. In case equality holds,
we speak of strong duality. This condition is guaranteed by the refined Slater’s
condition.

Definition 1.7.13 (Refined Slater’s condition). There exists x ∈ Rn such that

Ax = b

gi(x) ≤ 0 if gi(.) is an affine function

gi(x) < 0 if gi(.) is not an affine function
, i = 1, . . . , q.

Proposition 1.7.14 (Strong duality). Strong duality holds if (the refined) Slater’s
condition is satisfied.

When strong duality holds, optimality of both the primal and dual problem can
be verified by the first-order optimality conditions called the Karush-Kuhn-Tucker
(KKT) conditions.

Proposition 1.7.15 (KKT optimality conditions [13]). Suppose (the refined)
Slater’s condition holds. Then (x∗, λ∗, µ∗) is a primal-dual optimizer if and only
if it satisfies the KKT optimality conditions

∇f(x∗) +ATλ∗ + (∇g(x∗))Tµ∗ = 0

Ax∗ = b

0 ≥ g(x∗) ⊥ µ∗ ≥ 0.
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Game theory

A game is defined as a tuple (S,A,Π) where [9]

• S = In = {1, . . . , n} is the set of players

• A = {a | a = (a1, . . . , an), ai ∈ Ai, i ∈ In} is the set of action profiles

• Π = (Π1, . . . ,Πn),Πi : A → R, i ∈ In is the set of the player payoff functions.

Often, the action profile (a1, . . . , an) is written as (ai, a−i) where a−i is the action
profile of all players except i. A Nash equilibrium of a game is defined as follows.

Definition 1.7.16 (Nash equilibrium [9]). The action profile (a∗1, . . . , a
∗
n) ∈ A is

a Nash equilibrium if none of the players gain anything by deviating from it, i.e.,

Π(ai, a
∗
−i) ≤ Π(a∗i , a

∗
−i), ∀ai ∈ Ai,∀i ∈ In.

In many application the set of action profiles can be further specified. In this
thesis, the action space of each player assumed to be a subset of R, i.e. Ai ⊂ R.
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Part I

Modeling of power networks
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Introduction

An electrical power system consists of many individual elements connected to-
gether to form a large, complex and dynamic system capable of generating,
transmitting and distributing electrical energy over a large geographical area.
Because of this interconnection of elements, a large variety of dynamic interactions
are possible. Some of these interactions affect only some elements in the network,
while others may affect part of the system or the system as a whole. Power system
dynamics can be conveniently divided into groups characterized by their cause,
consequence, time scale, physical character or the place in the system where they
occur [67].

The aim of this part of the thesis is to revisit some of the existing modeling
techniques (e.g. from [61, 67]) and develop a comprehensive model structure
that reflects the essential features and dynamics of power networks and at the
same time is easily extendable to various levels of complexity and accuracy. In
particular, our focus will be on different models of synchronous machines and
their interconnection with the (transmission) network. Synchronous generators
used in coal power plants, gas turbines but also in large hydro power plants
still form a principal source of electric energy in power systems. In addition,
many large loads are driven by synchronous motors. These devices operate on
the same principle and are often referred to as synchronous machines. The
problem of power system stability is mainly concerned with keeping interconnected
synchronous machines in synchronism. In fact, the rotor of a synchronous machine
is effectively a flywheel whose inertia is crucial to compensate for fluctuations
and disturbances, such as load and generation variations, in a time-scale up to
the order of 5 s [72]. In particular this allows synchronous machines to tolerate a
temporary power imbalance in the network. Needless to say that an understanding
of their characteristics and accurate modeling of their dynamics are of fundamental
importance to the study of power system stability [67].

The quantity that all power system components (e.g. synchronous machines,
transmission lines etc.) have in common is energy. It is therefore natural to
take this quantity as a starting point for modeling the power system components
by their main physical and unifying characteristics: energy storage, energy dissi-
pation, energy routing, and energy supply. We will employ the well-established
network modeling approach of port-Hamiltonian systems as the starting point
for a scalable modeling of power systems. A key property of the mathematical
theory of port-Hamiltonian systems is its modularity. This means that the
interconnection of port-Hamiltonian systems results in another port-Hamiltonian
system with composite energy, dissipation, and interconnection structure. Based
on this principle, the power system components are modeled individually the
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model of the overall system is constructed by interconnecting the submodels. This
naturally allows new components to be locally added or modified without the need
for global changes of the model, ensuring easy scalability. A motivating starting
point for building up a systematic and scalable port-Hamiltonian framework for
the modeling of power systems is the work presented in [37], where a synchronous
generator that is interconnected with a resistive load through a transmission line
is systematically modeled and studied using the port-Hamiltonian framework.
First the models of the individual components are modeled as port-Hamiltonian
subsystems and are then combined to yield a global port-Hamiltonian model.

For the generator-line-load system studied in [37], a Lyapunov stability analysis
based on the energy flow is performed. This simplified stability analysis already
provides valuable insights into the main difficulties of a general stability analysis.
Also other works, for example [122], show that proving stability considering a first-
principle model for the synchronous generator can be challenging, in particular
for multi-machine networks [21]. On the other hand, for many stability studies
one is only interested in particular aspect of the electromechanical dynamics,
for example the operation around the synchronous frequency. This allows to
make simplifications to the more complicated multi-machine models presented in
e.g. [21, 37, 122] while still capturing the essential nonlinear behavior of power
networks.

However, many frequency stability studies use the classical model described
by the so-called swing equations for which the dynamics at each bus is described
by a second-order model, see e.g. [19, 64, 131], and is often considered to be
a oversimplified model of the power network dynamics [22, 73]. Therefore, we
will focus on dynamical models that are much more complex and accurate than
the swing equations. For example, we will consider models in which also (high
order) voltage dynamics are explicitly considered. However, this points to the
need for a thorough study of the relation between different port-Hamiltonian
models at different levels of abstraction. In particular, this raises the question
what the relation of the energy characteristics is between the swing equations and
the available higher-order generator models, like the one studied in [21, 37]. This
will be the focus of Chapter 2.
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Chapter 2

Port-Hamiltonian modeling of
networked synchronous machines

Abstract: Stability of power networks is an increasingly important topic because
of the high penetration of renewable distributed generation units. This requires
the development of advanced (typically model-based) techniques for the analysis
and controller design of power networks. Although there are widely accepted
reduced-order models to describe the dynamic behavior of power networks, they are
commonly presented without details about the reduction procedure, hampering the
understanding of the physical phenomena behind them. The present chapter aims
to provide a modular model derivation of multi-machine power networks. Starting
from first-principle fundamental physics, we present detailed dynamical models of
synchronous machines and clearly state the underlying assumptions which lead to
some of the standard reduced-order multi-machine models, including the classical
second-order swing equations. In addition, the energy functions for the reduced-
order multi-machine models are derived from the full-order model. We show that,
for purely inductive networks, these energy functions can be used to represent
the multi-machine systems as port-Hamiltonian systems. Moreover, the systems
are proven to be passive with respect to their steady states, which allows for a
power-preserving interconnection with other passive components, including passive
controllers. As a result, the corresponding energy function or Hamiltonian can
be used to provide a rigorous stability analysis of advanced models for the power
network without having to linearize the system.
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2.1 Introduction

The control and stability of power networks has become increasingly challenging
over the last decades. As renewable energy sources penetrate the grid, the
conventional power plants have more difficulty in keeping the frequency around
the nominal value, e.g. 50 Hz, leading to an increased chance of network failures
or, in the worst case, even blackouts.

The current developments require a sophisticated stability analysis of more
advanced models for the power network as the grid is operating more frequently
near its capacity constraints. For example, using high-order models of synchronous
machines that better approximate the actual system allows us to establish results
on the stability of power networks that are more reliable and accurate.

However, in much of the recent literature, a rigorous stability analysis has been
carried out only for low-order models of the power network which have a limited
accuracy. For models of intermediate complexity the stability analysis has merely
been done for the linearized system [3, 67]. Hence, a novel approach is required to
make a profound stability analysis of these more complicated models possible.

In this chapter, we propose a unifying energy-based approach for the modeling
and analysis of multi-machine power networks which is based on the theory of
port-Hamiltonian systems. Since energy is the main quantity of interest, the port-
Hamiltonian framework is a natural approach to deal with the problem [117].
Moreover, it lends itself to deal with large-scale nonlinear multi-physics systems
like power networks [37, 105–107].

Literature review

The emphasis in the present chapter lies on the modeling and analysis of (net-
worked) synchronous machines since they have a crucial role in the stability of
power networks as they are the most flexible and have to compensate for the
increased fluctuation of both the supply and demand of power. An advanced
model of the synchronous machine is the first-principles model which is derived in
many power-engineering books [4, 61, 67], see in particular [67, Chapter 11] for a
detailed derivation of the model.

Modeling the first-principles synchronous (multi-)machine model using the
theory of port-Hamiltonian systems has been done previously in [37]. However, in
this work, stabilization of the synchronous machine to the synchronous frequency
could not be proven. In [21] a similar model for the synchronous machine is used,
but with the damper windings neglected. Under some additional assumptions,
asymptotic stability of a single machine is proven using a shifted energy function.
However, such a stability result could not be proven for multi-machine systems.

Summarizing, the complexity of the full-order model of the synchronous ma-
chine makes a rigorous stability analysis troublesome, especially when considering
multi-machine networks, see also [75]. Moreover, it is often not necessary to
consider the full-order model when studying a particular aspect of the electrome-
chanical dynamics such as the operation around the synchronous frequency [67].



2.1. Introduction 19

On the other side of the spectrum, much of the literature using Lyapunov
stability techniques rely on the second-order (non)linear swing equations as the
model for the power network [38, 64, 67, 71, 77, 92, 131, 135] or the third-order
model as e.g. in [113]. For microgrids similar models are considered in which a
Lyapunov stability analysis is carried out [32, 33]. However, the models are often
presented without stating the details on the model reduction procedure or the
validity of the model. For example, the swing equations are inaccurate and only
valid on a specific time scale up to the order of a few seconds so that asymptotic
stability results have a limited value for the actual system [4, 22, 61, 67].

Hence, it is appropriate to make simplifying assumptions for the full-order
model and to focus on multi-machine models with intermediate complexity which
provide a more accurate description of the network compared to the second- and
third-order models [4, 61, 67]. However, in the present literature the stability
analysis of intermediate-order multi-machine models is only carried out for the
linearized system [3, 4, 61, 67]. In particular, in [3] a fourth-order model for the
synchronous machine is considered which is coupled with market dynamics and
the stability is analyzed by examining the eigenvalues of the linearized system.
Consequently, the stability results are only valid around a specific operating point.
This highlights the need for new analytical tools to make it possible to state more
general rigorous statements regarding the stability of complex models of power
networks.

Contributions

The main contribution of this chapter is establishing a unifying energy-based
analysis of intermediate-order models of (networked) synchronous machines. In
doing so, we first explain how these intermediate-order models are obtained from
the first-principles model and highlight what the underlying assumptions are, and
then how these synchronous machine are coupled through inductive lines. This
part has a tutorial value where we follow the lines of [67], in which a detailed
derivation of the reduced-order models is given. This forms the foundation of
our second contribution which is the systematic procedure to obtain the energy
functions of the reduced order multi-models. In particular, we show how the energy
functions of the reduced order models are obtained from the first-principles model,
which is represented in a very different a coordinate system, and that these energy
functions contain a common factor which is often ignored in power system stability
studies.

Another key contribution is that, building on the expression of the energy func-
tions (or Hamiltonians), port-Hamiltonian representations of various synchronous
machine models are obtained which include the full-order model as well as the
6th, 3rd, and classical 2nd order models. In particular, this reveals the sparse but
nontrivial interconnection and damping structures of these systems, having the
complexity mainly appearing in the expression of the Hamiltonian. Specifically for
the 6th order model, we show that the system is dissipative by explicitly proving
that the dissipation matrix is positive definite which is far from trivial.
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Finally, by exploiting the specific structure of the port-Hamiltonian systems
(state-independent interconnection and damping structure), shifted passivity of
the reduced order multi-machine models is proven. To the author’s best knowledge,
such shifted passivity has not been established for these intermediate (4,5,6-)order
models. In particular, this allows to consider a nonlinear sixth-order multi-machine
model, having a quite accurate description of the power network dynamics, while
permitting a rigorous (Lyapunov-based) stability analysis of nontrivial equilibria.
This is in contrast with the current literature which mainly relies on linearization
techniques for the stability analysis of such complex systems.

Outline

The remainder of the chapter is structured as follows. First we state the
preliminaries in Section 2.2. Then in Section 2.3 the full-order first-principles
model is presented and its port-Hamiltonian form is given. The model reduction
procedure is discussed in Section 2.4 in which synchronous machine models of
intermediate order are obtained. In Section 2.5 these models are used to establish
multi-machine models, including the sixth, third and classical second-order model.
Then in Section 2.6 energy functions of the reduced order models are derived, which
in Section 2.7 are used to put the multi-machine models in port-Hamiltonian form.
Finally, Section 2.8 discusses the conclusions and possible directions for future
research.

2.2 Preliminaries

2.2.1 Notation

The set of real numbers and the set of complex numbers are respectively defined
by R,C. Given a complex number α ∈ C, the real and imaginary part of are
denoted by <(α),=(α) respectively. The imaginary unit is denoted by j =

√
−1.

Let {v1, v2, . . . , vn} be a set of real numbers, then diag(v1, v2, . . . , vn) denotes the
n× n diagonal matrix with the entries v1, v2, . . . , vn on the diagonal and likewise
col(v1, v2, . . . , vn) denotes the column vector with the entries v1, v2, . . . , vn. Let
f : Rn → R be a twice differentiable function, then ∇f(x) denotes the gradient
of f evaluated at x and ∇2f(x) denotes the Hessian of f evaluated at x. Given
a symmetric matrix A ∈ Rn×n, we write A > 0 (A ≥ 0) to indicate that A is a
positive (semi-)definite matrix.

Power network

We consider a power grid consisting of n buses. The network is represented by a
connected and undirected graph G = (V, E), where the set of nodes, V = {1, . . . , n},
is the set of buses representing the synchronous machines and the set of edges,
E ⊂ V × V, is the set of transmission lines connecting the buses where each edge
{i, j} ∈ E is an unordered pair of two vertices i, j ∈ V. Given a node i, then the
set of neigboring nodes is denoted by Ni := {j | {i, j}) ∈ E}. Let m denote the
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number of edges, arbitrarily labeled with a unique identifier in {1, . . . ,m}. For a
complete list of symbols used in the power network model, we refer to the list of
symbols of this thesis.

2.2.2 The dq0-transformation

An important coordinate transformation used in the literature on power systems
is the dq0-transformation [37, 67] or Park transformation [79] which is defined by

Tdq0(γ) =

√
3

2

cos(γ) cos(γ − 2π
3 ) cos(γ + 2π

3 )
sin(γ) sin(γ − 2π

3 ) sin(γ + 2π
3 )

1√
2

1√
2

1√
2

 . (2.1)

Observe that the mapping (2.1) is orthogonal, i.e., T−1
dq0(γ) = TTdq0(γ). The dq0-

transformation offers various advantages when analyzing power system dynamics
and is therefore widely used in applications. In particular, the dq0-transformation
maps symmetric or balanced three-phase AC signals (see [90, Section 2] for the
definition) to constant signals. This significantly simplifies the modeling and
analysis of power systems, which is the main reason why the transformation (2.1)
is used in the present case. In addition, the transformation (2.1) exploits the fact
that, in a power system operated under symmetric conditions, a three-phase signal
can be represented by two quantities [90].

For example, for a synchronous machine with AC voltage given by V ABC =
col(V A, V B , V C) in the static ABC-reference frame, see Figure 2.1, the dq0-
transformation is used to map this AC voltage to the (local) dq0-coordinates as
V dq0 = col(Vd, Vq, V0) = Tdq0(γ)V ABC. Note that the local dq0-reference is aligned
with the rotor of the machine which has angle γ with respect to the static ABC-
reference frame, see again Figure 2.1. In case more that one synchronous machine
is considered, then the voltage V dq0

j

in local dq0-coordinates of machine j can be
expressed in the local dq0-coordinates of machine i as

V dq0
i

= Tdq0(γi)V
ABCi = Tdq0(γi)V

ABCj = Tdq0(γi)Tdq0(γj)
TV dq0

j

. (2.2)

An analogous expression can be obtained for relation between the currents Idq0
i

,
and Idq0

j

. Here we can verify that

Tdq0(γi)Tdq0(γj)
T =

cos γij − sin γij 0
sin γij cos γij 0

0 0 1


where γij := γi − γj represents the rotor angle difference between synchronous
machines i and j respectively.

2.2.3 Phasor notation

When considering operation around the synchronous frequency, the voltages and
currents can be represented as phasors in the dq-coordinates rotating at the
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Figure 2.1: Schematic illustration of a (salient-pole) synchronous machine [67].

synchronous frequency. We use the following notation for the phasor1 [67]:

V =
√
V 2
q + V 2

d exp
(
j arctan (

Vd
Vq

)
)

= V q + V d = Vq + jVd,

I =
√
I2
q + I2

d exp
(
j arctan (

Id
Iq

)
)

= Iq + Id = Iq + jId,

which is commonly used in the power system literature [67, 90]. Here the bar-
notation is used to represent the complex phasor and we define V q = Vq, V d = jVd
and likewise Iq = Iq, Id = jId for the currents. In this notation, the mapping
between the voltages (and current) from one dq-reference frame to another is given
by

V
dqi

= e−jγijV
dqj

= (cos γij − j sin γij)(V
dqj

q + jV dq
j

d )

= V dq
j

q cos γij + V dq
j

d sin γij + j(V dq
j

d cos γij − V dq
j

q sin γij).
(2.3)

By equating the real and imaginary parts, this exactly corresponds to the trans-
formation (2.2) as expected.

2.3 Full-order model of the synchronous machine

A synchronous machine is a multi-physics system characterized by both mechanical
and electrical variables, i.e., an electromechanical system. Derived from physical
first-principles laws, the dynamics can be described in terms of certain specific
physical quantities such as the magnetic flux, voltages, angles, momenta and
torques. The complete model can be described by a system of ordinary differential
equations (ODE’s) where the flux-current relations are represented by algebraic
constraints. The generator rotor circuit is formed by a field circuit and three
amortisseur circuits, which is divided in one d-axis circuit and two q-axis circuits.

1This is in contrast to [61, 89] where the convention V = Vd + jVq is used.
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The stator is formed by 3-phase windings which are spatially distributed in order
to generate 3-phase voltages at machine terminals. For convenience magnetic
saturation effects are neglected in the model of the synchronous machine. After
applying the dq0-transformation Tdq0(γ) on the ABC-variables with respect to the
rotor angle γ, its dynamics in the dq0-reference frame is governed by the following
9th-order system of differential equations [37, 61, 67]2:

Ψ̇d = −RId −Ψqω − Vd (2.4a)

Ψ̇q = −RIq + Ψdω − Vq (2.4b)

Ψ̇0 = −RI0 − V0 (2.4c)

Ψ̇f = −RfIf + Vf (2.4d)

Ψ̇g = −RgIg (2.4e)

Ψ̇D = −RDID (2.4f)

Ψ̇Q = −RQIQ (2.4g)

γ̇ = ω (2.4h)

Jω̇ = ΨqId −ΨdIq − dω + τ. (2.4i)

Here Vd, Vq, V0 are instantaneous external voltages, τ is the external mechanical
torque and Vf is the excitation voltage. The rotor angle γ, governed by (2.4h),
is taken with respect to the static ABC-reference frame, see also Figure 2.1. The
quantities Ψd,Ψq,Ψ0 are stator winding flux linkages and Ψf ,Ψg,ΨD,ΨQ are the
rotor flux linkages respectively and are related to the currents as [67]

Ψd

Ψf

ΨD

 =

Ld︷ ︸︸ ︷ Ld κMf κMD

κMf Lf LfD
κMD LfD LD

IdIf
ID

 (2.5)

Ψq

Ψg

ΨQ

 =

 Lq κMg κMQ

κMg Lg LgQ
κMQ LgQ LQ


︸ ︷︷ ︸

Lq

IqIg
IQ

 (2.6)

Ψ0 = L0I0, (2.7)

where κ =
√

3
2 , see also the list of symbols at the start of this thesis. Note that

in the dq0-coordinates, the inductor equations can be split up in each of the three
axes, resulting into the three completely independent equations (2.5)-(2.7). For a
physically relevant model, the inductance matrices Ld,Lq ∈ R3×3 are assumed to
be positive definite. An immediate observation from (2.4c) and (2.7) is that the
dynamics associated to the 0-axis is fully decoupled from the rest of the system.
Therefore, without loss of generality, we omit this differential equation in the sequel
and focus solely on the dynamics in the d- and q-axes.

2See in particular [67, Chapter 11] for a detailed derivation of the model (2.4).
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Remark 2.3.1 (Additional damper winding). Many generators, and in particular
turbogenerators, have a solid-steel rotor body which acts as a screen in the q-axis
[67]. It is convenient to represent this by the additional winding in the q-axis
represented by the symbol g, see (2.4e). However, for salient-pole synchronous
generators, this winding is absent. For completeness, both cases are considered in
this chapter.

2.3.1 Port-Hamiltonian representation

Inspired by the work [37], it can be shown that full-order model (2.4) admits a port-
Hamiltonian representation, see [117] for a survey. More specifically, by defining
the state vector x = (Ψd,Ψq,Ψf ,Ψg,ΨD,ΨQ, γ, p), p = Jω, the dq-dynamics of a
single synchronous machine can be written in port-Hamiltonian form as

Ψ̇d

Ψ̇q

Ψ̇f

Ψ̇g

Ψ̇D

Ψ̇Q

γ̇
ṗ


=



−R 0 0 0 0 0 0 −Ψq

0 −R 0 0 0 0 0 Ψd

0 0 −Rf 0 0 0 0 0
0 0 0 −Rg 0 0 0 0
0 0 0 0 −RD 0 0 0
0 0 0 0 0 −RQ 0 0
0 0 0 0 0 0 0 1

Ψq −Ψd 0 0 0 0 −1 −d


∇H(x) +Gu

y = GT∇H(x) =


Id
Iq
If
ω

 , GT =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1

 , u =


Vd
Vq
Vf
τ

 .
(2.8)

where the Hamiltonian is given by the sum of the electrical and mechanical energy:

H(x) = Hd(x) +Hq(x) +Hm(x) =
1

2

Ψd

Ψf

ΨD

T  Ld κMf κMD

κMf Lf LfD
κMD LfD LD

−1 Ψd

Ψf

ΨD


+

1

2

Ψq

Ψg

ΨQ

T  Lq κMg κMQ

κMg Lg LgQ
κMQ LgQ LQ

−1 Ψq

Ψg

ΨQ

+
1

2
J−1p2.

Here the power-pairs (Vd, Id), (Vq, Iq) correspond to the external electrical power
supplied by the generator. In addition, the power-pair (Vf , If ) corresponds to the
power supplied by the exciter to the synchronous machine. Finally, the pair (τ, ω)
is associated with the mechanical power injected into the synchronous machine. As
noted from the port-Hamiltonian structure of the system (2.8), it naturally follows
that the system is passive with respect to the previously mentioned input/output
pairs, i.e.,

Ḣ ≤ VdId + VqIq + VfIf + τω.
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A crucial observation is that the interconnection structure of the port-Hamiltonian
system (2.8) depends on the state x. This property significantly increases the
complexity of a Lyapunov-based stability analysis of equilibria that are different
from the origin, see [21, 37, 70, 119] for more details on this challenge.

2.4 Model reduction of the synchronous machine

To simplify the analysis of (networked) synchronous machines, it is preferable to
consider reduced-order models with decreasing complexity [61, 67, 89]. In this
section we, following the exposition of [67], discuss briefly how several well-known
lower order models are obtained from the first-principles model (2.4). In each
reduction step the underlying assumptions and validity of the reduced-order model
is discussed.

The main assumptions rely on time-scale separation implying that singular
perturbation techniques can be used to obtain reduced-order models [1]. In
particular, in the initial reduction step, this allows the stator windings of the
synchronous machine to be considered in quasi steady state. In [59] this quasi
steady state assumption is validated by the use of iterative time-scale separation.
In doing so, it is assumed that the frequency is around the synchronous frequency3

ωs and that Ψ̇d, Ψ̇q are assumed to be small [67].

Assumption 2.4.1 (Operation around ω ≈ ωs). The synchronous machine is
operating around synchronous frequency (ω ≈ ωs) and in addition Ψ̇d and Ψ̇q are
small compared to −ωΨq and ωΨd which implies[

Vd
Vq

]
≈ −

[
R 0
0 R

] [
Id
Iq

]
+ ωs

[
−Ψq

Ψd

]
. (2.9)

Remark 2.4.2 (Singular perturbation process). It is known that during transients
Ψd,Ψq oscillate with high frequency equal to ω ≈ ωs implying that Ψ̇d, Ψ̇q become
very large. The validation of the contradicting Assumption 2.4.1 is part of a
singular perturbation process where the slow variables are approximated by taking
the averaging effect of the fast oscillatory variables Ψd,Ψq, see also [1, 59].

By Assumption 2.4.1, the two differential equations (2.4a), (2.4b) corre-
sponding to Ψd,Ψq are replaced by algebraic equations (2.9), so that a system
of differential-algebraic equations (DAE’s) is obtained [67]. For many power
system studies it is desirable to rephrase and further simplify the model (2.4d)-
(2.4h) together with the algebraic equations (2.9) so that they are in a more
acceptable form and easier to interface to the power system network equations.
In the following sections, under some additional assumptions based on time-scale
separation, we eliminate the two algebraic constraints obtained by putting an
equality in (2.9). Before examining how this is done, it is necessary to relate the
circuit equations to the flux conditions inside the synchronous machine when it is
in the steady state, transient state or the subtransient state.

3For example, in Europe the synchronous frequency is 50 Hz and in the United States it is
60 Hz.
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Figure 2.2: The path of the armature flux in: (a) the subtransient state (screening effect
of the damper windings and the field winding); (b) the transient state (screening effect
of the field and g-damper winding only); (c) the steady state [67].

2.4.1 Distinction of operation states

Following the established literature on power systems [4, 61, 67, 89], a distinction
between 3 different operation states of the synchronous machine is made. Each
of the 3 characteristic operation states correspond to different stages of rotor
screening and a different time-scale [1, 59], see Figure 2.2.

Immediately after a fault, the current induced in both the rotor field and
damper windings forces the armature reaction flux completely out of the rotor to
keep the rotor flux linkages constant (this is also referred to as the Lenz effect),
see Figure 2.2a, and the generator is said to be in the subtransient state [61, 67].

As energy is dissipated in the resistance of the rotor windings, the currents
maintaining constant rotor flux linkages decay with time allowing flux to enter the
windings. As for typical generators the rotor DQ-damper winding resistances are
the largest, the DQ-damper currents are the first to decay, allowing the armature
flux to enter the rotor pole face. However, it is still forced out of the field winding
and the g-damper winding itself, see Figure 2.2b. Then the generator is said to be
in the transient state.

The field and g-winding currents then decay with time to their steady state
values allowing the armature reaction flux eventually to enter the whole rotor and
assume the minimum reluctance path. Then the generator is in steady state as
illustrated in Figure 2.2c [67].

Remark 2.4.3 (Properties of the g-damper winding). Since the field winding and
g-damper winding resistances are comparable and are typically much smaller
compared to the DQ-damper winding resistances, the field winding f and the
g-damper winding have similar properties in the different operation states.

Synchronous machine parameters

Depending on which state the synchronous machine is operating in, the effective
impedance of the armature coil to any current change will depend on the parame-
ters of the different circuits, their mutual coupling and whether or not the circuits
are closed or not [67]. The (positive scalar) inductances and timescales associated
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with transient and subtransient operation are defined by [67]

L′d = Ld −
κ2M2

f

Lf
, T ′do =

Lf
Rf

,

L′q = Lq −
κ2M2

g

Lg
, T ′qo =

Lg
Rg

,

L′′d = Ld − κ2

[
M2
fLD +M2

DLf − 2MfMDLfD

LfLD − L2
fD

]
,

L′′q = Lq − κ2

[
M2
gLQ +M2

QLg − 2MgMQLgQ

LgLQ − L2
gQ

]
,

T ′′do =
1

RD

(
LD −

L2
fD

Lf

)
, T ′′qo =

1

RQ

(
LQ −

L2
gQ

Lg

)
.

(2.10)

Based on the two-reaction theory of [79], the corresponding d- and q-axis reactances
for steady state operation (Xd = ωsLd, Xq = ωsLq), transient operation (X ′d =
ωsL

′
d, X

′
q = ωsL

′
q) and subtransient operation (X ′′d = ωsL

′′
d , X

′′
q = ωsL

′′
q ) are

defined.

Remark 2.4.4 (Relation between (sub)transient reactances). For realistic syn-
chronous machines it holds that Xd > X ′d > X ′′d > 0 and Xq ≥ X ′q > X ′′q > 0,
where Xq = X ′q holds only for a salient-pole synchronous machine (where the g-
damper winding is absent), see also [67, Table 4.3] and [61, Table 4.2] for typical
values of these reactances.

Definition 2.4.5 (Saliency). The (sub)transient saliency is defined as the differ-
ence between the (sub)transient reactances, i.e. X ′d−X ′q; (X ′′d −X ′′q ). We say that
the (sub)transient saliency is negligible if X ′d = X ′q; (X ′′d = X ′′q ).

For both transient and subtransient state of the machine, different assumptions can
be made to obtain the corresponding (differential) equations of the synchronous
machine.

2.4.2 Synchronous machine equations

Transient operation

In transient operation state the armature flux has penetrated the damper circuits
and the field and g windings screen the rotor body from the armature flux. The
damper windings are no more effective (Ψ̇D = Ψ̇Q = 0) and thus the damper
currents are zero.

Assumption 2.4.6 (Transient operation). During transient operation ID = IQ =
0.
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From (2.5), Ψd can be expressed in terms of Id,Ψf from which it follows that
the internal (transient) and external emfs are related by

Vq = −RIq + ωs

[
Id

(
Ld −

κ2M2
f

Lf

)
+
κMf

Lf
Ψf

]
= −RIq + ωsL

′
dId + E′q = −RIq +X ′dId + E′q

(2.11)

where the internal emf E′q is defined by E′q := ωs

(
κMf

Lf

)
Ψf . Similarly, from (2.6)

we can express Ψq in terms of Iq,Ψg to obtain

Vd = −RId −X ′qIq + E′d (2.12)

where E′d := −ωs
(
κMg

Lg

)
Ψg. However, the flux linkages Ψf ,Ψg do not remain

constant during transient operation but change slowly as the armature flux
penetrates through the windings [67]. By substituting (2.4d), the differential
equation for E′q is derived as

Ė′q = ωs
κMf

Lf
Ψ̇f = ωs

κMf

Lf
(Vf −RfIf ) = ωs

κMf

Lf
(Vf +Rf

κMfId
Lf

)− Rf
Lf

E′q

=
Ef + (Xd −X ′d)Id − E′q

T ′do
,

(2.13)
where we used that ID = 0, T ′do = Lf/Rf , and the definition Ef := ωsκMfVf/Rf
for the scaled excitation voltage. In a similar fashion the differential equation of
E′q is derived to obtain

Ė′d =
−(Xq −X ′q)Iq − E′d

T ′qo
. (2.14)

Subtransient operation

During the subtransient period the rotor damper coils screens both the field
winding and the rotor body from changes in the armature flux. The field and g
flux linkages Ψf ,Ψg remain constant during this period while the damper winding
flux linkages decay with time as the generator moves towards the transient state
[67]. Therefore, we make here a different assumption compared to Section 2.4.2.

Assumption 2.4.7 (Subtransient operation). During subtransient operation the
flux linkages Ψf ,Ψg are constant.

Using equation (2.5) one can express Ψd in terms of id,Ψf ,ΨD to obtain [67]

Ψd = L′′dId + k1Ψf + k2ΨD,

k1 = κ · MfLD −MDLfD
LfLD − L2

fD

, k2 = κ · MDLf −MfLfD
LfLD − L2

fD

.
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Together with Assumption 2.4.1 this implies

Vq = −RIq + ωsΨd = −RIq + ωsL
′′
dId + ωsk1Ψf + ωsk2ΨD

= −RIq +X ′′d Id + E′′q (2.15)

where E′′q := ωs(k1Ψf + k2ΨD). Similarly for the q-axis we obtain

Ψq = L′′q Iq + k3Ψg + k4ΨQ,

k3 = κ · MgLQ −MQLgQ
LgLQ − L2

gQ

, k4 = κ · MQLg −MgLgQ
LgLQ − L2

gQ

and

Vd = −RIq − ωsΨq = −RId − ωsL′′q Iq − ωsk3Ψg − ωsk4ΨQ

= −RId −X ′′q Iq + E′′d (2.16)

where E′′d := −ωs(k3Ψg + k4ΨQ). By eliminating the If ,Ψd from (2.5) and Ig,Ψq

from (2.6) we obtain respectively

ID =
κLfDMfId − κLfMDId − LfDΨf + LfΨD

LDLf − L2
fD

IQ =
κLgQMgIq − κLgMQIq − LgQΨg + LgΨQ

LQLg − L2
gQ

.

Using Assumption 2.4.7 we find that

Ė′′q = ωsk2Ψ̇D = −ωsk2RDID, Ė′′d = −ωsk4Ψ̇Q = ωsk4RQIQ, (2.17)

which can be rewritten as

T ′′doĖ
′′
q = E′q − E′′q + (X ′d −X ′′d )Id, (2.18)

T ′′qoĖ
′′
d = E′d − E′′d − (X ′q −X ′′q )Iq. (2.19)

Frequency dynamics

Recall that the frequency dynamics of the full-order model is described by (2.4i):

Jω̇ = ΨqId −ΨdIq − dω + τ.

By Assumption 2.4.1, the latter differential equation is rewritten as

Jω̇ = − 1

ωs

(
VdId + VqIq +R(I2

d + I2
q )
)
− dω + τ.

Since the mechanical damping force Fd = −dω is often very small in large
machines, it is neglected in many synchronous machine models [61, 67].
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Assumption 2.4.8 (Negligible mechanical damping). The mechanical damping
of the synchronous machine is negligible, i.e., d = 0.

It is convenient to express the frequency dynamics in terms of the frequency
deviation with respect to the synchronous frequency ωs. By Assumption 2.4.8, the
frequency deviation ∆ω := ω − ωs is governed by the differential equation

J∆ω̇ = − 1

ωs

(
VdId + VqIq +R(I2

d + I2
q )
)

+ τ. (2.20)

After multiplying (2.20) by the synchronous frequency ωs one obtains

M∆ω̇ = −
(
VdId + VqIq +R(I2

d + I2
q )
)

+ ωsτ = −Pe + Pm, (2.21)

where it is common practice to define the quantity M := ωsJ [61, 67]. Here the
mechanical power injection is denoted by Pm = ωsτ and the electrical power Pe
produced by the synchronous generator is equal to

Pe = VdId + VqIq +R(I2
d + I2

q ).

Remark 2.4.9 (Alternative formulation of frequency dynamics). Note that by
equations (2.15) and (2.16) the electrical power Pe produced by the synchronous
generator alternatively takes the form

Pe = E′′d Id + E′′q Iq + (X ′′d −X ′′q )IdIq (2.22)

such that the differential equation (2.21) can be rewritten as

M∆ω̇ = −E′′d Id − E′′q Iq − (X ′′d −X ′′q )IdIq + Pm. (2.23)

2.4.3 Synchronous machine models

Based on the results established in Section 2.4.2, several generator models with
decreasing complexity and accuracy are developed. In each model reduction step,
the validity and assumptions made in the corresponding model are discussed.

Sixth-order model

By combining the equations derived in Section 2.4.2, a sixth-order model describing
the synchronous generator is obtained. In particular, by (2.13), (2.14), (2.18),
(2.19) and (2.23) we obtain the following system of ordinary differential equations
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Ef

j(Xd −X ′d) j(X ′d −X ′′d ) jX ′′d
Id

E
′
q E

′′
qT ′′doT ′do

j(Xq −X ′q) j(X ′q −X ′′q ) jX ′′q
Iq

E
′
d E

′′
d

T ′′qoT ′qo

V q

V d

Figure 2.3: The generator equivalent circuits for both dq-axes in case the stator winding
resistance R is neglected [67].

describing the generator dynamics [67]:

δ̇ = ∆ω (2.24a)

M∆ω̇ = Pm − E′′d Id − E′′q Iq − (X ′′d −X ′′q )IdIq (2.24b)

T ′doĖ
′
q = Ef − E′q + Id(Xd −X ′d) (2.24c)

T ′qoĖ
′
d = −E′d − Iq(Xq −X ′q) (2.24d)

T ′′doĖ
′′
q = E′q − E′′q + Id(X

′
d −X ′′d ) (2.24e)

T ′′qoĖ
′′
d = E′d − E′′d − Iq(X ′q −X ′′q ), (2.24f)

where δ(t) := γ(t)−ωst represents the rotor angle with respect to the synchronous
rotating reference frame. By equations (2.15) and (2.16) the internal and external
voltages of the synchronous generator are related by[

Vd
Vq

]
=

[
E′′d
E′′q

]
−
[
R X ′′q
−X ′′d R

] [
Id
Iq

]
. (2.25)

It is worth noting the similar structure of these (differential) equations. The
equation (2.25) and the right hand side of (2.24c)-(2.24f) relates to the equivalent
d- or q-axis generator circuits, with the resistances neglected, as shown in Figure
2.3. In particular, the algebraic equation (2.25) corresponds to the right-hand side
of Figure 2.3. In addition, the subtransient dynamics (2.24e), (2.24f) corresponds
to the center reactancesX ′d−X ′′d , X ′q−X ′′q illustrated in Figure 2.3 and the transient
dynamics (2.24c), (2.24d) corresponds to the left-hand side of Figure 2.3. Observe
that there is no additional voltage in the q-axis due to the absence of a field winding
on this axis.
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Fifth-order model

In a salient-pole generator the laminated rotor construction prevent eddy currents
flowing in the rotor body such that there is no screening in the q-axis implying
that Xq = X ′q [67]. In that case the g-winding is absent in the full-order model
(2.4). Consequently, E′d is absent so that the fifth-order model becomes

δ̇ = ∆ω

M∆ω̇ = Pm − E′′d Id − E′′q Iq − (X ′′d −X ′′q )IdIq

T ′doĖ
′
q = Ef − E′q + Id(Xd −X ′d)

T ′′doĖ
′′
q = E′q − E′′q + Id(X

′
d −X ′′d )

T ′′qoĖ
′′
d = −E′′d − Iq(X ′q −X ′′q ).

(2.26)

Fourth-order model

In this model the subtransient dynamics of the sixth-order model induced by the
damper windings is neglected. This is motivated by the fact that T ′′do � T ′do, T

′′
qo �

T ′qo. Therefore the dynamics corresponding with E′′q , E
′′
d is at much faster time

scale compared to the E′q, E
′
d dynamics. As a result, at the slower time-scale we

obtain the quasi steady state condition [1]:

E′′q = E′q + Id(X
′
d −X ′′d )

E′′d = E′d − Iq(X ′q −X ′′q ).
(2.27)

Substitution of the latter algebraic equations in the remaining four differential
equations yields the fourth-order model

δ̇ = ∆ω

M∆ω̇ = Pm −D∆ω − E′dId − E′qIq − (X ′d −X ′q)IdIq
T ′doĖ

′
q = Ef − E′q + Id(Xd −X ′d)

T ′qoĖ
′
d = −E′d − Iq(Xq −X ′q).

(2.28)

Remark 2.4.10 (Transient operation). Note that (2.27) together with (2.25) also
implies (2.11) and (2.12) as expected since the subtransient dynamics is neglected.

As the damper windings are ignored, the air-gap power appearing in the
frequency dynamics neglects the asynchronous torque produced by the damper
windings. To compensate the effects of the damper windings a linear asynchronous
damping power D∆ω with damping constant D > 0 is introduced [67]. However,
more accurate nonlinear approximations of the damping power exist as well, see
[67, Chapter 5.2].

Third-order model

Starting from the fourth-order model, we make here the same assumptions as done
in the transition from the sixth-order model to the fifth-order model (E′d = 0) so
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that the third-order model, which also referred to as the flux-decay model or one-
axis model [61], is given by

δ̇ = ∆ω (2.29a)

M∆ω̇ = −D∆ω + Pm − E′qIq − (X ′d −X ′q)IdIq (2.29b)

T ′doĖ
′
q = Ef − E′q + Id(Xd −X ′d). (2.29c)

Second-order classical model

The second-order model is derived from the fourth-order (or third-order) model
by assuming that the internal emfs E′q, E

′
d are constant [4, 61, 67]. This can be

validated if the timescales T ′qo, T
′
do are large (of the order of a few seconds) so that

the internal emfs E′q, E
′
d can be approximated by a constant (on a bounded time

interval) provided that Ef , Id, Iq do not change much. From this assumption, a
constant voltage behind transient reactance model is obtained which is commonly
referred to as the constant flux linkage model or classical model [4, 61, 67]:

δ̇ = ∆ω

M∆ω̇ = −D∆ω + Pm − E′qIq − E′dId − (X ′d −X ′q)IdIq
(2.30)

The assumption that the changes in dq-currents and the internal emfs are small
implies that only generators located a long way from the point of the disturbance
should be represented by the classical model [67]. In addition, since the assumption
that E′d, E

′
q are constant is only valid on a limited time-interval, the classical model

is only valid for analyzing the first swing stability [4]. Indeed, in for example
[22] it was shown that the second-order swing equations (2.30) are not valid for
asymptotic stability analyses.

2.5 Multi-machine models

To obtain a representation of the power grid, we consider a multi-machine network.
For simplicity we consider the case that each node in the network represents a
synchronous machine, that is, each node represents either a synchronous generator,
or a synchronous motor. In addition, we assume that the stator winding resistances
and the resistances in the network are negligible. This assumption is valid
for networks with high voltage transmission lines where the line resistances are
negligible.

Assumption 2.5.1 (Inductive lines). The network is considered to be purely
inductive and the stator winding resistances are negligible, i.e., R = 0.

In this section the multi-machine models starting from the sixth-, third-,
and second-order models for the synchronous generator are established. The
derivations of the fourth- and fifth-order multi-machine models are omitted as
these are very similar to ones presented in this section. To obtain reduced-order
multi-machine models, the equations for the nodal currents in the network are
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derived which are then substituted in the single generator models reformulated in
Section 2.4.3.

2.5.1 Sixth-order multi-machine model

For the sixth (and fifth) order model(s) it is convenient to make the following
assumption which is valid for synchronous generators with damper windings in
both d- and q-axes [67].

Assumption 2.5.2 (X ′′di = X ′′qi). For each synchronous machine in the network,
the subtransient saliency is negligible, i.e., X ′′di = X ′′qi ∀i ∈ V.

By Assumption 2.5.2, the second term of the electrical power (2.22) appearing
in the frequency dynamics (2.24b) vanishes. Moreover, the assumption of X ′′d =
X ′′q allows the two individual d- and q-axis circuits in Figure 2.3 to be replaced
by one equivalent circuit, see Figure 2.4. As a result, all the voltages, emfs and
currents are phasors in the synchronous rotating reference frame of rather than
their components resolved along the d- and q-axes. An important advantage of this
is that the generator reactance may be treated in a similar way as the reactance
of a transmission line, as we will show later. This has particular importance
for multi-machine systems when combining the algebraic equations describing the
generators and the network [67].

E
′′
i

jX ′′di
Ii

V i

Figure 2.4: Subtransient emf behind a subtransient reactance.

As illustrated in Figure 2.4, the internal and external voltages are related to
each other by

E
′′
i = V i + jX ′′diIi, ∀i ∈ V. (2.31)

Consider a power network where each node i ∈ V = {1, 2, . . . , n} represents a
synchronous machine and each edge {i, j} ∈ E a transmission line, see Figure 2.5
for a two-node case. To derive the algebraic equations associated with the network,
we assume that the network operates at steady state. Under this assumption, the
network equations take the form

Is = Y V s = YE′′s
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E
′′
i

jX ′′di jXTij Iij
jX ′′dj

E
′′
jV i V j

Figure 2.5: Interconnection of two synchronous machines governed by the 5th or 6th
order model by a purely inductive transmission line with reactance XTij .

where Is, V s, E
′′
s ∈ Cn represent the nodal current and external/internal voltage

phasors with respect to the synchronous rotating reference frame and Y ∈ Cn×n
is the admittance matrix of the network. The admittance matrix Y ∈ Cn×n is
obtained by adding the reactances X ′′di, i ∈ V to the transmission line reactances,
i.e., Y takes the form Yii = Gii− jBii,Yij = −Gij+ jBij , i 6= j where Bij is defined
as4 are given by [90]

Bij =

{
0 if nodes i and j are not connected

1
Xij

if nodes i and j are connected

Bii =
∑
j∈Ni

Bij

(2.32)

and where Xij := XTij +X ′′di+X ′′dj is the total reactance between the subtransient
voltage sources as illustrated in Figure 2.5. As we assumed purely inductive lines,
see Assumption 2.5.1, the conductance matrix equals the zero matrix and thus
Gij = 0 ∀i, j ∈ V. We note that in the derivations in Section 2.4 the currents

I = Vq + jVd and internal voltages E
′′

= E′′q + jE′′d are expressed with respect
to the local dq0-reference frame of the synchronous machine. Thus, according

to (2.3), Is = diag(e−j(ωst−γi))I = diag(ejδi)I and similarly E
′′
s = diag(ejδi)E

′′
.

Consequently,

I = diag(e−jδi)Y diag(ejδi)E
′′
, (2.33)

where I = col(I1, . . . , In), E
′′

= col(E
′′
1 , . . . , E

′′
n). Then the dq-current phasor at

node i takes the form

Ii = YiiE
′′
i +

∑
j∈Ni

Yije−jδijE
′′
j . (2.34)

4Note that we use a different sign convention than used in [90], which is consistent with the
rest of this thesis. With this sign convention, Bii, Bij ≥ 0 are the negatives of the susceptances.
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Using the phasor representation E
′′
i = E′′qi + jE′′di, Ii = Iqi + jIdi, and equating

both the real and imaginary part of equation (2.34), we obtain after rewriting

Idi = −BiiE′′qi +
∑
j∈Ni

[
Bij(E

′′
dj sin δij + E′′qj cos δij)

]
,

Iqi = BiiE
′′
di +

∑
j∈Ni

[
Bij(E

′′
qj sin δij − E′′dj cos δij)

]
.

(2.35)

Remark 2.5.3 (Nonzero transfer conductances). Compared to (2.35), a slightly
more complicated expression for the dq-currents can be derived in the more general
case where the transfer conductances are nonzero, see e.g. [90].

By substituting the network equations (2.35) into the sixth-order model of the
synchronous machine derived in Section 2.4.3, the multi-machine model (2.36) is
obtained. A subscript i is added to the model (2.24) to indicate that this is the
model of synchronous machine i ∈ V.

δ̇i = ∆ωi

Mi∆ω̇i = Pmi −
∑
j∈Ni

Bij

[
(E′′diE

′′
dj + E′′qiE

′′
qj) sin δij + (E′′diE

′′
qj − E′′qiE′′dj) cos δij

]
T ′doiĖ

′
qi = Efi − E′qi − (Xdi −X ′di)(BiiE′′qi −

∑
j∈Ni

[
Bij(E

′′
dj sin δij + E′′qj cos δij)

]
)

T ′qoiĖ
′
di = −E′di − (Xqi −X ′qi)(BiiE′′di −

∑
j∈Ni

[
Bij(E

′′
dj cos δij − E′′qj sin δij)

]
)

(2.36)

T ′′doiĖ
′′
qi = E′qi − E′′qi − (X ′di −X ′′di)(BiiE′′qi −

∑
j∈Ni

[
Bij(E

′′
dj sin δij + E′′qj cos δij)

]
)

T ′′qoiĖ
′′
di = E′di − E′′di − (X ′qi −X ′′qi)(BiiE′′di −

∑
j∈Ni

[
Bij(E

′′
dj cos δij − E′′qj sin δij)

]
)

The electrical power Pei produced by synchronous machine i is obtained from
(2.22) and (2.35), and is given by

Pei = E′′diIdi + E′′qiIqi

=
∑
j∈Ni

Bij

[
(E′′diE

′′
dj + E′′qiE

′′
qj) sin δij + (E′′diE

′′
qj − E′′qiE′′dj) cos δij

]
︸ ︷︷ ︸

Pij

. (2.37)

Remark 2.5.4 (Energy conservation). Since the transmission lines are purely
inductive by assumption, there are no energy losses in the transmission lines
implying that the following energy conservation law holds: Pij = −Pji where
Pij given in (2.37) represents the power transmission from node i to node j. In
particular, we also have

∑
i∈V Pei = 0 with Pei is given by (2.37).

Remark 2.5.5 (Including resistances). While in the above model the resistances
of the network and the stator windings are neglected, the model easily extends to
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E
′
i

jX ′di
Ii

V i

Figure 2.6: Single generator equivalent circuit in case the transient saliency is neglected
[67]

the case of nonzero resistances. This can be done following the same procedure as
before but instead substituting the more complicated expression for the currents
Idi, Iqi, see Remark 2.5.3.

2.5.2 Third-order multi-machine model

The derivation of the third-order multi-machine models proceeds along the same
lines as for the sixth-order model. For similar reasons as for the sixth- and fifth-
order models, it is convenient for the 2nd, 3rd and 4th order multi-machine models
to assume that the transient saliency is negligible.

Assumption 2.5.6 (X ′di = X ′qi). The transient saliency is negligible: X ′di =
X ′qi ∀i ∈ V.

By making the classical assumption that X ′d = X ′q, the second term of the
electrical power appearing in the frequency dynamics (2.29b) vanishes [67]. In
addition, the assumption of X ′d = X ′q allows the separate d and q-axis circuits
shown in Figure 2.3 to be replaced by one simple equivalent circuit, see Figure 2.6,
representing a transient voltage source behind a transient reactance.

Remark 2.5.7 (Negligible transient saliency). Although there is always some degree
of transient saliency implying that X ′di 6= X ′qi, it should be noted that if the
network reactances are relatively large, then the effect of the transient saliency
on the power network dynamics is negligible making Assumption 2.5.6 acceptable
[67].

Similar as before, the interconnection of two synchronous machines can be
represented as in Figure 2.7. As illustrated in this figure, the internal and external
voltages are related to each other by [67]

E
′
i = V i + jX ′diIi, ∀i ∈ V. (2.38)

The algebraic equations associated with the network amount to [90]

I = diag(e−jδi)Y diag(ejδi)E
′
, (2.39)
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E
′
i

jX ′di jXTij Iij
jX ′dj

E
′
jV i V j

Figure 2.7: Interconnection of two synchronous machines governed by the 2nd, 3rd or
4th order model by a purely inductive transmission line with reactance XTij .

resulting in a similar expression for the dq-currents as for the sixth-order model:

Idi = −BiiE′qi +
∑
j∈Ni

[
Bij(E

′
dj sin δij + E′qj cos δij)

]
,

Iqi = BiiE
′
di +

∑
j∈Ni

[
Bij(E

′
qj sin δij − E′dj cos δij)

]
.

(2.40)

By using the third-order model of the synchronous machine (2.29), the network
equations (2.40), and the fact that that E′di = 0 for the third-order model, the
flux-decay (or one-axis) multi-machine model is obtained.

δ̇i = ∆ωi

Mi∆ω̇i = Pmi −Di∆ωi −
∑
j∈Ni

BijE
′
qiE
′
qj sin δij

T ′doiĖ
′
qi = Efi − E′qi − (Xdi −X ′di)(BiiE′qi −

∑
j∈Ni

BijE
′
qj cos δij))

(2.41)

It is observed that, similar as for the sixth-order multi-machine model (2.36),
Remark 2.5.4 and Remark 2.5.5 also hold for the third-order model (2.41).

2.5.3 The classical multi-machine network

The derivation of the classical second-order swing equations takes a slightly
different approach compared to the multi-machine models obtained previously.
For completeness, the derivation of the second-order multi-machine model with
RL-transmission lines is given in this section.

Suppose that Assumption 2.5.6 holds. Let the transient voltage phasor be

represented as E
′
i = ejαi |E′i|, then by (2.39) we have

Ii = Yiiejαi |E
′
i|+

∑
j∈Ni

Yije−jδijejαj |E
′
j |, ∀i ∈ V.
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By defining the angles5 θi := δi + αi it can be shown that the electrical power
supplied by the synchronous machine amounts to

Pei = <(E
′
iI
∗
i ) = <(E

′∗
i Ii) = <

(
Yii|E

′
i|2 +

∑
j∈Ni

Yije−j(δij+αij)|E
′
i||E

′
j |
)

= Gii|E
′
i|2 −

∑
j∈Ni

(Gij cos θij −Bij sin θij)|E
′
i||E

′
j |.

It is convenient to express the system dynamics in terms of the voltage angles
θi. By noting that αi is constant6 it follows that θ̇i = δ̇i = ∆ωi. Hence, the
multi-machine classical model with nonzero transfer conductances is described by

θ̇i = ∆ωi

Mi∆ω̇i = −Di∆ωi + Pmi −Gii|E
′
i|2

+
∑
j∈Ni

(Gij cos θij −Bij sin θij)|E
′
i||E

′
j |, i ∈ V.

(2.42)

Remark 2.5.8 (Purely inductive network). Note that in a purely inductive network
G = 0 and Bij ≤ 0 for all i, j. The resulting multi-machine network, commonly
referred to as the swing equations, is often used in power network stability studies,
see e.g. [19, 64, 105, 131].

Remark 2.5.9 (Load nodes). In the multi-machine models constructed in this
section it is assumed that each node in the network represents a synchronous
machine. However, a more realistic model of a power network can be obtained by
making a distinction between generator and load nodes [3, 10]. This is beyond the
scope of the present chapter. Instead, we assume that some synchronous machines
act as synchronous motors for which the injected mechanical power is negative.

2.6 Energy functions

When analyzing the stability of a synchronous machine (or a multi-machine
network) it is desired to search for a suitable Lyapunov function. Often the physical
energy stored in the system can be used as a Lyapunov function for the zero-input
case. In this section we derive the energy functions of the reduced order models of
the synchronous machine. In addition, the energy functions corresponding to the
transmission lines are obtained.

2.6.1 Synchronous machine

The physical energy stored in a synchronous machine consists of both an electrical
part and a mechanical part. We first derive the electrical energy of the synchronous

5Note that the angle θi represents the voltage angle of generator i with respect to the
synchronous rotating reference frame.

6Note that for the third-order model αi = 0 implying that in this case θi is equal to the rotor
angle δi with respect to the synchronous rotating reference frame.
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machine. For notational convenience the subscript i for synchronous machine i ∈ V
is dropped.

Electrical energy

In this section we search for an expression for the electrical energy of the reduced
order models for the synchronous machine. A natural starting point is to look at
the electrical energy of the full-order system and rewrite this in terms of the state
variables of the reduced order system. Recall that the electrical energy in the d-
and q-axis of the full-order system is respectively given by7

Hdq = Hd +Hq =
1

2

Ψd

Ψf

ΨD

T  Ld κMf κMD

κMf Lf LfD
κMD LfD LD

−1 Ψd

Ψf

ΨD


+

1

2

Ψq

Ψg

ΨQ

T  Lq κMg κMQ

κMg Lg LgQ
κMQ LgQ LQ

−1 Ψq

Ψg

ΨQ

 .
Using the definitions of E′q, E

′′
q and the reactances Xd, X

′
d, X

′′
d we can express the

electrical energy in the d-axis as

Hd =
1

2

Ψd

E′q
E′′q

T


ωs
X′′d

0 − 1
X′′d

0 1
ωs(Xd−X′d) + 1

ωs(X′d−X
′′
d ) − 1

ωs(X′d−X′′d )

− 1
X′′d

− 1

ωs(X′d−X′′d )
X′d

ωs(X′d−X′′d )X′′d


Ψd

E′q
E′′q


(2.43)

and a similar expression for the energy Hq can be derived for the q-axis.

Remark 2.6.1 (Complexity in derivating (2.43)). To obtain (2.43) requires not only
computing the inverse of the inductance matrices Ld,Lq but also to eliminate the
appropriate parameters and variables used in the model (2.4). Interestingly, we
obtain the relatively sparse expression (2.43) where we verified the correctness by
the computer algebra program Mathematica 11.

Sixth-order model We can also express the electrical energy (2.43) in term of
the currents Id, Iq as follows. First, by Assumption 2.4.1 we eliminate Ψd,Ψq by
substituting Ψq = −ω−1

s (Vd + RId),Ψd = ω−1
s (Vq + RIq). Then Vd, Vq can be

eliminated by substituting (2.25), that is, Vd = E′′d −RId−X ′′q Iq, Vq = E′′q −RIq+
X ′′d Id. Consequently, for the sixth-order model the electrical energy stored in the
machine given by (2.43) takes the alternative form

Hd =
1

2ωs

 IdE′q
E′′q

T
 X ′′d 0 0

0 1
Xd−X′d

+ 1
X′d−X

′′
d
− 1
X′d−X

′′
d

0 − 1
X′d−X

′′
d

1
X′d−X

′′
d


 IdE′q
E′′q

 , (2.44)

7For notational convenience the subscript i is omitted in this section.
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which interestingly is even simpler than (2.43). As before, a similar expression is
obtained for the q-axis by exchanging the dq-subscripts.

Remark 2.6.2 (Energy storage in generator circuits). One interesting observation
is that (2.44) is identical to the energy stored in the generator equivalent circuits
illustrated in Figure 2.3 in the zero input case (Ef = 0). Here we observe that the
energy stored in the center reactances as in Figure 2.3 is given by

1

2
LI2

d =
1

2ωs
(X ′d −X ′′d )I2

d =
1

2ωs
(X ′d −X ′′d )(

1

X ′d −X ′′d
(E′q − E′′q ))2 (2.45)

=
1

2ωs

1

X ′d −X ′′d

[
E′q E′′q

] [ 1 −1
−1 1

] [
E′q
E′′q

]
.

Fifth-order model For the fifth-order model we have that E′d = 0 implying
that the electrical energy in the q-axis modifies to

Hq =
1

2ωs

[
Iq
E′′d

]T [ X ′′q 0
0 1

X′q−X′′q

] [
Iq
E′′d

]
, (2.46)

while the expression for Hd remains identical to the one for the sixth-order model,
see equation (2.44).

Lower-order models Since for the fourth, third and second-order model the
subtransient dynamics is neglected, we can substitute (2.27) into (2.44) such that
the electrical energy Hdq := Hd +Hq can be written as

Hdq =
1

2ωs

[
Id
E′q

]T [ X ′d 0
0 1

Xd−X′d

] [
Id
E′q

]
+

1

2ωs

[
Iq
E′d

]T [ X ′q 0
0 1

Xq−X′q

] [
Iq
E′d

]
(2.47)

and for the third-order model we have E′d = 0.

Remark 2.6.3 (Synchronous machines reactances as part of line reactances). If the
(sub)transient saliency is neglected then the reactance X ′d (X ′′d ) can considered as
part the (transmission) network, see Section 2.5. Therefore, the energy stored in
this reactance will be part of the energy stored in the transmission lines which
will be discussed in Section 2.6.2. As a result, the part of the energy (2.47)
corresponding with Id, Iq can be disregarded here. For example, for the fourth-,
third- and second-order model the energy function associated to the electrical
energy stored in the generator circuit is given by

Hdq =
1

2ωs

(E′q)
2

Xd −X ′d
+

1

2ωs

(E′d)
2

Xq −X ′q
, (2.48)

where E′d = 0 for the third-order model.
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E
′′
i

jXij
Iij

E
′′
j

Figure 2.8: An inductive transmission line at steady state. The internal voltages E
′′
i , E

′′
j

are expressed in the corresponding local dq0-reference frame.

Bearing in mind Remark 2.6.3 and noting that for the second-order model the
voltages E′q, E

′
d are constant, it follows that the electrical energy (2.48) is constant

as well.

Mechanical energy

The rotational kinetic energy of the synchronous machine is given by

Hm =
1

2
Jω2 =

1

2ωs
M(∆ω + ωs)

2 (2.49)

where we recall that M is defined as M = ωsJ as discussed in Section 2.4.2.

2.6.2 Inductive transmission lines

Sixth- and fifth-order models

Consider an inductive transmission line between nodes i and j at steady state,
see Figure 2.8. When expressed in the local dq-reference frame of synchronous
machine i, we observe from Figure 2.8 that

jXijIij = E
′′
i − e−jδijE

′′
j . (2.50)

By equating the real and imaginary part of (2.50) we obtain

Xij

[
Iqij
−Idij

]
=

[
E′′di − E′′dj cos δij + E′′qj sin δij
E′′qi − E′′dj sin δij − E′′qj cos δij

]
. (2.51)

Note that the energy of the inductive transmission line between nodes i and j is
given by

Hij =
1

2
LijI

∗
ijIij =

Xij

2ωs
(I2
dij + I2

qij)
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which by (2.51) can be written as

Hij =
Bij
ωs

[ (
E′′diE

′′
qj − E′′djE′′qi

)
sin δij −

(
E′′diE

′′
dj + E′′qiE

′′
qj

)
cos δij

+ 1
2E
′′2
di + 1

2E
′′2
dj + 1

2E
′′2
qi + 1

2E
′′2
qj

] (2.52)

where Bij = 1
Xij

< 0 is the negative of the susceptance of transmission line

{i, j} ∈ E [90].

Fourth- and third-order models

For the fourth- and third-order model the transient reactances8 X ′di can be
considered as part of the network implying that the energy in the transmission lines
can be obtained by replacing the subtransient voltages by the transient voltages in
(2.52). For the third-order model E′di = 0 for all i ∈ V so that the energy function
associated to the transmission line between node i and j simplifies to

Hij =
Bij
ωs

(
1
2E
′2
qi + 1

2E
′2
qj − E′qiE′qj cos δij

)
. (2.53)

Second-order model

For the second-order model it is convenient to represent transient voltages as

E
′
i = |E′i|ejαi where αi is the voltage angle of E

′
i with respect to the rotor angle.

Then, by defining the voltages angles θi = δi + αi as in Section 2.5.3, the energy
in the transmission line9 (2.52) takes the much simpler form

Hij =
Bij
2ωs

(E
′
i − E

′
je
−jδij )∗(E

′
i − E

′
je
−jδij )

=
Bij
2ωs

(|E′i|2 − 2|E′i||E
′
j | cos θij + |E′j |2).

(2.54)

2.6.3 Total energy

The total energy of the multi-machine system is equal to the sum of the previously
mentioned energy functions

H =
∑
i∈V

(Hdi +Hqi +Hmi) +
∑
{i,j}∈E

Hij , (2.55)

where the expressions for each individual energy function depends on the order of
the model. The resulting energy function H could serve as a candidate Lyaponuv
function for the stability analysis of the multi-machine power network (with zero
inputs).

8Provided that the transient saliency is neglected, i.e., X′di = X′qi for all i ∈ V.
9Where the subtransient voltages are replaced by the transient voltages.
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Remark 2.6.4 (Common factor ω−1
s in energy function). It is observed that each

of the individual energy functions appearing in (2.55) contains a factor ω−1
s .

Therefore, a modified version of the energy function defined by U = ωsH can
also be used as a Lyapunov function for the multi-machine system. However,
the function U does not have the dimension of energy anymore, but has the
dimension of power instead. In fact, in most of the literature these modified energy
functions10 (without the factor ω−1

s ) are (part of) the collection of Lyapunov
functions used to analyze the stability of the power network, see e.g. [64, 77, 105,
113, 131, 132].

2.7 Port-Hamiltonian framework

By using the energy function established in the previous section, a convenient
representation of the multi-machine models of Section 2.5 can be obtained. This
is based on the theory of port-Hamiltonian systems, which yields a systematic
framework for network modeling of multi-physics systems. In particular, we
show in this section that the complex multi-machine systems (2.36), (2.41), (2.42)
admit a simple port-Hamiltonian representation. Finally, some important passivity
properties are proven for the resulting systems.

2.7.1 Sixth-order model

Energy in the transmission lines

Recall from (2.52) that the energy stored in the inductive transmission line between
node i and j is given by

Hij =
Bij
ωs

[ (
E′′diE

′′
qj − E′′djE′′qi

)
sin δij −

(
E′′diE

′′
dj + E′′qiE

′′
qj

)
cos δij

+ 1
2E
′′2
di + 1

2E
′′2
dj + 1

2E
′′2
qi + 1

2E
′′2
qj

] (2.56)

where Bij = 1
Xij

> 0. Observe that the gradient of Hij takes the form
∂Hij
∂δi
∂Hij
∂E′′qi
∂Hij
∂E′′di

 = −Bij
ωs

(E′′qiE
′′
dj − E′′diE′′qj) cos δij − (E′′diE

′′
dj + E′′qiE

′′
qj) sin δij

−E′′qi + E′′qj cos δij − E′′dj sin δij
−E′′di + E′′dj cos δij + E′′qj sin δij

 .

10Which are sometimes incorrectly called energy functions as well.
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After defining the total energy stored in the transmission lines by HT =∑
{i,j}∈E Hij , we obtain likewise
∂HT
∂δi
∂HT
∂E′′qi
∂HT
∂E′′di

 = − 1

ωs

∑j∈Ni Bij [(E
′′
qiE
′′
dj − E′′diE′′qj) cos δij − (E′′diE

′′
dj + E′′qiE

′′
qj) sin δij ]

−BiiE′′qi +
∑
j∈Ni Bij(E

′′
qj cos δij + E′′dj sin δij)

−BiiE′′di +
∑
j∈Ni Bij(E

′′
dj cos δij + E′′qj sin δij)


=

1

ωs

 Pei−Idi
Iqi


where we have used the fact that Bii =

∑
j∈Ni Bij and equations (2.35), (2.37).

Electrical energy synchronous machine

Further notice that the electrical energy stored in the d-axis in machine i is given
by

Hdi =
1

2ωs

[
E′qi E′′qi

] [ 1
Xdi−X′di

+ 1
X′di−X

′′
di
− 1
X′di−X

′′
di

− 1
X′di−X

′′
di

1
X′di−X

′′
di

] [
E′qi
E′′qi

]
and satisfies

[
Xdi −X ′di Xdi −X ′di

] [∂Hdi∂E′qi
∂Hdi
∂E′′qi

]
=

1

ωs
E′qi

[
0 X ′di −X ′′di

] [∂Hdi∂E′qi
∂Hdi
∂E′′qi

]
=

1

ωs
(E′′qi − E′qi).

Observe that a similar result can be established for the energy function Hqi by
exchanging the d- and q-subscripts.

Mechanical energy

To obtain a port-Hamiltonian representation of the multi-machine models, it
is convenient to shift the (kinetic) energy function (2.49) with respect to the
synchronous frequency to obtain

H̄mi =
1

2
Ji∆ω

2
i =

1

2ωs
Mi∆ω

2
i =

1

2ωs
M−1
i p2

i ,

where Mi = ωsJi and we define the variable pi = Mi∆ωi.

Remark 2.7.1 (Modified ’moment of inertia’). Note that the quantity pi does not
represent the angular momentum of the synchronous machine but instead it is
equal to pi = ωsJ∆ωi so it has a different physical dimension. In addition, it is
shifted with respect to the synchronous frequency.
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Using this definition of the Hamiltonian H̄mi(pi), it follows that its gradient
satisfies

∂H̄mi

∂pi
(pi) =

1

ωs
M−1
i pi =

∆ωi
ωs

.

Port-Hamiltonian representation

By the previous observations, the dynamics of a single synchronous machine in a
multi-machine system (2.36) can be written in the form



δ̇i
ṗi
Ė′qi
Ė′di
Ė′′qi
Ė′′di

 = ωs



0 1 0 0 0 0
−1 0 0 0 0 0

0 0 − X̂di
T ′doi

0 − X̂di
T ′doi

0

0 0 0 − X̂qi
T ′qoi

0 − X̂qi
T ′qoi

0 0 0 0 − X̂′di
T ′′doi

0

0 0 0 0 0 − X̂′qi
T ′′qoi


∇iH +



0 0
1 0
0 1

T ′doi
0 0
0 0
0 0


[
Pmi
Efi

]

yi =

[
0 1 0 0 0 0
0 0 1

T ′doi
0 0 0

]
∇iH (2.57)

where

H =
∑
i∈V

(
H̄mi +Hdi +Hqi

)
+

∑
{i,j}∈E

Hij

and X̂di := Xdi − X ′di, X̂
′
di := X ′di − X ′′di, X̂qi := Xqi − X ′qi, X̂

′
qi :=

X ′qi − X ′′qi and ∇iH denotes the gradient of H with respect to the variables
col(δi, pi, E

′
qi, E

′
di, E

′′
qi, E

′′
di). By aggregating the states of the synchronous ma-

chines, i.e. δ = col(δ1, . . . , δn) etc., the multi-machine system is described by
δ̇
ṗ

Ė′q
Ė′d
Ė′′q
Ė′′d

 = ωs



0 I 0 0 0 0
−I 0 0 0 0 0

0 0 −(T ′do)
−1X̂d 0 −(T ′do)

−1X̂d 0

0 0 0 −(T ′qo)
−1X̂q 0 −(T ′qo)

−1X̂q
0 0 0 0 −(T ′′do)

−1X̂ ′d 0

0 0 0 0 0 −(T ′′qo)
−1X̂ ′q


︸ ︷︷ ︸

J−R

∇H

+ g

[
Pm
Ef

]
, y = gT∇H, g =

[
0 I 0 0 0 0
0 0 (T ′do)

−1 0 0 0

]T
, (2.58)

where X̂d = diag(X̂d1, . . . , X̂dn), T ′do = diag(T ′do1, . . . , T
′
don) and likewise defini-

tions are used for the quantities X̂ ′d, X̂q, X̂
′
q, T

′
qo, T

′′
do, T

′′
qo. The matrix J − R

depicted in equation (2.58) consists of a skew-symmetric matrix J = −JT and a
symmetric matrix R = RT often called the dissipation matrix [117]. Provided that
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dissipation matrix is positive semi-definite, i.e. R ≥ 0, the system (2.58) is indeed a
port-Hamiltonian representation of the sixth-order multi-machine network (2.36).

Proposition 2.7.2 (Positive semi-definite dissipation matrix R). (2.58) defines a
port-Hamiltonian representation of the 6-order multi-machine network (2.36). In
particular, the matrix R is positive semi-definite.

Proof. The dissipation matrix of the system (2.58) is equal to the symmetric part
of the matrix in (2.58) and amounts to

R = ωs



0 0 0 0 0 0
0 0 0 0 0 0

0 0 (T ′do)
−1X̂d 0 1

2 (T ′do)
−1X̂d 0

0 0 0 (T ′qo)
−1X̂q 0 1

2 (T ′qo)
−1X̂q

0 0 1
2 (T ′do)

−1X̂d 0 (T ′′do)
−1X̂ ′d 0

0 0 0 1
2 (T ′qo)

−1X̂q 0 (T ′′qo)
−1X̂ ′q

 .

By invoking the Schur complement, R = RT ≥ 0 if and only if2
Xdi−X′di
T ′doi

Xdi−X′di
T ′doi

Xdi−X′di
T ′doi

2
X′di−X

′′
di

T ′′doi

 ≥ 0 and

2
Xqi−X′qi
T ′qoi

Xqi−X′qi
T ′qoi

Xqi−X′qi
T ′qoi

2
X′qi−X

′′
qi

T ′′qoi

 ≥ 0, ∀i ∈ V,

which holds if and only if

4(X ′di −X ′′di)T ′doi − (Xdi −X ′di)T ′′doi ≥ 0, (2.59a)

4(X ′qi −X ′′qi)T ′qoi − (Xqi −X ′qi)T ′′qoi ≥ 0, (2.59b)

holds for all i ∈ V. By substituting the quantities from (2.10) and simplying the
equations using computer algebra program Mathematica 11, we obtain

4(X ′di −X ′′di)T ′doi − (Xdi −X ′di)T ′′doi

= κ2ωs ·
4L2

f (LfMD − LfDMf )2RD + (LDLf − L2
fD)2M2

fRf

L2
f (LDLf − L2

fD)RDRf

∣∣∣∣∣
i

> 0

4(X ′qi −X ′′qi)T ′qoi − (Xqi −X ′qi)T ′′qoi

= κ2ωs ·
4L2

g(LgMQ − LgQMg)
2RQ + (LQLg − L2

gQ)2M2
gRg

L2
g(LQLg − L2

gQ)RQRg

∣∣∣∣∣
i

> 0

(2.60)

where by |i we mean the constants (e.g. Lf , Lg) associated to machine i ∈ V. We
claim that the inequality holds in (2.60). This follows from the fact for a realistic
synchronous machine we have that RD, RQ, Rf , Rg, Lf , Lg, LD, LQ > 0 and, since
Xd −X ′d > 0, Xd −X ′d > 0 (see Remark 2.4.4), we have that Mf 6= 0,Mg 6= 0. In
addition, LDLf − L2

fD > 0, LQLg − L2
fQ > 0 as the inductance matrices Ld,Lq

defined in (2.5), (2.6) are positive definite. Hence, (2.59) holds in the strict sense
and consequently R is positive semi-definite and therefore (2.58) defines a port-
Hamiltonian system.
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Remark 2.7.3 (Fifth- and fourth-order models). It can be shown that similar (but
slightly simpler) port-Hamiltonian structures appear for the fifth- and fourth-order
multi-machine networks using the corresponding (shifted) energy functions derived
in Section 2.6 and Section 2.7.1 as the Hamiltonian.

2.7.2 Third-order model

Recall from (2.53) that the energy stored in the inductive transmission line between
node i and j is given by

Hij =
Bij
ωs

(
1
2E
′2
qi + 1

2E
′2
qj − E′qiE′qj cos δij

)
. (2.61)

Observe that the gradient of Hij is given by[
∂Hij
∂δi
∂Hij
∂E′qi

]
= −Bij

ωs

[
−E′qiE′qj sin δij
−E′qi + E′qj cos δij

]
.

Define now the total energy stored in the transmission lines by HT =
∑
{i,j}∈E Hij .

Then we obtain likewise[
∂HT
∂δi
∂HT
∂E′qi

]
= − 1

ωs

[ ∑
j∈Ni Bij − E

′
qiE
′
qj sin δij

−BiiE′qi +
∑
j∈Ni BijE

′
qj cos δij

]
=

1

ωs

[
Pei
−Idi

]
.

Further notice that the electrical energy stored in machine i is given by

Hdqi =
1

2ωs

(E′qi)
2

Xdi −X ′di

and satisfies

(Xdi −X ′di)
∂Hdqi

∂E′qi
=

1

ωs
E′qi.

By the previous observations and aggregating the states, the dynamics of the third-
order multi-machine system (2.41) can now be written in port-Hamiltonian form
as δ̇

ṗ

Ė′q

 = ωs

 0 I 0
−I −D 0
0 0 −(T ′do)

−1(Xd −X ′d)

∇H + g

[
Pm
Ef

]
,

y = gT∇H, gT =

[
0 I 0
0 0 (T ′do)

−1

]
, H =

∑
i∈V

(
H̄mi +Hdqi

)
+

∑
{i,j}∈E

Hij

(2.62)
where Xd = diag(Xd1, . . . , Xdn), X ′d = diag(X ′d1, . . . , X

′
dn), and in addition T ′do =

diag(T ′do1, . . . , T
′
don).
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2.7.3 Swing equations

Recall from (2.54) that the energy stored in the inductive transmission line between
node i and j is given by

Hij = =
Bij
2ωs

(|E′i|2 − 2|E′i||E
′
j | cos θij + |E′j |2). (2.63)

Define now the total energy stored in the transmission lines by HT =
∑
{i,j}∈E Hij

and observe that the gradient of HT with respect to the transformed angle θ is
given by

∂HT

∂θi
=
∑
j∈Ni

Bij
ωs
|E′i||E

′
j | sin θij .

For the second-order model the electrical energy stored in the generator circuits
is constant and can therefore be omitted from the Hamiltonian without loss of
generality. By the previous observations and aggregating the states, the dynamics
of the second-order multi-machine system (2.42) with G = 0 can be written in
port-Hamiltonian form as[

δ̇
ṗ

]
= ωs

[
0 I
−I −D

]
∇H +

[
0
I

]
Pm

y =
[
0 I

]
∇H =

∆ω

ωs
, H =

∑
i∈V

H̄mi +
∑
{i,j}∈E

Hij .
(2.64)

2.7.4 Passivity

Since the multi-machine systems (2.58), (2.62), (2.64) are in the port-Hamiltonian
form

ẋ = (J −R)∇H(x) + gu

y = gT∇H(x)
(2.65)

with constant matrices J = −JT , R = RT ≥ 0, g, they satisfy the following shifted
passivity property.

Proposition 2.7.4 (Shifted passivity). Let (x̄, ū, ȳ) correspond to a steady state
of (2.65) and satisfy ∇2H(x̄) > 0, ȳ = gT∇H(x̄). Then the system (2.65) is
passive with respect to the shifted external port-variables (u − ū, y − ȳ), and the
local storage function is given by H̄(x) := H(x)− (x− x̄)T∇H(x̄)−H(x̄).
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Proof. By defining the shifted Hamiltonian (see e.g. [117]) as H̄(x) = H(x)− (x−
x̄)T∇H(x̄)−H(x̄), the system (2.65) can be rewritten as

ẋ = (J −R)∇H(x) + gu

= (J −R)(∇H̄(x) +∇H(x̄)) + gu

= (J −R)∇H̄(x) + g(u− ū)

y − ȳ = gT (∇H(x)−∇H(x̄)) = gT∇H̄(x).

The passivity follows by taking the time-derivative of the shifted Hamiltonian H̄
which yields

˙̄H = −(∇H̄(x))TR∇H̄(x) + (u− ū)T (y − ȳ) ≤ (u− ū)T (y − ȳ).

Since in addition ∇2H̄(x̄) = ∇2H(x̄) > 0, it follows that H̄ acts as a suitable local
storage function.

Remark 2.7.5 (Hessian condition). To use Proposition 2.7.4 one must verify
that the Hessian of the Hamiltonian evaluated at the (desired) equilibrium is
positive definite. For the second and third-order multi-machine models a sufficient
condition is established for guaranteeing that the Hessian is positive definite, see
[19, 32] respectively. It can be verified that these conditions hold for a typical
operation point of the power network, i.e., for which the voltage (angle) differences
are small. However, further research is required to establish similar conditions
for the higher-order multi-machine models, which preferably can be checked in a
distributed fashion.

The passivity property mentioned in Proposition 2.7.4 that the previously
derived multi-machine models (2.58), (2.62), (2.64) admit proves to be very useful
when interconnection with (passive and optimal) controllers, see Chapters 5 and
7 for an analysis of the third- and sixth-order models respectively.

2.8 Conclusions and future research

In this chapter we provided a unifying energy-based approach to the modeling
of multi-machine power networks. Starting from the first-principles model of
the synchronous machine, reduced order models are obtained and the underlying
assumptions are explained. After determining the energy functions of the reduced-
order models, port-Hamiltonian representations of the multi-machine systems are
established. In particular, it is shown that advanced multi-machine models that
are much more advanced can be analyzed using the port-Hamiltonian framework.
Moreover, the resulting port-Hamiltonian systems are proven to be shifted passive
with respect to its steady states. The latter property has turned out to be crucial
in many contexts, in particular for the stability analysis of the (optimal) equilibria
of the closed-loop system [32, 107, 113].
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2.8.1 Future research directions

The results established in this chapter can be extended in many possible ways.
We elaborate on the main research directions in the following.

Control

One natural extension of the work established in the present chapter is to consider
(distributed) control of multi-machine networks. For frequency control, this
can be done following the lines of [95, 108, 113]. Since in the present chapter
we established a systematic way for obtaining the energy functions and proved
(shifted) passivity of the system, we conjecture that the same kind of (distributed
averaging) controllers established in these references can be applied to (purely
inductive) multi-machine models where each synchronous machine is described
by a 2,3,4,5 or 6th-order model. In fact, the control of 6th-order multi-machine
networks will be discussed in Chapter 7 of this thesis. Alternatively, one can
continue along the lines of [64, 105, 107, 130] and consider controllers based
on the primal-dual gradient method. In addition, further effort is required to
investigate the possibilities of (optimal) voltage control using passive controllers.
One possibility is to extend the work of [32, 33] to high-dimensional multi-machine
models.

Nonzero transfer conductances

Another possible extension to this work is to include transmission line resistances
in the network. However, in [14, 75] and references therein it is observed that
in the case of nonzero transfer conductances, a Lyapunov-based stability analysis
can be cumbersome and involves adding nontrivial cross terms in the Lyapunov
function. Even then, the stability analysis relies on a ’sufficiently small transfer
conductances’ assumption [14, 75]. On the other hand, one approach that could be
adopted in future research is to assume the resistive transmission lines are uniform
such that the R/X ratios are identical for all transmission lines. This simplifies
the analysis and possibly the present work could be extended to this case (and
keeping the port-Hamiltonian structure intact), for example by following the lines
of [32] and references therein.

More extensive power network models

In the present chapter we considered the case that each node in the network
represents a synchronous machine. A natural extension is to generalize the
established results to the case where some of the nodes represent inverters or
(frequency-dependent) loads instead. In addition, while advanced models of the
synchronous generator are considered in this chapter, there are many possible
extensions to these models. For example, models for the turbine and speed
governor as considered in e.g. [3, 114, 130] could also be taken into account.
Finally, the model can be expanded such that the excitation system and the
automatic voltage regulator (AVR) are included as well [67].
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Optimization and frequency
regulation in power grids
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Introduction

As argued in Chapter 1, a major problem in future smart grids is the management
of demand and supply, due to a more active role of both producers and consumers
(or a combination of both, commonly called prosumers). Because of new market
architectures [124] and increased communication (e.g. with the use of smart
meters [57]), these players make choices about their production and consumption
more according to market-driven considerations. However, these purely economic
considerations cannot be detached from physical factors. In fact, demand-supply
imbalance of the active power can lead to sustained frequency deviations from the
desired reference value which can only be tolerated for a limited amount of time.
A natural approach to deal with this problem is to adjust power production and
consumption taking the measured frequency deviation as an output signal which
should be fed back to suitable control devices.

Within this approach, this raises the question to which set point the actual
production and consumption should be adjusted. An answer to this problem
comes from taking into account economic factors. A common approach in
economic modeling and analysis is to assume the existence of utility functions
for each prosumer, which measure the benefit that each prosumer is gaining
from producing/consuming a certain amount of power. The optimal allocation
of power consumption, production and distribution within the grid can then be
computed by maximizing the overall societal benefit, which is given by the sum
of the individual utilities minus the total generation costs. Of course, this is
subject to the physical constraints imposed by the grid which include the power
balance (demanded and supplied power should be in balance), capacity constraints
and thermal limits of the transmission lines. Under appropriate assumptions
on the utility functions (smoothness, concavity), one can compute the optimal
solution to the problem by the so-called dual-Lagrangian technique [12], which
moreover allows to solve the problem in a distributed fashion [62]. In fact, the
dual formulation leads to the optimal solution to the original problem, while the
Lagrangian multipliers associated with the dual formulation can be interpreted as
price variables associated with consumers and producers.

Once the optimal solution is found, control algorithms that guarantee the
convergence to such optimal solution must be designed. At each bus, corresponding
to consumers and producers, local measurements (such as frequency deviation,
power flows at the buses, etc.) are processed by the control algorithms to deliver
the optimal consumption/production. In our approach such rates are adjusted
dynamically depending on the measurements, thus leading to an increased adaptive
and flexible smart grid.
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Contributions

A solution we propose is to consider for the generation/consumption rates of each
producer/consumer a control algorithm driven by two factors. The first factor
models the selfish behavior of each agent that aims at maximizing its own utility
disregarding the other agents in the grid. This selfish behavior causes a departure
from the good operating regime of the grid, resulting e.g. in a deviation from
the reference frequency. This selfish behavior must be penalized by the second
factor that aims at regulating the production/consumption and depends on the
local frequency deviation. From a mathematical point of view, the ‘selfish’ term
coincides with the gradient of the concave/convex functions modeling respectively
the utilities and costs of the prosumers.

In this part of the thesis, we show that these algorithms are (shifted) passive
dynamical systems [118], which in fact can be written in port-Hamiltonian form.
Since the feedback interconnection of port-Hamiltonian systems is still a port-
Hamiltonian system, the overall dynamical system resulting from combining the
physical dynamics of the grid with the behavior of the prosumers defines a port-
Hamiltonian system. Hence, we are able to treat the ‘physical’ dynamics of the grid
and the ‘economic’ dynamics of the prosumers on an equal footing. Furthermore,
we exploit the modular character of port-Hamiltonian and passive systems. In
particular, we show that for the smart-grid/dynamic pricing interconnection we
can easily consider more complex models for the physical system and more
sophisticated (market-driven) control algorithms. Thus on the physical side we
do not restrict ourselves only to the well-known swing equations, that indeed
feature port-Hamiltonian and passivity properties [5]. Specifically, we consider
network-preserving and network-reduced models of the physical power grid that
include voltage dynamics, reactive power flows and high-dimensional synchronous
machine models. Compared to the existing literature these models are much more
complex and difficult to analyze.

On the economic side, we show that the dynamic pricing algorithms can
be constructed from the primal-dual gradient dynamics of a constrained social
welfare optimization problem. We consider several variations of this problem,
which include considering line congestion and power transmission costs for a
cyclic networks, and nodal generation and load limits for general graph topologies.
Moreover, the information exchange of (price-based) control variables occurs over
an connected communication graph, allowing for a distributed implementation
of the control mechanism. We show that shifted passivity plays a key role in
establishing local asymptotic stability of the physical/economical system to the
set of desired points (optimal power sharing and zero frequency deviation). This
in particular allows us to guarantee convergence without relying on small/large
gain arguments as seen in some other existing works (e.g. [131]).

We also study the passivity and convergence properties of general continuous-
time primal-dual dynamics, considering convex optimization problems with a
general class of constraints. In particular, we show that the equilibria of such
dynamics coincide with the primal-dual optimizers of the optimization problem
and, by exploiting shifted passivity, we establish global asymptotic convergence
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under the assumption of strict convexity of the objective function. We also study
primal-dual dynamics that are subject to hard constraints, that is, constraints that
may not be violated throughout the execution of the algorithm. A key contribution
to the existing literature is that we weaken the strict convexity assumption while
establishing pointwise asymptotic stability of such dynamics.

Finally, we compare the primal-dual based control algorithms with an alter-
native control scheme adopted throughout the literature, and often referred to as
distributed averaging integral (DAI) control [95]. Our contribution is that, we
consider simultaneously cost minimization and utility maximization as defined by
the social welfare problem. This is in contrast with the DAI control scheme where
only cost efficiency is considered. We consider the advantages and limitations
of each of the two control designs for social welfare maximization and their
performance is compared by simulations.

Outline

Chapter 3: In this chapter we introduce the primal-dual dynamics associated
to a general optimization problem. There we first consider the case that only
affine constraints are considered. For that case it is shown, that the primal-dual
dynamics admits a Brayton-Moser as well as a port-Hamiltonian representation.
By introducing suitable discontinuous passive subsystems and their interconnec-
tion with this port-Hamiltonian system, we are able to incorporate inequality
constraints in the underlying optimization problem. These results are then applied
to power networks by first introduction a simple social welfare problem and writing
the equations for the associated primal-dual dynamics, which can be interpreted
as a dynamic pricing algorithm. By interconnection with the swing dynamics of
the power network, local asymptotic stability of the closed-loop system is proven
and steady-state optimality is achieved.

Chapter 4: This chapter presents various extensions to the results of Chapter
3 on the application on power networks. In particular, a more advanced physical
power network model is adopted which includes both frequency and voltage
dynamics. In addition, after stating a distributed version of the dynamics pricing
scheme, numerous variations and extensions to the basic design are proposed.
These consist of including constraints on the power generation and consumption
for power grids with a general network topology. Also, thermal constraints on
the transmission lines and power transmission costs are considered in the social
welfare problem for acyclic networks. Furthermore, an alternative control scheme
is proposed to deal with the uncertainty of both power generation and demand.
By exploiting the passivity properties of the physical dynamics and the dynamic
pricing mechanism, we establish (voltage) stability and convergence to a state of
optimal social welfare and also zero frequency.

Chapter 5: Here we present market-driven controllers for structure-preserving
power networks, i.e., a distinction is made between generator and load nodes.
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First, we formulate the power network dynamics as a system differential-algebraic
equations (DAE’s) that considers both active and reactive power flows. Then
a dynamic pricing algorithm is constructed from the associated social welfare
problem that assigns possibly different prices at the generator and load nodes.
We show that the interconnection with the physical system result in a closed-
loop DAE-system, whose algebraic constraints can eliminated to obtain a system
of ordinary differential equations. By constructing a suitable energy-inspired
Lyapunov function, the equilibrium set corresponding to optimal active power
sharing and zero frequency deviation is proven to be locally asymptotically stable.

Chapter 6: In this chapter we propose an alternative control scheme inspired
by the popular distributed averaging integral (DAI) controller and a comparison
is made with the primal-dual gradient based controller design. We start with
defining a simple optimization problem involving aiming at the trade-off between
maximizing the consumer utility and minimizing generation costs. Then the two
different controllers are constructed for this social welfare problem and are inter-
connected with the power network swing equations. We discuss the advantages and
limitations of each approach and prove the closed-loop convergence and optimality
in each case. Finally, we show with simulations the different performance of the
two controllers for the same scenario.

Chapter 7: We show here that optimal power sharing can also be achieved for
high-dimensional models of power network. Specifically, a sixth order model is
used to describe dynamics of each synchronous machine. By defining the energy
functions of the system, we obtain a port-Hamiltonian representation of the multi-
machine network. Then a consensus based control architecture is proposed in port-
Hamiltonian form to obtain frequency regulation and optimal power sharing in the
presence of an unknown demand. By utilizing the (sparse) interconnection and
damping structure of the closed-loop port-Hamiltonian system, local asymptotic
stability is guaranteed under some equilibrium condition.

Chapter 8: This final chapter in this part focuses on general primal-dual
dynamic that deal with hard inequality constraints. We consider a general convex
optimization problem with affine equality constraint and convex inequality con-
straints. For such an optimization, a primal-dual gradient dynamics is constructed
that includes a projection of the primal variables onto the feasible set defined by the
inequality constraints. For the resulting complementarity system global pointwise
convergence to the set of primal-dual optimizers is proven without requiring strict
convexity of the objective function. As an application outside power networks, we
consider a job scheduling problem in data centers and show the effectiveness of
our approach.



59

Chapter 3

Primal-dual dynamics for online
optimization in power networks

Abstract: Primal-dual gradient methods are well-known for solving constrained
convex optimization problems. In this chapter, we study the passivity and stability
properties of its continuous-time counterpart. We show for convex optimization
problems with affine equality constraints that the primal-dual dynamics admits a
Brayton-Moser and a port-Hamiltonian representation. In fact, its dynamics can
be interpreted as a interconnection of multiple (incrementally port-Hamiltonian)
passive systems, a property that also holds when considering inequality constraints
in the optimization problem. This passivity property plays a key role in proving
asymptotic stability of the method to the set of optimizers, which invokes a suitable
invariance principle. As an application to smart grids, we study the problem
of frequency regulation in power grids while allocating the power generation and
consumption to maximize the total social welfare. By constructing its associated
primal-dual dynamics, we obtain a real-time dynamic pricing model in port-
Hamiltonian form. By coupling with the port-Hamiltonian description of the phys-
ical network we obtain a closed-loop port-Hamiltonian system, whose properties
are exploited to prove local asymptotic stability of the interconnected system.

Published as:
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3.1 Introduction

Constrained optimization problems arise in various domains, including optimal
resource allocation, network flow control and welfare maximization. One of the
well-known algorithms for determining the (primal-dual) optimizers of such a
constrained optimization problem is the primal-dual gradient method [6]. To
make such algorithms more flexible, there is an increasing body of research that
looked at ways to apply the primal-dual gradient method in dynamic environments,
see e.g. [120, 125, 136]. For example, a common approach to flow control is
to decompose the problem into a static optimization problem and a dynamic
stabilization problem [55, 66]. The static optimization incorporates capacity
constraints and utilization and/or cost efficiency, and its solution provides the
desired steady state operating point (equilibrium of the closed loop system). The
update laws of the dynamic system are then designed to guarantee asymptotic
stability of the equilibrium.

Recently, such dynamic optimization algorithms are also interconnected with
physical systems. The motivation for having the interconnection with other
(physical) systems are applications where there is the need to have online (real-
time) optimization. Examples of such online optimization methods can be found
for energy efficient buildings [28, 43], job scheduling in data centers [116], network
flow control [126] and power networks [131, 136]. A natural starting point to
analyze these coupled systems is to start from comprehensive modeling frameworks
for physical systems. Two of these are the closely-related Brayton-Moser and
the port-Hamiltonian frameworks, see [49, 50] and [76, 117] respectively, which
lend themselves for multi-domain modeling. For example, in [28] a Brayton-
Moser framework is adopted in the control of energy-efficient buildings and in
[37] a complex large scale power network is modeled using the port-Hamiltonian
framework. In this chapter, we show that the primal-dual gradient dynamics
associated to an optimization problem also admit Brayton-Moser and port-
Hamiltonian representations. This enables them to be interconnected with physical
systems using the same perspective, and analyzing them by considering the same
tools as utilized in these frameworks. A key property property of many physical
systems is passivity, i.e. the rate of change of energy is equal to the power supplied
to the system minus the energy dissipation rate. In this work, we show the primal-
dual dynamics naturally admits such passivity property, which allows for a two-
way power-preserving interconnection with a physical system. In this way, the
primal-dual dynamics can be used as feedback controller for the physical system.

This is particularly useful for power networks where it is desired to quickly
restore operation to the optimal point after a change in the (physical) system
has occurred. In power networks, this optimal point often corresponds to a fair
sharing of resources among generators and consumers. The problem of allocating of
power generation and demand in an optimal manner while respecting the physical
constraints is called the social welfare problem. We show in this research that
the primal-dual dynamics associated to the social welfare problem can in fact be
interpreted as a simple market model for real-time dynamic pricing. In this way,
we are able to analyze the economic and physical aspects in an unifying manner.
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Contributions

The key contributions of this chapter are the following. First, we show that for
convex optimization problems with affine equality constraints, the dynamics of
the associated gradient method can be represented as a Brayton-Moser or a port-
Hamiltonian system. A main advantage of the latter representation is that the
system can then easily be interconnected to other port-Hamiltonian systems. For
the case of smart grids, it is possible to formulate the market dynamics as a
port-Hamiltonian system which can be interconnected with the physical model
to obtain a closed-loop port-Hamiltonian system. Using this formulation, the
stability analysis is straightforward where the (shifted) Hamiltonian naturally acts
as a Lyapunov function.

Secondly, in case of a general convex minimization problems with inequality
constraints, we show that the dynamics of the gradient method can be interpreted
as an interconnection of multiple (shifted) passive systems corresponding to the
equality and inequality constraints respectively. By interconnecting them via
power-ports the shifted passivity of the coupled system follows, for which we show
that it is a useful property in the stability analysis of the gradient method and the
interconnection with external (shifted) passive systems.

Finally, we apply this general theory on the gradient method to a physical
model of the power network. We consider the social welfare maximization problem
with the constraint of zero frequency deviation and design a controller based on
the gradient method that achieves these goals. The energy-based design method
we propose is fundamentally different from the methods in the existing literature
and enables the coupling of the market and physical dynamics in smart grids. This
in particular allows us to rigorously prove the asymptotic stability of the nonlinear
physical-economical system and its convergence to a point of optimal social welfare
and zero frequency deviation.

Outline: The outline of this chapter is as follows. Section 3.2 states some
preliminaries regarding with convex optimization problems and the associated
optimality conditions. The results on the primal-dual gradient method are
discussed in Section 3.3. Here we first consider the case of only affine equality
constraints in the optimization problem and explain how the primal-dual dynamics
are constructed and can be represented as a Brayton-Moser or a port-Hamiltonian
system. Thereafter, convex inequality constraints are included as well and a
passivity-based proof will be given on the convergence to the set of optimal
points. In Section 3.4 the gradient method is applied to the social welfare problem
appearing power networks. First, a model describing the power network dynamics
is given in the form of the swing equations. Then the physical model of the power
network is coupled with the primal-dual dynamics to obtain a asymptotically stable
closed-loop port-Hamiltonian system, whose equilibria corresponds to maximal
social welfare and zero frequency deviation.
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3.2 Convex optimization

In this chapter we consider optimization problems of the form

minimize
x

f(x) (3.1a)

subject to Ax = b (3.1b)

g(x) ≤ 0 (3.1c)

where A ∈ Rm×n, b ∈ Rm. We use the notation g(x) = col(g1(x), . . . , gq(x)) and
the inequality (3.1c) holds element-wise. The function f : Rn → R is called the
objective function, and x ∈ Rn is often referred to as a primal variable. We assume
that f, gi : Rn → R, i = 1, . . . , q, are continuous differentiable convex functions.
In such a case (3.1) is referred to as a convex optimization problem.

We assume that there exists x ∈ Rn such that Ax = b and g(x) < 0. This
condition is also referred to as Slater’s condition. (And a weaker version exists if
some gi’s are affine functions, see also [12].) Under this assumption, using the fact
that the problem (3.1) is convex, we know that x̄ is an optimal solution to (3.1)
if and only if there exist so called dual variables λ̄ ∈ Rm, µ̄ ∈ Rq such that the
Karush-Kuhn-Tucker (KKT) optimality conditions

∇f(x̄) +
∑
i∈Iq

∇gi(x̄)µ̄i +AT λ̄ = 0 (3.2a)

Ax̄− b = 0 (3.2b)

0 ≥ g(x̄) ⊥ µ̄ ≥ 0 (3.2c)

are satisfied [12]. Here we use the compact notation (3.2c) for the conditions
g(x) ≤ 0, (g(x))Tµ = 0, and µ ≥ 0 where the inequalities hold element-wise.
Define Z̄ as the set of all solutions to the KKT conditions, i.e.

Z̄ := {(x̄, λ̄, µ̄) | (x̄, λ̄, µ̄) is a solution to (3.2)} (3.3)

and suppose that Z̄ 6= ∅ so that the minimization problem is feasible. The aim is to
find (x̄, λ̄, µ̄) ∈ Z̄, but typically it is hard to construct such a point using the KKT
conditions (3.2) directly. Instead, there is a broad range of literature that proposes
(iterative) algorithms to find such a primal-dual optimizer. In the next section we
consider a few variants of such algorithms in the continuous-time domain, and
discuss in more detail their passivity properties and conditions for asymptotic
stability. We refer to such algorithms as primal-dual (gradient) dynamics, since
the associated dynamical system describes the evolution of both the primal and
dual variables.

3.3 Primal-dual gradient dynamics

In this section we introduce a continuous-time gradient algorithm for solving a
general convex optimization problem. We start with a simpler case where only
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affine equality constraints are considered and thereafter discuss how inequality
constraints can be added. We show that in the former case the associated primal-
dual dynamics can be represented in several ways. Our first observation is that it
can be represented as a Brayton-Moser system where the Lagrangian acts naturally
as the potential function. Then we show that by transitioning from co-energy
to energy variables it is possible to rewrite the Brayton-Moser equations as an
incrementally port-Hamiltonian system, which lends itself for a straightforward
stability analysis.

3.3.1 Brayton-Moser representation

Let us consider the following minimization problem with affine equality constraints

minimize
x

f(x)

subject to Ax− b = 0,
(3.4)

where f is assumed to be a strictly convex function and A ∈ Rm×n satisfies
ker(AT ) = {0}. The corresponding Lagrangian is given by

L(x, λ) = f(x) + λT (Ax− b)

From the first-order optimality conditions of (3.4), see also (3.2), we observe that
the gradient of L satisfies

∇L(x̄, λ̄) =

[
∇f(x̄) +AT λ̄

Ax̄− b

]
= 0. (3.5)

We assume that (3.4) is feasible and, as a result, there is a unique (x̄, λ̄) satisfying
(3.5). Then the associated primal-dual gradient dynamics is described by

Kxẋ = −∇f(x)−ATλ
Kλλ̇ = Ax− b.

(3.6)

where Kx ∈ Rn×n,Kλ ∈ Rm×m are symmetric positive definite matrices repre-
senting the gains of the dynamics. An interesting observation we make is that
the latter system can be written in Brayton-Moser form (see e.g. [117] for more
details) [

∂2H∗

∂x2 (x, λ) 0

0 −∂
2H∗

∂λ2 (x, λ)

] [
ẋ

λ̇

]
= −

[
∂L
∂x (x, λ)
∂L
∂λ (x, λ)

]
. (3.7)

Here the co-energy variables are z = (x, λ) and the co-Hamiltonian amounts to

H∗(z) = H∗1 (x) +H∗2 (λ) =
1

2
xTKxx+

1

2
λTKλλ.
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Interestingly, the Lagrangian function acts as the mixed-potential function of the
system (3.7). The pseudo-Riemannian metric is in this case given by

Q =

[
∂2H∗1
∂x2 (x) 0

0 −∂
2H∗2
∂λ2 (λ)

]
=

[
Kx 0
0 −Kλ

]
.

Note that since Q is indefinite, L cannot be used as a Lyapunov function to prove
asymptotic stability of the system. However, we can make use of the fact that the
Lagrangian is a saddle function, i.e. L(x, λ) is (strictly) convex in x and concave
in λ. In particular, we note that (x̄, λ̄) is a saddle-point meaning that [6]

L(x̄, λ) ≤ L(x̄, λ̄) ≤ L(x, λ̄), ∀x ∈ Rn,∀λ ∈ Rm. (3.8)

As a result, the function

V (z) =
1

2
(x− x̄)TKx(x− x̄) +

1

2
(λ− λ̄)TKλ(λ− λ̄) (3.9)

qualifies for a Lyapunov function as we show now.

Proposition 3.3.1 (Asymptotic convergence of (3.6)). Consider system (3.6) and
assume f is strictly convex. Then the saddle-point (x̄, λ̄) is globally asymptotically
stable.

Proof. By taking the time-derivative of V we obtain

V̇ = −(x− x̄)T
∂L

∂x
(x, λ) + (λ− λ̄)T

∂L

∂λ
(x, λ)

≤ L(x̄, λ)− L(x, λ) + L(x, λ)− L(x, λ̄) = L(x̄, λ)− L(x, λ̄) ≤ 0

Since f is strictly convex and by (3.8) equality holds only if x = x̄. On the largest
invariant set where V̇ = 0 we have that

ẋ = −∇f(x̄)−ATλ = −AT (λ− λ̄) = 0

and thus λ = λ̄ as ker(AT ) = {0} by assumption. By LaSalle’s invariance principle
[56] it then follows that each trajectory satisfying (3.6) converges to the unique
saddle-point (x̄, λ̄).

Augmentation

In the result of Proposition 3.3.1 we assumed that the objective function f is
strictly convex. We show now that by a slight modification of the primal-dual
dynamics (3.5), we only require convexity of f for the convergence. To this end,
consider the optimization problem

minimize
x

f(x)− ‖Ax− b‖2Ξ
subject to Ax− b = 0,

(3.10)
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with positive definite matrix Ξ ∈ Rm×m and note that the set of optimizers if
identical with the set of optimizers of (3.4). We refer to now to a set of optimizer
since if f is assumed to be convex only, then there may be a continuum of optimal
solutions to (3.4). The corresponding Lagrangian is of the form

L(x, λ) = f(x) + λT (Ax− b) +
1

2
‖Ax− b‖2Ξ, (3.11)

and is often referred to as the augmented Lagrangian. The primal-dual dynamics
is now given by

Kxẋ = −∇f(x)−ATλ−ATΞ(Ax− b)
Kλλ̇ = Ax− b.

(3.12)

and can again be written in the Brayton-Moser form (3.7) but now with L being
the augmented Lagrangian defined by (3.11). We observe that the set of equilibria

Z̄ = {(x̄, λ̄) | − ∇f(x̄)−AT λ̄ = 0, Ax̄ = b} (3.13)

of (3.12) is identical to the set of primal-dual optimizer of (3.10) or equivalently
(3.4). The next result states the convergence of the dynamics.

Proposition 3.3.2 (Asymptotic convergence of (3.6)). Consider system (3.12).
Assume f is convex and Ξ > 0. Then the set of primal-dual optimizers Z̄ is
globally asymptotically stable.

Proof. Consider again the function V defined by (3.9). Its time-derivative takes
the form

V̇ = −(x− x̄)T (−∇f(x)−ATλ−ATΞ(Ax− b)) + (λ− λ̄)T (Ax− b)
= −(x− x̄)T (∇f(x)−∇f(x̄))− ‖Ax− b‖2Ξ ≤ 0

(3.14)

Since f is convex equality holds only if ∇f(x) = ∇f(x̄) and Ax = b. On the
largest invariant set where V̇ = 0 we then have that

ẋ = −∇f(x̄)−ATλ = −AT (λ− λ̄)

λ̇ = 0

where λ is constant. By (3.14) the trajectories are bounded and therefore ẋ = 0.
Thus λ = λ̄ follows as before. By LaSalle’s invariance principle [56] it then follows
that each trajectory satisfying (3.6) converges to the set Z̄.

3.3.2 Port-Hamiltonian representation

In this section we show that the primal-dual dynamics (3.12) also admits a port-
Hamiltonian representation. To capture both cases considered in Section 3.3.1,
i.e. the primal-dual dynamics with and without augmentation, we consider the
general case where Ξ ≥ 0 is a positive semi-definite matrix.
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In the Brayton-Moser formulation (3.7) x and λ are co-energy variables. We
perform the transition to energy variables x as

x =

[
xx
xλ

]
=
∂H∗

∂z
(z) =

[
Kxx
Kλλ

]
=

[
Kxx
Kλλ

]
.

Note that, in the sequel, we will interchangeably write the system dynamics in
terms of either energy or co-energy variables for ease of notation. The Hamiltonian
is given by the Legendre transform of H∗ given as

H(x) = xT z(x)−H∗(z(x)) =
1

2
xTK−1x

with K := blockdiag(Kx,Kλ). We can now rewrite system (3.12) as

ẋ =

[
−ATΞA −AT

A 0

]
∇H(x)−∇f(eR)

eR = ∇H(x) = z =

[
x
λ

] (3.15)

with f : Rn+m → R, f(x) = f(x, λ) = f(x) − λT b. Since f is convex, f is also
convex and, as a result, (3.15) satisfies the monotone relationship

(eR1 − eR2)T (∇f(eR1)−∇f(eR2)) ≥ 0 (3.16)

for all eR1, eR2 ∈ Rn+m, and thus (3.15) defines an incrementally port-Hamiltonian
system. Recall that any (x̄, λ̄) satisfying (3.5) is an equilibrium of the latter system
and vice versa. Given such primal-dual optimizer (x̄, λ̄) we can then define the
shifted Hamiltonian by H̄(x) = 1

2 (x − x̄)TK−1(x − x̄) with x̄ = (Kxx̄,Kλλ̄) such
that we obtain the equivalent system description

ẋ =

[
−ATΞA −AT

A 0

]
∇H̄(x)−∇f(eR) +∇f(ēR)

eR = ∇H(x) =

[
x
λ

]
, ēR = ∇H(x̄) =

[
x̄
λ̄

]
eR − ēR = ∇H̄(x),

(3.17)

Using this form of the system, it is straightforward to establish the same asymp-
totic stability results as derived in Section 3.3.1, i.e. asymptotic stability to the
set of optimal points is guaranteed provided that either (i) f is a strictly convex
function or (ii) Ξ is a positive definite matrix. In particular, we observe that by
exploiting the structure of the system (3.17) that

˙̄H(x) = −(∇H̄(x))T
[
ATΞA 0

0 0

]
∇H̄(x)− (eR1 − eR2)T (∇f(eR1)−∇f(eR2))

= −‖Ax− b‖2Ξ − (x− x̄)T (∇f(x)−∇f(x̄)) ≤ 0 (3.18)
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which is similar as what we derived in (3.14).

Remark 3.3.3 (Benefits of using the port-Hamiltonian framework). One of the
benefits of using the port-Hamiltonian form of the system (3.6) is that even if
the the number of variables and equalities in the optimization problem increases,
the interconnection and damping structure is easily observed and an explicit form
the the monotone relationship can be given. Moreover, the (shifted) Hamiltionian
naturally is a canditate Lyapunov function candidate. This makes the stability
analysis of the system straightforward, in particular when interconnecting it with
other systems in port-Hamiltonian form, as we will show in Section 3.4.

3.3.3 Incorporation of inequality constraints

In this section we extend some of the previous convergence results to the case
where also inequality constraints in the minimization problem (which are of the
form (3.1c)) are considered. We restrict ourselves to the case where the Lagrangian
is not augmented, i.e. Ξ = 0, see also Section 3.3.1. To deal with the inequality
constraints, we introduce the following input-output systems

ẋµi = (gi(wi))
+
µi :=

{
gi(wi) if µi > 0
max{0, gi(wi)} if µi = 0

yµi = ∇gi(wi)∇Hµi(xµi), i ∈ Iq = {1, . . . , q}
(3.19)

where xµi := Kµiµi, µi : R≥0 → R≥0,Kµi > 0, Hµi(µi) = 1
2K
−1
µi x

2
µi and gi : Rn →

R are convex continuously differentiable functions for i ∈ Iq. Here wi ∈ Rn is
the input and yµi ∈ Rn is output of system i ∈ Iq. One important observation
we make is that (µ̄i, w̄i) corresponds to an equilibrium of (3.19) if and only if it
satisfies the complementarity conditions

gi(w̄i) ≤ 0, gi(w̄i)µ̄i = 0, µ̄i ≥ 0. (3.20)

The following proposition states the shifted passivity property of the subsystems
(3.19).

Proposition 3.3.4. Let i ∈ Iq and suppose (µ̄i, w̄i) satisfies (3.20). Then (3.19)
is passive with respect to the shifted external port-variables w̃i := wi − w̄i, ỹµi :=
yµi − ȳµi with ȳµi = ∇gi(w̄i)µ̄i. In addition, for constant input signal w(t) = w̄i,
µi(t) converges in finite time an equilibrium of (3.19).

Proof. Let i ∈ Iq and let (µ̄i, w̄i) satisfy (3.20). Define the shifted state variable
µ̃i := µi− µ̄i. We first observe that for all ωi ∈ Rn the following inequalities hold.

µ̃i(gi(wi))
+
µi ≤ µ̃igi(wi) (3.21a)

gi(wi) ≤ gi(w̄i) + (wi − w̄i)T∇gi(wi) (3.21b)

gi(wi) ≥ gi(w̄i) + (wi − w̄i)T∇gi(w̄i) (3.21c)

µ̃igi(w̄i) ≤ 0 (3.21d)
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The first inequality holds since if µi > 0 it trivially holds and if µi = 0 then

µ̃i(gi(wi))
+
µi = −µ̄i max{0, gi(wi)} = min{0,−µ̄igi(wi)}
≤ −µ̄igi(wi) = µ̃igi(wi).

Inequalities (3.21b),(3.21c) follow from the convexity of the function gi. Finally,
(3.21d) holds because

µ̃igi(w̄i) = µigi(w̄i) ≤ 0

since µi ≥ 0, gi(w̄i) ≤ 0 and µ̄igi(w̄i) = 0. Next, consider the shifted storage
function H̄µi = 1

2K
−1
µi r̃

2
µi = 1

2Kµi µ̃
2
i and suppose that µ̃i ≥ 0 for the moment.

Then by the previous observations (3.21) we obtain

˙̄Hµi = µ̃i(gi(wi))
+
µi ≤ µ̃igi(wi) ≤ µ̃i(gi(w̄i) + w̃Ti ∇gi(wi))

≤ w̃Ti ∇gi(wi)µ̃i
≤ w̃Ti ∇gi(wi)µ̃i + w̃Ti (∇gi(wi)−∇gi(w̄i))µ̄i
= w̃Ti [∇gi(wi)µi −∇gi(wi)µ̄i +∇gi(wi)µ̄i −∇gi(w̄i)µ̄i]
= w̃Ti (∇gi(wi)µi −∇gi(w̄i)µ̄i) = w̃Ti ỹµi .

Suppose now that µ̃i < 0, then we obtain similarly

˙̄Hµi = µ̃i(gi(wi))
+
µi ≤ µ̃igi(wi) ≤ µ̃i(gi(w̄i) + w̃Ti ∇gi(w̄i))

≤ w̃Ti ∇gi(w̄i)µ̃i
≤ w̃Ti ∇gi(w̄i)µ̃i + w̃Ti (∇gi(wi)−∇gi(w̄i))µi
= w̃Ti [∇gi(w̄i)µi −∇gi(w̄i)µ̄i +∇gi(wi)µi −∇gi(w̄i)µi]
= w̃Ti (∇gi(wi)µi −∇gi(w̄i)µ̄i) = w̃Ti ỹµi .

Hence, for all µi ≥ 0 we have ˙̄Hµi ≤ w̃Ti ỹµi , so (3.19) is passive with respect to the
shifted external port-variables w̃i, ỹµi . Now we will prove the second statement.
Let i ∈ Iq and suppose that wi(t) = w̄i for all time t ≥ 0, then in particular
gi(wi) = gi(w̄i) ≤ 0. If gi(w̄i) = 0 it is immediately obtained that µi : R≥0 → R≥0

satisfies

gi(w̄) ≤ 0, gi(w̄)µi = 0, µi ≥ 0 (3.22)

Hence, µi(t) satisfying (3.19) is at steady state for all t ≥ 0. If gi(w̄i) < 0 then
there exists a finite time T = −µ(0)/gi(wi) such that µi(T ) satisfies equation
(3.22). In fact, µi(t) = 0 for all t ≥ T in that case and thus u(t) convergences to
an equilibrium of (3.19) in finite time. This concludes the proof of Proposition
3.3.4.
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To be able to interconnect the subsystems (3.19) to (3.15) we introduce addi-
tional inputs and outputs to obtain the incrementally port-Hamiltonian system

ẋ =

[
0 −AT
A 0

]
∇H(x)−∇f(eR) +

[
I
0

]
u

y =
[
I 0

]
∇H(x) = x

eR = ∇H(x) = z =

[
x
λ

] (3.23)

with f as defined before. In particular, the following shifted passivity property is
satisfied.

Proposition 3.3.5 (Shifted passivity of (3.23)). Let x̄, ēR, ȳ be such that

0 =

[
0 −AT
A 0

]
∇H(x̄)−∇f(ēR) +

[
I
0

]
ū

ȳ =
[
I 0

]
∇H(x̄)

ēR = ∇H(x̄)

(3.24)

Then (3.23) is passive with respect to the shifted input-output variables (u−ū, y−ȳ)
using storage function H̄(x) = 1

2 (x− x̄)TK−1(x− x̄).

Proof. The proof of this lemma follows the lines of Section 3.3.2 with the addition
that also the shifted inputs and outputs appear in the system (3.17) and the
dissipation inequality (3.18).

Having established the shifted passivity property of subsystems (3.19) and
(3.24), we are now able to interconnect them by introducing the following inter-
connection structure given by

wi = y ∀i ∈ Iq, u = −
∑
i∈Iq

yµi , (3.25)

which defines a power-preserving coupling between the systems (3.19) and (3.23).
In this way, the closed-loop dynamics can be written as

Kxẋ = −∇f(x)−ATλ−ATΞ(Ax− b)−∇g(x)µ

Kλλ̇ = Ax− b.
Kµi µ̇i = (gi(x)))+

µi , i ∈ Iq

(3.26)

or in the partial port-Hamiltonian form as

ẋ =

[
0 −AT
A 0

]
∇H(x)−∇f(eR)−

[
∇g(x)µ

0

]
ẋµi = (gi(x))+

µi , i ∈ Iq, (3.27)

eR = ∇H(x)
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Here the total storage function is He(x, xµ) := H(x) +
∑
i∈Iq Hµi(xµi) and we use

the convention ∇g(x) =
[
∇g1(x) · · · ∇gq(x)

]
, µ = (µ1, . . . , µq) ∈ Rq≥0. The set

of equilibria Z̄e of the latter system is characterized by

−∇f(x̄)−AT λ̄−∇g(x̄)µ̄ = 0,

Ax̄ = b,

0 ≥ g(x̄) ⊥ µ̄ ≥ 0

(3.28)

i.e. (x̄, λ̄, µ̄) ∈ Z̄e if and only if it satisfies (3.28). The important observation
we make is that the equilibrium set Z̄e is identical to the set of solutions of
the KKT optimality conditions corresponding to the minimization problem (3.1).
Moreover, provided that f is strictly convex, the solutions of (3.29), (3.27) or
equivalently (3.26) converge asymptotically to the set of optimal points of the
latter minimization problem, as we show in the next theorem.

Theorem 3.3.6. Suppose that Z̄e 6= ∅ and that f is strictly convex. Then all
trajectories (x, λ, µ) of (3.26) converge to the set Z̄e.

Proof. Let (x̄, λ̄, µ̄) ∈ Z̄e and define x̄ = (Kxx̄,Kλλ̄), x̄µ = (x̄µ1
, . . . , x̄µm) =

(Kµ1
µ̄1, . . . ,Kµm µ̄m) = Kµµ̄ and ēR = ∇H(x̄). Consider the shifted storage

function

H̄e(x, xµ) = H̄(x) +
∑
i∈Iq

H̄µi(xµi)

then (3.27) can equivalently be written as

ẋ =

[
0 −AT
A 0

]
∇H̄(x)−∇f(eR)−∇f(ēR)−

[
∇g(x)µ−∇g(x̄)µ̄)

0

]
ẋµi = (gi(x))+

µi , i ∈ Iq (3.29)

eR − ēR = ∇H̄(x)

By exploiting the shifted passivity properties of the subsystems (see Propositions
3.3.4 and 3.3.5), we note that the time-derivative of H̄e satisfies

˙̄He(x, xµi) = ˙̄H(x) +
∑
i∈Iq

˙̄Hµi(xµi) ≤ ũT ỹ +
∑
i∈Iq

w̃Ti ỹµi
(3.25)

= ũT ỹ − ũT ỹ = 0.

where ũ = u − ū and w̃i, ỹ, ỹµi , i ∈ Iq are define likewise. Observe that ˙̄He = 0
only if x = x̄ by the proof of Proposition 3.3.1. On this invariant set we have that
λ̇ = 0 and, by the second statement of Proposition 3.3.4, µi, i ∈ Iq are also at
equilibrium. By applying a Caratheodory variant of LaSalle’s invariance principle
(as stated in [26]) we conclude that (x, λ, µ)→ Z̄e as t→∞.
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3.4 Online optimization in power networks

In this section we consider an application of the primal-dual gradient method for
power networks. We start with introducing the model describing the frequency
evolution of the network and then define the social welfare maximization problem.
Thereafter, we use its associated primal-dual dynamics to design an online con-
troller which maximizes the social welfare while regulating the physical frequency.

3.4.1 Power network model

Consider a power grid consisting of n buses. The network is represented by a
connected, undirected graph G = (V, E), where nodes V = In := {1, . . . , n}
represent buses and edges E ⊂ V × V are the transmission lines connecting the
buses. Let m denote the number of edges, arbitrarily labeled with a unique
identifier in Im. The ends of edge k ∼ {i, j}, with i, j ∈ V are arbitrary labeled
with a ‘+’ and a ‘-’, so that the incidence matrix D of the network is given by

Dik =


+1 if i is the positive end of k

−1 if i is the negative end of k

0 otherwise.

Each bus represents a control area and is assumed to have controllable power
generation and a controllable load. The dynamics at each bus is given by [67]

δ̇i = ωi

Miω̇i = −
∑
j∈Ni

ViVjBij sin(δi − δj)−Aiωi + Pgi − Pdi, (3.30)

which are commonly known as the swing equations. A list of variables and
parameters used in model (3.30) is given in Table 3.1. By using the power network

δi voltage angle at bus i
ωi frequency deviation at bus i
Vi voltage at bus i
Mi moment of inertia at bus i
Ai damping constant at bus i
Ni set of buses connected to bus i
Bij susceptance of the line between buses i and j
Pdi power demand at bus i
Pgi power generation at bus i

Table 3.1: Variables and parameters of the system (3.30).

model (3.30) the following assumptions are made, which are standard in a broad
range of literature on power network dynamics.

Assumption 3.4.1 (swing equation model). For (3.30) we assume the following:
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• Lines are lossless, i.e. the conductance is zero. This assumption is generally
valid for the case of high voltage lines connecting different control areas.

• Nodal voltages Vi are constant.

• Reactive power flows are ignored.

• A balanced load condition is assumed, such that the three phase network
can be analyzed by a single phase.

More details regarding the derivation of (3.30) and the underlying assumptions
can be found in Chapter 2. We define the voltage angle differences between the
buses by η = DT δ ∈ Rm where δ = (δ1, . . . , δn) ∈ Rn. Further define the angular
momenta of the moments of inertia M = diag(M1, . . . ,Mn) by p := Mω, where
ω = (ω1, . . . , ωn) is the frequency deviation with respect to the nominal frequency.
In addition, A = diag(A1, . . . , An) > 0. Let Γ = diag(γ1, . . . , γm) > 0 where
γk = ViVjBij for each edge k ∼ {i, j} between nodes i, j ∈ V. Finally, we define
the Hamiltonian Hp(η, p) by

Hp(η, p) =
1

2
pTM−1p− 1TΓ cos η

then the swing equations (3.30) are represented in port-Hamiltonian form as[
η̇
ṗ

]
=

[
0 DT

−D −A

]
∇Hp(η, p) +

[
0 0
I −I

]
u1

y1 =

[
0 I
0 −I

]
∇Hp(η, p) =

[
M−1p
−M−1p

]
=

[
ω
−ω

] (3.31)

with inputs u1 = (Pg, Pd) ∈ R2n. We assume the initial condition of the system
satisfies η(0) = DT δ(0). An immediate observation is that that the system (3.31)
is passive with storage function Hp. In particular, it satisfies the passivity property

Ḣp ≤ uT1 y1. We also note that (3.31) is passive with respect to the steady states
of the system. However, since the potential energy of the system is bounded, this
passivity property only holds locally.

Proposition 3.4.2 (Local shifted passivity of (3.31)). Consider system (3.31).
Let η̄, p̄, ū1, ȳ1 correspond to an equilibrium of (3.31), i.e.,

0 =

[
0 DT

−D −A

]
∇Hp(η̄, p̄) +

[
0 0
I −I

]
ū1, (3.32)

ȳ1 =

[
0 I
0 −I

]
∇Hp(η̄, p̄). (3.33)

Suppose furthermore that η̄k ∈ (−π2 ,
π
2 ) for all k ∈ E. Then (3.31) is passive with

respect to the shifted input-output variables ũ1 := u1 − ū1, ỹ1 := y1 − ȳ1 where the
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local storage function takes the form

H̄p(η, p) := H(η, p)−
[
(η − η̄)T (p− p̄)T

] [∂Hp
∂η (η̄, p̄)
∂Hp
∂p (η̄, p̄)

]
−H(η̄, p̄). (3.34)

Proof. Consider the storage function defined in (3.34). We first observe that
H̄(η̄, p̄) = 0,∇H̄p(η̄, p̄) = 0 and the Hessian of H̄p evaluated at (η̄, p̄) is given
by

∇2Hp(η̄, p̄) =

[
Γ diag(cos η̄) 0

0 M−1

]
.

By assumption η̄k ∈ (−π2 ,
π
2 ) for all k ∈ E and therefore diag(cos η̄) > 0 and

∇2H(η̄, p̄) > 0. As a result, (η̄, p̄) is a local strict minimum of H̄p and there exists
a neighborhood around (η̄, p̄) for which Hp is strictly convex. In addition, the
time-derivative of H̄p amounts to

˙̄Hp = (∇H̄p)
T

([
0 DT

−D −A

]
∇Hp +

[
0 0
I −I

]
u1

)
= (∇H̄p)

T

([
0 DT

−D −A

]
∇H̄p +

[
0 0
I −I

]
(u1 − ū1)

)
= (∇H̄p)

T

[
0 0
0 −A

]
∇H̄p + (u1 − ū1)T (y1 − ȳ1) ≤ (u1 − ū1)T (y1 − ȳ1)

where the second equality follows from (3.32) and the fact that ∇H̄p(η, p) =
∇Hp(η, p) − ∇Hp(η̄, p̄). Hence, the system (3.31) is passive with respect to the
shifted input-output variables where H̄p qualifies as a local storage function.

This shifted passivity property proves to be crucial in the interconnection with
the primal-dual dynamics associated with the social welfare optimization problem,
which we introduce next.

3.4.2 Social welfare problem

The social welfare function S : R2n → R is defined as S(Pg, Pd) := U(Pd)−C(Pg),
where U : Rn → R represents the total utility of the consumers and C : Rn → R the
total cost of the generators. We assume that U,C are strictly concave and strictly
convex functions respectively.1 The objective is to maximize the social welfare
under the constraint of balancing the total supply and demand. Mathematically,

1Typically, U,C are of the additive form U(Pd) =
∑
i∈V Ui(Pdi), C(Pd) =

∑
i∈V Ci(Pdi)

with Ui, Ci being the individual strictly concave/convex utility/cost functions of respectively
the consumers and producers at each node. However, the following results continue to hold for
general C(.), U(.) that are strictly convex and strictly concave functions respectively.
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we consider the following optimization problem

maximize
Pg,Pd∈Rn

U(Pd)− C(Pg)

subject to 1TPg = 1TPd,
(3.35)

which we assume to be feasible. The corresponding Lagrangian is given by

L(Pg, Pd, λ) = U(Pd)− C(Pg) + λ(1TPg − 1TPd),

with scalar Lagrange multiplier λ ∈ R. The first-order optimality conditions of
(3.35) are given by ∇L = 0:

∇U(P̄d) = 1λ̄

∇C(P̄g) = 1λ̄

1T P̄g = 1T P̄d.

(3.36)

Since C,U are strictly convex and concave respectively it follows that (P̄g, P̄d, λ̄)
satisfying (3.36) is unique.

Remark 3.4.3 (Economic interpretation of optimality conditions). The optimality
condition (3.36) can be explained in economic terms as follows. These state that
the social welfare is maximized if the marginal utility of each consumer and the
marginal cost of each producer is identical to λ̄, which can be interpreted as the
(market clearing) price.

3.4.3 Controller design

By applying the method described in Section 3.3, we can formulate the primal-
dual dynamics associated to the social welfare problem (3.35). These dynamics
take the form

KgṖg = −∇C(Pg) + 1λ

KdṖd = ∇U(Pd)− 1λ
Kλλ̇ = 1TPd − 1TPg

(3.37)

where Kg,Kd ∈ Rn×n,Kλ ∈ R>0 are positive definite matrices representing the
gains of the system. The dynamics (3.37) has an economic interpretation [2]:
each producer aims a maximizing their profit by updating their production by
comparing its marginal cost with the quantity λ. Likewise, each consumer aims at
maximizing its utility but is penalized by λ. Here λ can be interpreted as a time-
varying common electricity price in all control areas which changes accordingly
when the total supply and demand are not matched.
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As in Section 3.3.2 we can write the dynamics (3.37) in port-Hamiltonian form
as

ẋc =

 0 0 1

0 0 −1
−1T 1T 0

∇Hc(xc) +

I 0
0 I
0 0

 (∇S(y2) + u2)

y2 =

[
I 0 0
0 I 0

]
∇Hc(xc) =

[
Pg
Pd

]
. (3.38)

Here we added the inputs u2 ∈ R2n and outputs y2 ∈ R2n to the system (3.37)
and we explain later the interpretation of these additional inputs. The energy and
co-energy variables of the system are respectively given by xc = (xg, xd, xλ) =
(KgPg,KdPd,Kλλ), zc = (Pg, Pd, λ). The controller Hamiltonian is defined by
the quadratic function

Hc(xc) =
1

2
xTc K

−1
c xc

with Kc := blockdiag(Kg,Kd,Kλ). Since the market dynamics is represented as a
port-Hamiltonian system with properly chosen inputs and outputs, it is possible to
couple the primal-dual dynamics with the port-Hamiltonian form of the physical
dynamics by a power-preserving interconnection. Such an interconnection between
(3.38) and (3.31) is given by u1 = y2, u2 = −y1. As a result, the closed-loop
dynamics can be written in terms of the co-energy variables as

η̇ = DTω (3.39a)

Mω̇ = −DΓ sin η −Aω + Pg − Pd (3.39b)

KgṖg = −∇C(Pg) + 1λ− ω (3.39c)

KdṖd = ∇U(Pg)− 1λ+ ω (3.39d)

Kλλ̇ = 1TPd − 1TPg. (3.39e)

In this way, the change of power generation and demand does not only depend
on the quantity λ but also depends on the physical frequency of the network. By
defining the energy variable x = (η, p, xg, xd, xλ), the port-Hamiltonian form of
(3.39) is given by

ẋ =


0 DT 0 0 0
−D −A I −I 0

0 −I 0 0 1

0 I 0 0 −1
0 0 −1T 1T 0

∇H(x) +


0 0
0 0
I 0
0 I
0 0

∇S(y)

y =

[
0 0 I 0 0
0 0 0 I 0

]
∇H(x) =

[
Pg
Pd

] (3.40)

with Hamiltonian H(x) = Hp(η, p) + Hc(xg, xd, xλ) and S is the social welfare
function defined in (3.35). Since S is a strictly concave function, it satisfies the
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following monotone relationship:

(y − ȳ)T (∇S(y)−∇S(ȳ)) ≤ 0

for all y, ȳ ∈ R2n where equality holds if and only if y = ȳ.

3.4.4 Equilibrium analysis

In this section we determine the equilibrium points of the interconnected system
and show that these corresponds to zero frequency deviation and maximal social
welfare. To see this, it is convenient to express the equilibrium in the co-energy
variables. Let z̄ = (η̄, ω̄, P̄g, P̄d, λ̄) be an equilibrium of (3.39) and note that it
satisfies

0 = DT ω̄ (3.41a)

0 = −DΓ sin η̄ −Aω̄ + P̄g − P̄d (3.41b)

0 = −∇C(P̄g) + 1λ̄− ω̄ (3.41c)

0 = ∇U(P̄g)− 1λ̄+ ω̄ (3.41d)

0 = 1T P̄d − 1T P̄g (3.41e)

Then from (3.41a) it follows that ω̄ = 1Tα for some α ∈ R. As the rows of an
incidence matrix sum to zero we have 1TD = 0. Thus by premultiplying (3.41b)
with 1T we obtain 1TA1α = 0 and since A > 0 it thus follows that α = 0 and
in turn ω̄ = 0. Then we conclude from conditions (3.41c)-(3.41e) and (3.36) that
(P̄g, P̄d, λ̄) is a primal-dual optimizer of (3.35).

3.4.5 Stability analysis

We are now in the position to state the main result of this section which is the
local asymptotic stability of (3.39). To this end, we define the set of equilibria of
(3.39) as

Z̄ = {(η̄, ω̄, P̄g, P̄d, λ̄) | (η̄, ω̄, P̄g, P̄d, λ̄) satisfies (3.41)}.

Theorem 3.4.4. Consider system (3.39) and let z̄ ∈ Z̄ be such that η̄ ∈ (−π2 ,
π
2 )m

and η̄ ∈ im(DT ). Then z̄ is locally asymptotically stable.

Proof. Let z̄ ∈ Z̄ satisfy the hypothesis and define x̄ = (η̄, 0,KgP̄g,KdP̄d,Kλλ̄).
We define the shifted Hamiltonian H̄ of the closed-loop system by [117]

H̄(x) = H(x)− (x− x̄)T∇H(x̄)−H(x̄)

=
1

2
(p− p̄)TM−1(p− p̄) +

1

2
(xc − x̄c)TK−1

c (xc − x̄c)

− 1TΓ cos η − (η − η̄)TΓ sin η̄ + 1TΓ cos η̄.
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Then we can rewrite the closed-loop system (3.40) as

ẋ =


0 DT 0 0 0
−D −A I −I 0

0 −I 0 0 1

0 I 0 0 −1
0 0 −1T 1T 0

∇H̄(x) +


I 0
0 I
0 0
0 0
0 0

 (∇S(y)−∇S(ȳ))

y − ȳ =

[
I 0 0 0 0
0 I 0 0 0

]
∇H̄(x) =

[
Pg − P̄g
Pd − P̄d

]
Similar as in Section 3.4.4 it can be shown that H̄(x̄) = 0 and H̄(x) > 0 for all
x 6= x̄ in a sufficiently small open neighborhood O of x̄, see also [17]. Moreover,
the shifted Hamiltonian H̄ satisfies the dissipation inequality

˙̄H =− pTM−1AM−1p+ (y − ȳ)T (∇S(y)−∇S(ȳ))

=− ωTAω − (Pg − P̄g)T (∇C(Pg)−∇C(P̄g))

+ (Pd − P̄d)T (∇U(Pd)−∇U(P̄d)) ≤ 0

where equality holds if and only if ω = 0, Pg = P̄g, Pd = P̄d since U,C are strictly

concave/convex in Pd, Pg respectively. As ˙̄H ≤ 0 there exists a compact sublevel
set Υ ⊂ O of H̄ around x̄, which is forward invariant. By LaSalle’s principle any

trajectory initialized in (3.39)2 converges to the largest invariant set where ˙̄H = 0.
On this invariant set S we have λ = λ̄ and DΓ sin η = DΓ sin η̄ = P̄g − P̄d. Since
η, η̄ ∈ im(DT ) and the fact that the trajectory is initialized close to the equilibrium
there exists δ, δ̄ ∈ Rn such that η = DT δ ∈ (−π2 ,

π
2 )m, η̄ = DT δ̄ ∈ (−π2 ,

π
2 )m. As a

result,

0 = (δ − δ̄)TDΓ sin η −DΓ sin η̄

= (δ − δ̄)TDΓ(sin(DT δ)− sin(DT δ̄))

= (δ − δ̄)TD
∫ 1

0

Γ diag(cos(τDT δ + (1− τ)DT δ̄))dτDT (δ − δ̄) ≥ 0.

Since the matrix within the integral is positive definite it follows that DT (δ− δ̄) =
η − η̄ = 0. We can now conclude that z̄ is locally asymptotically stable.

3.5 Conclusions

In this chapter we have considered several variations of the primal-dual dynamics
for convex constrained optimization. In case the optimization problem only
contains affine constraints, we have shown that its dynamics can be represented
in Brayton-Moser form or as an (incrementally) port-Hamiltonian system. The
latter formulation clearly reveals the interconnection and damping structure of
the system. We have seen that these characteristics allow for a straightforward

2We recall here that we assumed that the initial condition satisfies η(0) ∈ im(DT ).
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stability analysis of the system to the set of optimal points. By using passivity-
based arguments we have extended the previous convergence result to the case
where inequality constraints are included as well.

For the case of power networks, we have seen an example how we can design
real-time applications of the algorithm in dynamic environments. There we have
formulated the social welfare maximization problem under the constraint that the
total generation must meet the total demand. By constructing the associated
primal-dual dynamics we obtained a controller which can be interpreted as a real-
time dynamic pricing model. We have shown that both the frequency dynamics
governed by the swing equations as well as the economic dynamics of the power
network can be represented as port-Hamiltonian systems, which are interconnected
in a power-preserving manner. In addition, we established convergence of the
closed-loop system to the set of optimal points. For this example, the dynamic
pricing model we proposed uses a common price in all control areas. In the
following chapters, we will propose a distributed version of the proposed control
scheme, to obtain a time-varying price which may differ in each control area. We
also show how inequality constraints such as congestion on the power supply and
demand can be included in the social welfare problem.
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Chapter 4

Distributed welfare maximizing
controllers in power networks

Abstract: This chapter studies the problem of frequency regulation in power
grids, while maximizing the social welfare. It extends Chapter 3 in the following
aspects. First, two price-based controllers are proposed; the first one an internal-
model-based controller and the second one based on a continuous-time gradient
method for optimization. Secondly, both controllers are be implemented in a fully
distributed fashion, with freedom in choosing a controller communication network.
As a result, two real-time dynamic pricing models described by port-Hamiltonian
systems are obtained. By coupling with the port-Hamiltonian description of
the physical network we obtain a closed-loop port-Hamiltonian system, whose
properties are exploited to prove asymptotic stability of the set of optimal points.
Numerical results show the performance of both controllers in an academic case
study.

Published as:

T.W. Stegink, C. De Persis, A.J. van der Schaft. “A port-Hamiltonian approach to

optimal frequency regulation in power grids.” 54th IEEE Conference on Decision and

Control (CDC), 2015.
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4.1 Introduction

Stability of power networks is becoming an increasingly important topic in recent
years. In particular, with the growth of renewable energy sources there is an
increasing fluctuation in the supply of power. As a result, it is more difficult for
traditional energy sources to match the supply with the demand. To alleviate
some of these problems, we may introduce a feedback mechanism that encourages
the consumers to change their usage when it is difficult for the generators and the
network to match demand. One approach is by using real-time dynamic pricing
as a control method.

The idea of using dynamic pricing to achieve optimal supply-demand matching
is not new in the literature on power networks. A historical paper on dynamic
pricing and market stability for example [2]. See e.g. also the works [57, 84]
for more recent papers on real-time dynamic pricing, which mainly focus on
the economic part of optimal supply-demand matching. However, the coupling
between the solution of the optimization problem and the physical dynamics of
the network should not be ignored as this could result in instability of the grid
[132]. This coupling between the physics of the power network with the market
dynamics has previously been studied in e.g. [3, 64, 132].

In this chapter, we propose a new approach for the modeling, analysis and
control of smart grids based on using energy functions, both for the physical
network as well as for the dynamic pricing algorithm. The underlying framework
is based on the theory of port-Hamiltonian systems, which lends itself to the
integration of dynamic pricing algorithms that allow to consider economical factors
in the control of smart grids. The objective is to have producers and consumers to
fairly share utilities and costs associated with the generation and consumption of
energy. The challenge of achieving this in an optimal manner is called the social
welfare problem. At the same time, the goal is to regulate the frequency of the
power network to its nominal value (e.g. 50 Hz or 60 Hz).

One of the approaches to solve an optimal frequency regulation problem is by
using a internal-model-based controller as in [17, 19], sometimes referred to as
distributed averaging integral control [123]. We will continue along the same lines
as in [19] which, among other things, treated optimal frequency regulation in case
of quadratic power production cost functions and constant unknown demand.

The first main contribution of this chapter is that we extend the results of [19]
to the case of a quadratic consumer utility function. The internal-model-based
controller proposed in [19] is modified accordingly so that it steers the trajectories
to the points of maximal social welfare while regulating the frequency. Moreover,
this is all achieved in the port-Hamiltonian framework. In particular, we will show
that the dynamics of the physical model of the power network can be represented
as a port-Hamiltonian system, as well as the real-time dynamic pricing model.

Another well-known controller design method for solving a (social welfare)
optimization problem is primal-dual gradient method based control. The literature
on the gradient method has become quite extensive over the last decades, starting
with the monograph [6]. Also in power grids this method is often applied to
design distributed controllers, see for example [64, 132] and [36]. Our contribution
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to the existing literature consists in showing that the real-time dynamic pricing
model obtained when applying the gradient method can be represented as a port-
Hamiltonian system, which demonstrates that the port-Hamiltonian framework
can be extended from physical system modeling to markets dynamics as well.

The outline of this chapter is as follows. In Section 4.2 we first state the
preliminaries on the power network model and the social welfare problem. Next,
we introduce an internal-model-based controller in Section 4.3, and discuss its
asymptotic stability. Thereafter in Section 4.4, we propose a gradient method
based controller in port-Hamiltonian form and we perform a similar stability
analysis. Numerical results on both controllers will be discussed subsequently
in Section 4.5. Finally, we state suggestions for future research.

4.2 Preliminaries

4.2.1 Power network model

Consider a power grid consisting of n buses. The network is represented by a
connected, undirected graph G = (V, E), where nodes V = In := {1, . . . , n}
represent buses and edges E ⊂ V × V are the transmission lines connecting the
buses. Let m denote the number of edges, arbitrarily labeled with a unique
identifier in Im. The ends of edge k ∼ {i, j}, with i, j ∈ V are arbitrary labeled
with a ‘+’ and a ‘-’, so that the incidence matrix D of the network is given by

Dik =


+1 if i is the postive end of k

−1 if i is the negative end of k

0 otherwise.

(4.1)

Each bus represents a control area and is assumed to have controllable power
generation and a price-controllable load. The dynamics at each bus i ∈ V are
assumed to be given by [19, 67]

δ̇i = ωi

Miω̇i = Pgi − Pdi −
∑
j∈Ni

ViVjBij sin(δi − δj)−Aiωi (4.2)

commonly known as the swing equations.

Assumption 4.2.1 (Swing equation model). By using the power network model
(4.2) the following assumptions are made, which are standard in a broad range of
literature on power network dynamics.

• Lines are lossless, i.e. the conductance is zero. This assumption is generally
valid for the case of high voltage lines connecting different control areas.

• Nodal voltages Vi are constant.
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• Reactive power flows are ignored.

• A balanced load condition is assumed, such that the three phase network
can be analyzed by a single phase.

Define the voltage angle differences between the buses by η = DTω, where
ω = ωb−ωn are the (aggregated) frequency deviations. Further define the angular
momenta of the moments of inertia M = diag(M1, . . . ,Mn) by p := Mω. Let
Γ = diag(γ1, . . . , γk) and γk = ViVjBij where k corresponds to edge (i, j) ∈ E .
Finally, define the Hamiltonian Hp(η, p) by

Hp(η, p) =
1

2
pTM−1p− 1TΓ cos η (4.3)

which consists of a kinetic energy and a pendulum like potential energy. Here
cos(.) denotes the element-wise cosine function and a similar convention will be
used for the function sin(.). The swing equations (4.2) are then represented by
the port-Hamiltonian system[

η̇
ṗ

]
=

[
0 DT

−D −A

]
∇Hp(η, p) +

[
0 0
I −I

]
up

yp =

[
0 I
0 −I

]
∇Hp(η, p) =

[
M−1p
−M−1p

]
=

[
ω
−ω

] (4.4)

where up = (Pg, Pd). Note that system (4.4) satisfies the passivity property

Ḣp = pTM−1ṗ+ (Γ sin η)T η̇

= pTM−1(−DΓ sin η −AM−1p+ Pg − Pd) + (Γ sin η)TDTM−1p

= −ωTAω + ωT (Pg − Pd) ≤ uTp yp.

For an extensive study on the stability and equilibria of the swing equations based
on the Hamiltonian function (4.3), we refer to [19].

4.2.2 Social welfare problem

We define the social welfare by U(Pd)−C(Pg), which consists of a utility function
U(Pd) of the consumers Pd and the total power generation cost C(Pg) associated
to the producers Pg. The objective is to maximize the social welfare under the
constraint of zero frequency deviation, which can be formulated as an optimization
problem. We assume that C(Pg) is a strictly convex function and U(Pd) is a
strictly concave function so that we will obtain an optimization problem which is
convex. By analyzing the equilibria of (4.2), it follows that a necessary condition
for zero frequency deviation is 1TPd = 1TPg [19], i.e. the total supply must
match the total demand. It can be noted that (Pg, Pd) is a solution to the latter
equation if and only if there exists a vector v ∈ Rmc such that Dcv− Pg + Pd = 0
where Dc ∈ Rn×mc is the incidence matrix (defined similarly as in (4.1)) of some
connected communication graph with mc edges and n nodes. This communication
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graph may be different from the physical network topology and will play a central
role in the controllers proposed in Sections 4.3 and 4.4. Because of the latter
equivalence, we consider the following convex minimization problem:

maximize
Pg,Pd,v

S(Pg, Pd) := U(Pd)− C(Pg)

subject to Dcv − Pg + Pd = 0.
(4.5)

The corresponding Lagrangian is given by

L = U(Pd)− C(Pg)− λT (Dcv − Pg + Pd)

with Lagrange multipliers λ ∈ Rn. The resulting first-order optimality conditions
(∇L = 0) are given by

∇C(P̄g)− λ̄ = 0

−∇U(P̄d) + λ̄ = 0

DT
c λ̄ = 0

Dcv̄ − P̄g + P̄d = 0.

(4.6)

Since the minimization problem is convex it follows that (P̄g, P̄d, v̄) is an optimal
solution to (4.5) if and only if there exists a λ̄ ∈ Rn such that (4.6) holds [12].

4.3 Internal-model-based controller

In this section we extend the results of [19] in which we include a utility function
for the demand. We assume that the utility functions are quadratic and given by
C(Pg) = 1

2P
T
g QgPg + cTPg, U(Pd) = − 1

2P
T
d QdPd + bTPd where Qd, Qg ∈ Rn×n

are symmetric positive definite matrices and c, b ∈ Rn. Consider minimization
problem (4.5), then the first-order optimally conditions (4.6) take the form

QgP̄g + c− λ̄ = 0

QdP̄d − b+ λ̄ = 0

DT
c λ̄ = 0

Dcv̄ − P̄g + P̄d = 0.

(4.7)

Note that QgPg + c are the (aggregated) marginal costs of the producers and
likewise −QdPd+b are the marginal utilities of the consumers. Observe from (4.7)
that the prosumers (combined producers and consumers) achieve maximal welfare
if their marginal costs and utilities respectively are equal to the price λ, which is a
standard result in economics. The optimal production and demand are therefore
given by

P̄g = Q−1
g (λ̄− c)

P̄d = Q−1
d (b− λ̄).

(4.8)
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From the third equation of (4.7) it follows that the prices must be identical in
each control area, i.e. λ̄ = 1λ∗ where the common price λ∗ is computed as

1T P̄g = 1TQ−1
g (1λ∗ − c) = 1TQ−1

d (b− 1λ∗) = 1T P̄d

⇒ λ̄ = 1λ∗, λ∗ =
1T (Q−1

g c+Q−1
d b)

1T (Q−1
g +Q−1

d )1
. (4.9)

Based on the controller design proposed in [19], we consider the following price-
based controller dynamics in port-Hamiltonian form with inputs uλ and outputs
yλ:

λ̇ = −Lc∇Hc(λ) +
[
Q−1
g −Q−1

d

]
uλ

yλ =

[
Q−1
g

−Q−1
d

]
∇Hc(λ) +

[
−Q−1

g c

Q−1
d b

]
.

(4.10)

The controller Hamiltonian is given by Hc(λ) = 1
2λ

Tλ and Lc = DcD
T
c is the

Laplacian matrix of the communication graph. We interconnect systems (4.4) and
(4.10) in a power-preserving way by uλ = −yp, up = yλ. Then we obtain the
closed-loop port-Hamiltonian systemη̇ṗ

λ̇

 =

 0 DT 0
−D −A Q−1

g +Q−1
d

0 −Q−1
g −Q−1

c −Lc

∇H(x)−

 0
Q−1
g c+Q−1

d b
0

 (4.11)

where x = (η, p, λ) and the Hamiltonian is given by

H(x) = Hp(η, p) +Hc(λ) =
1

2
pTM−1p− 1TΓ cos η +

1

2
λTλ.

It is noticed that all equilibria of (4.11) are characterized by (η̄, p̄, λ̄) satisfying

p̄ = 0

0 = −DΓ sin η̄ + (Q−1
g +Q−1

d )λ̄−Q−1
g c−Q−1

d b

λ̄ = 1λ∗, λ∗ =
1T (Q−1

g c+Q−1
d b)

1T (Q−1
g +Q−1

d )1
.

(4.12)

We define Z̄1 as the solution set of (4.12), i.e.

Z̄1 = {(η̄, p̄, λ̄) | (η̄, p̄, λ̄) is a solution to (4.12)}.

For proving asymptotic stability of the closed-loop system (4.11) an additional
assumption is required.

Assumption 4.3.1. There exists a (η̄, p̄, λ̄) ∈ Z̄1 such that η̄k ∈ (−π/2, π/2) for
all k ∈ E .

This assumption is standard in studies on power grid stability and is also
referred to as a security constraint [113].
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4.3.1 Stability

We will show that trajectories (η, p, λ) satisfying (4.11) and initializing sufficiently
close to an equilibrium point of (4.11) converge to the set Z̄1. Moreover, we show
that this set corresponds to the optimal points of the social welfare problem.

Theorem 4.3.2. For every x̄ ∈ Z̄1 satisfying Assumption 4.3.1 there exists an
open neighborhood O around x̄ such that all trajectories x satisfying (4.11) with
initial conditions in O converge to the set Z̄1. Moreover, the power generations
and demands converge to the optimal value given by (4.8) and (4.9).

Proof. Since the system (4.11) is not centered around the origin we introduce a
shifted Hamiltonian H̄ w.r.t. x̄ ∈ Z̄1 (see e.g. [19, 117]), which will act as a
Lyapunov function:

H̄(x) = H(x)− (x− x̄)T∇H(x̄)−H(x̄) =
1

2
pTM−1p− 1TΓ cos η +

1

2
λTλ

−
[
ηT − η̄T 0 λT − λ̄T

] Γ sin η̄
0
λ̄

− 1TΓ cos η̄ +
1

2
λ̄T λ̄

=
1

2
pTM−1p+

1

2
‖λ− λ̄‖2 − 1TΓ cos η − (η − η̄)TΓ sin η̄ + 1TΓ cos η̄.

(4.13)
Bearing in mind Assumption 4.3.1 and [18], the shifted Hamiltonian satisfies
H̄(x̄) = 0 and H̄(x) > 0 for all x 6= x̄ in an sufficiently small open neighborhood
around x̄. Moreover, the shifted Hamiltonian satisfies ∇H̄(x) = ∇H(x)−∇H(x̄)
so that (4.11) can be rewritten as

ẋ =

 0 DT 0
−D −A Q−1

g +Q−1
d

0 −Q−1
g −Q−1

c −Lc

∇H̄(x)

+

 0
−DΓ sin η̄ + (Q−1

g +Q−1
d )λ̄−Q−1

g c−Q−1
d b

−Lcλ̄


=

 0 DT 0
−D −A Q−1

g +Q−1
d

0 −Q−1
g −Q−1

c −Lc

∇H̄(x).

Because of the port-Hamiltonian structure of the system it is convenient to show
that the shifted Hamiltonian satisfies

˙̄H = −ωTAω − (λ− λ̄)TLc(λ− λ̄) ≤ 0 (4.14)
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where equality holds if and only if ω = 0 and λ = λ̄+ 1α for some scalar function

α. On the set ˙̄H = 0 we have

η̇ = 0

ṗ = −DΓ sin η +DΓ sin η̄ + (Q−1
g +Q−1

d )1α = 0

λ̇ = 0

Obviously, in the largest invariant set where Ḣ = 0 we must have that α ≡ 0,
which follows from the premultiplication by 1T of the second equation. Hence, by
LaSalle’s invariance principle p → 0, λ → λ̄, η → η̂ as t → ∞ for some constant η̂
satisfying

DΓ sin η̂ = DΓ sin η̄ = (Q−1
g +Q−1

d )λ̄−Q−1
g c−Q−1

d b.

hence x → Z̄1 as t → ∞. Moreover, since interconnection between the controller
and the swing equations is given by[

Pg
Pd

]
= up = yλ =

[
Q−1
g (λ− c)

Q−1
d (b− λ)

]
it follows that the power generations and demands converge to the optimal value
given by (4.8) and (4.9) as t→∞.

4.4 Primal-dual gradient controller

By applying the primal-dual gradient method [6, 64, 120, 132] to the minimization
problem (4.5) we obtain the real-time dynamic pricing model

KgṖg = −∇C(Pg) + λ+ wg

KdṖd = ∇U(Pd)− λ+ wd

Kv v̇ = −DT
c λ

Kλλ̇ = Dcv − Pg + Pd

(4.15)

where we introduce additional inputs w = (wg, wd) which are to be specified later
on. Here Kc = blockdiag(Kg,Kd,Kv,Kλ) > 0 are the gains of the controller.
Note that we have constructed a distributed controller where λi acts as a price in
control area i ∈ V and v represents the information exchange of the differences
of the prices λ along the edges the communication graph. We define the energy
variables as

xc = (xg, xd, xv, xλ) = (KgPg,KdPd,Kvv,Kλλ) = Kczc

and notice that in the sequel, we interchangeably write the system characteristics
in terms of energy variables (often denoted by x) and co-energy variables (often
denoted by z) for ease of notation.
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An interesting fact is that the market dynamics (4.15) admits an incremental
port-Hamiltonian representation which is given by

ẋc =


0 0 0 I
0 0 0 −I
0 0 0 −DT

c

−I I Dc 0

∇H(xc) +


I 0
0 I
0 0
0 0

 (w +∇S(yc))

yc =

[
I 0 0 0
0 I 0 0

]
∇H(xc) =

[
Pg
Pd

]
.

(4.16)

with the quadratic controller Hamiltonian

Hc(xc) =
1

2
xTc K

−1
c xc. (4.17)

Note that the latter system is indeed a incrementally port-Hamiltonian system
since S is concave and therefore satisfies the property

(yc1 − yc2)T (∇S(yc1)−∇S(yc2)) ≤ 0, ∀yc1, yc2 ∈ R2n.

We obtain a power-preserving interconnection between (4.4) and (4.16) by choosing
w = −yp, up = yc. Define the extended (co-)energy variables by x = (η, p, xc), z =
(η, ω, zc) then the closed-loop system becomes

η̇ = DTω

Mω̇ = −DTΓ sin η −Aω + Pg − Pd
KgṖg = −∇C(Pg) + λ− ω
KdṖd = ∇U(Pd)− λ+ ω

Kv v̇ = −DT
c λ

Kλλ̇ = Dcv − Pg + Pd

(4.18)

which can be written in port-Hamiltonian form as

ẋ =


0 DT 0 0 0 0
−D −A I −I 0 0

0 −I 0 0 0 I
0 I 0 0 0 −I
0 0 0 0 0 −DT

c

0 0 −I I Dc 0

∇H(x) +


0 0
0 0
I 0
0 I
0 0
0 0


︸ ︷︷ ︸

G

∇S(y) (4.19)

y = GT∇H(x) =

[
Pg
Pd

]
(4.20)

with H as the sum of the energy function (4.3) corresponding to the physical
model, and the controller Hamiltonian (4.17).
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4.4.1 Closed-loop equilibria

We define the equilibrium set of (4.19), expressed in the co-energy variables, by

Z̄2 = {z̄ = (η̄, ω̄, P̄g, P̄d, v̄, λ̄) | z̄ satisfies (4.22)}. (4.21)

where

0 = DT ω̄ (4.22a)

0 = −DTΓ sin η̄ −Aω̄ + P̄g − P̄d (4.22b)

0 = −∇C(P̄g) + λ̄− ω̄ (4.22c)

0 = ∇U(P̄d)− λ̄+ ω̄ (4.22d)

0 = −DT
c λ̄ (4.22e)

0 = Dcv̄ − P̄g + P̄d (4.22f)

By (4.22a) we observe that ω̄ = 1ω∗ for some ω∗ ∈ R. Then by premultiplying
(4.22b), and (4.22f) by 1T it follows that ω∗ = 0 and thus zero frequency is
achieved at steady state. Hence, Z̄2 is equal to the set of z̄ satisfying the KKT
optimality conditions (4.6) and the zero frequency constraints

−DΓ sin η̄ + P̄g − P̄d = 0, ω̄ = 0

of the physical network and therefore corresponds to the desired optimal points.

4.4.2 Stability

We now state the main stability result of the coupled system (4.18).

Theorem 4.4.1. For every z̄ ∈ Z̄2, with Z̄2 defined in (4.21), there exists an open
neighborhood O around z̄ such that all trajectories z satisfying (4.19) with initial
conditions in O converge to the set Z̄2.

Proof. Let z̄ ∈ Z̄2 and let this equilibrium be expressed in the energy variables
by defining the vectors x̄ = (η̄, 0,KgP̄g,KdP̄d,Kv v̄, Kλλ̄), ȳ = GT∇H(x̄). Let the
shifted Hamiltonian H̄ around x̄ be given by

H̄(x) = H(x)− (x− x̄)T∇H(x̄)−H(x̄)

=
1

2
(p− p̄)TM−1(p− p̄) +

1

2
(xc − x̄c)TK−1

c (xc − x̄c)

− 1TΓ cos η − (η − η̄)TΓ sin η̄ + 1TΓ cos η̄.

As in mentioned in the proof of Theorem 4.3.2, it can be shown that H̄(x̄) = 0
and H̄(x) > 0 for all x 6= x̄ in a sufficiently small open neighborhood around
x̄. After rewriting, the closed loop port-Hamiltonian system (4.19) is equivalently
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described by

ẋ =


0 DT 0 0 0 0
−D −A I −I 0 0

0 −I 0 0 0 I
0 I 0 0 0 −I
0 0 0 0 0 −DT

c

0 0 −I I Dc 0

∇H̄(x) +G(∇S(y)−∇S(ȳ))

y − ȳ = GT∇H̄(x)

Then time-derivative of the shifted Hamiltonian H̄ satisfies

˙̄H = −ωTAω + (y − ȳ)T (∇S(y)−∇S(ȳ)) ≤ 0

where equality holds if and only if ω = 0, Pg = P̄g, Pd = P̄d since S(.) is a strictly

concave function. On the largest invariant set M where ˙̄H = 0 we have λ = λ̄ and
therefore v is constant. We conclude that M ⊂ Z̄2 and by LaSalle’s invariance
principle it follows that z → M ⊂ Z̄2 as t → ∞ for trajectories initialized
sufficiently close to x̄.

Comparison of both controllers

When comparing both controllers it is noticed that the internal-model-based
controller requires that the utility and cost functions are quadratic. Since the
matrices Qg, Qd appear in the closed-loop interconnection structure (4.11), it
would be challenging to generalize the internal-model-based controller to the case
where general strictly convex utility functions are considered. On the other hand,
by applying the primal-dual gradient method to the optimization problem (4.5) it
is possible to construct a distributed controller that can deal with general convex
utility functions.

Remark 4.4.2 (Economic interpretation of controllers (4.10), (4.15)). The con-
troller variables λ of both controllers are interpreted as the electricity prices, where
we may have different prices in each of the control areas initially. However, the
controllers differ in the way they compensate for the price differences. On the
one hand, the v dynamics of the gradient method based controller integrates the
differences between the prices λ. On the other hand, in the internal-model-based
controller these differences are dissipated through the Laplacian matrix Lc, by
noting from (4.14) that as long as λ is not in the range of 1, energy will be
dissipated from the system. This has a stabilizing effect on the overall dynamics
of the closed-loop system in case the internal-model-based controller is applied,
see also Section 4.5.

What both controllers have in common is that in the design of the distributed
controllers there is freedom of choosing any communication graph, where the only
requirement is that the graph is connected. Another remark is that, if we would
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Figure 4.1: A power grid consisting of 4 control areas [19].

assume that

C(Pg) =

n∑
i=1

Ci(Pgi), U(Pd) =

n∑
i=1

Ui(Pdi),

both distributed controllers in each control area require only information about
their individual utility and cost functions, which beneficial is for privacy reasons
and communication purposes.

4.5 Numerical results

We illustrate the performance of both proposed controllers, when applied to an
academic test case, where we consider of 4 control areas1, see Figure 4.1. To
compare both controllers we use identical quadratic utility and cost functions in
the social welfare problem. The parameters we use for both cases are given by
Qg = diag(1, 2, 3, 4),M = Γ = Qd = 1

2A = I, c = 0, b = col(1, 1.25, 1.5, 1.75), Dc =
D,Kc = I.

We initialize at (optimal) steady operation and at time t = 1 we introduce a
change in the utility function of the demand corresponding to area 4 by changing
b into b = col(1, 1.25, 1.5, 2), i.e. the consumption of electricity becomes more
attractive in this area. The dynamics of the closed-loop systems are plotted
in Figure 4.2 and 4.3 on page 91. At steady state we observe that the power
production is higher in the control areas with lower costs functions and similar
conclusions can be drawn for the power consumption. Hence at steady state, the
social welfare is maximized.

When the consumers utility function is changed, we observe that indeed the
consumption increases in control area 4, as we would expect. As a consequence, the
common electricity price rises so that the power demands in the other control areas
decrease. Simultaneously, the power production is increased to match the total
supply and demand. It follows that, after finite time, the closed-loop dynamics
is operating at maximal social welfare again. It is noted that both controllers

1This example is based on the 4 control area case study discussed in [19].
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Figure 4.2: Performance of the internal-model-based controller. At time t = 1 the con-
sumers utility function corresponding to control area 4 is changed, so that consumption
of electricity becomes more attractive in this area.

show comparable performance with the gradient method based controller showing
a slightly more oscillatory behavior, which can be explained by Remark 4.4.2.

4.6 Conclusions

In this chapter we proposed a novel way of modeling, analysis and control of smart
grids based on the port-Hamiltonian framework. We have proposed two different
types of distributed real-time price-based controllers that achieve frequency reg-
ulation while maximizing the social welfare, which are internal-model-based and
gradient method based. In the design there is freedom in choosing any connected
communication graph. An important result is that the market dynamics, obtained
from applying the two proposed price-based controllers, can be represented in a
port-Hamiltonian form. By coupling this with the port-Hamiltonian representation
of the physical power network, a closed-loop port-Hamiltonian system is obtained
whose properties are exploited to prove asymptotic stability to the set of optimal
points. By applying the real-time dynamic pricing models to an identical academic
test case, numerical results have shown the performance of both controllers in case
of quadratic utility functions, and show convergence to the point where the social
welfare is maximized, even after a change in the consumers utility function.
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Figure 4.3: Performance of the gradient method based controller. The same parameters
and change in the utility function are considered as in the results shown in Figure 4.2.
Note that the gradient method based controller shows a slightly more oscillatory behavior,
since it contains additional layers of integrators compared to the internal-model-based
controller.

Possible extensions

In this chapter we only considered the total supply-demand matching constraints in
the social welfare problem. An natural extension is to consider both non-quadratic
utility/cost functions and to include additional inequality constraints which for
example correspond to congestion. This is possible (only) for the primal-dual
gradient based controller and is investigated in the next chapter. Furthermore,
although the model for the power network used here is relatively simple, this
chapter established a good starting point for considering more complex physical
systems of the power grid in the port-Hamiltonian framework. In these models
one may for example include reactive power and voltage dynamics as we show in
Chapters 5,6,7. In addition to the proposed controller design methods, one would
also like to develop distributed controllers that can deal with uncertainties, for
example, in the (demand) utility functions.
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Chapter 5

Constrained social welfare
optimization and frequency
regulation

Abstract: In this chapter a unifying energy-based approach is provided to the
modeling and stability analysis of power systems coupled with market dynamics.
We consider a standard model of the power network with a third-order model for
the synchronous generators involving voltage dynamics. By applying the primal-
dual gradient method to a social welfare optimization, a distributed dynamic pricing
algorithm is obtained, which can naturally be formulated in port-Hamiltonian form.
By interconnection with the physical model a closed-loop port-Hamiltonian system
is obtained, whose properties are exploited to prove asymptotic stability to the set
of optimal points. Then we provide several variations and extensions to the basic
controller design. This includes extension to the case that also general constraints
on the nodal power generation and demand are considered in the social welfare
problem. Additionally, the case of line congestion and power transmission costs in
acyclic networks is covered. Also a dynamic pricing algorithm is proposed that does
not require knowledge about the power supply and demand for the implementation.

Published as:

T.W. Stegink, C. De Persis, A.J. van der Schaft. “A unifying energy-based approach

to stability of power grids with market dynamics.” IEEE Transactions on Automatic

Control 62.6 (2017): 2612-2622.
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5.1 Introduction

Provisioning energy has become increasingly complicated due to several reasons,
including the increased share of renewables. As a result, the generators operate
more often near their capacity limits and transmission line congestion occurs more
frequently. One effective approach to alleviate some of these challenges is to use
real-time dynamic pricing as a control method [2]. This feedback mechanism can
be used to encourage the consumers to change their usage when in some parts of the
grid it is difficult for the generators and the network to match the demand. Real-
time dynamic pricing also allows producers and consumers to fairly share utilities
and costs associated with the generation and consumption of energy among the
different control areas. The challenge of achieving this in an optimal manner while
the grid operates within its capacity limits, is called the social welfare problem [57,
58].

Many of the existing dynamic pricing algorithms focus on the economic part
of optimal supply-demand matching [57, 84]. However, if market mechanisms
are used to determine the optimal power dispatch (with near real-time updates
of the dispatch commands) dynamic coupling occurs between the market update
process and the physical response of the physical power network dynamics [3].
Consequently, under the assumption of market-based dispatch, it is essential to
consider the stability of the coupled system incorporating both market operation
and electromechanical power system dynamics simultaneously.

While on this subject a vast literature is already available, the aim of this
chapter is to provide a rigorous and unifying passivity-based stability analysis.
We focus on a more accurate and higher order model for the physical power
network than conventionally used in the literature. In particular, we use a third-
order model for the synchronous generators including voltage dynamics. As a
result, market dynamics, frequency dynamics and voltage dynamics are considered
simultaneously.

Finally, we propose variations of the basic controller design that, among
other things, allow the incorporation of capacity constraints on the generation
and demand of power and on the transmission lines, and enhance the transient
dynamics of the closed-loop system. The approach taken in this chapter is to
model both the dynamic pricing controller as well as the physical network in a
port-Hamiltonian way, emphasizing energy storage and power flow. This provides
a unified framework for the modeling, analysis and control of power networks
with market dynamics, with possible extensions to more refined models of the
physical power network, including for example turbine dynamics but also higher
order models of the synchronous machine (see also Chapter 7).

Literature review

The coupling between a high-order dynamic power network and market dynamics
has been studied before in [3]. Here a fourth-order model of the synchronous
generator is used in conjunction with turbine and exciter dynamics, which is
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coupled to a simple model describing the market dynamics. The results established
in [3] are based on an eigenvalue analysis of the linearized system.

It is shown in [113] that the third-order model (often called the flux-decay
model) for describing the power network, as used in the present chapter, admits
a useful passivity property that allows for a rigorous stability analysis of the
interconnection with optimal power dispatch controllers, even in the presence of
time-varying demand.

A common way to solve a general optimization problem like the social welfare
problem is by applying the primal-dual gradient method [6, 36, 52]. Also in power
grids this is a commonly used approach to design optimal distributed controllers,
see e.g. [64, 68, 92, 130–132]. The problem formulations vary in these papers,
with the focus being on either the generation side [64, 92], the load side [68, 69,
135] or both [130–133]. We will elaborate on these references in the following two
paragraphs.

A vast literature focuses on linear power system models coupled with gradient-
method-based controllers [64, 68, 69, 92, 130, 137]. In these references the property
that the linear power system dynamics can be formulated as a gradient method
applied to a certain optimization problem is exploited. This is commonly referred
to as reverse-engineering of the power system dynamics [64, 92, 130]. However,
this approach falls short in dealing with models involving nonlinear power flows.

Nevertheless, [131–133, 135] show the possibility to achieve optimal power
dispatch in power networks with nonlinear power flows using gradient-method-
based controllers. On the other hand, the controllers proposed in [131–133] have
restrictions in assigning the controller parameters and in addition require that the
topology of the physical network is a tree.

Main contributions

The contribution of this chapter is to propose a novel energy-based approach to
the problem that differs substantially from the aforementioned works. We proceed
along the lines of [105, 106], where a port-Hamiltonian approach to the design of
gradient-method-based controllers in power networks is proposed. In those papers
it is shown that both the power network as well as the controller designs admit a
port-Hamiltonian representation which are then interconnected to obtain a closed-
loop port-Hamiltonian system.

After showing that the third-order dynamical model describing the power net-
work admits a port-Hamiltonian representation, we provide a systematic method
to design gradient-method-based controllers that is able to balance power supply
and demand while maximizing the social welfare at steady state. This design is
carried out first by establishing the optimality conditions associated with the social
welfare problem. Then the continuous-time gradient method is applied to obtain
the port-Hamiltonian form of the dynamic pricing controller. Then, following [105,
106], the market dynamics is coupled to the physical power network in a power-
preserving manner so that all the trajectories of the closed-loop system converge
to the desired synchronous solution and to optimal power dispatch.
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Although the proposed controllers share similarities with others presented in
the literature, the way in which they are interconnected to the physical network,
which is based on passivity, is to the best of our knowledge new. Moreover, they
show several advantages.

Physical model: Since our approach is based on passivity and does not require
to reverse-engineer the power system dynamics as a primal-dual gradient dynamics,
it allows to deal with more complex nonlinear models of the power network. More
specifically, the physical model for describing the power network in this chapter
admits nonlinear power flows and time-varying voltages, and is more accurate and
reliable than the classical second-order model [61, 67, 89].

In addition, most of the results that are established in the present chapter are
valid for the case of nonlinear power flows and cyclic networks, in contrast to e.g.
[64, 92, 130, 137], where the power flows are linearized and e.g. [131–133] where the
physical network topology is a tree. Moreover, in the aforementioned references the
voltages are assumed to be constant. While the third-order model for the power
network as considered in this chapter has been studied before using passivity based
techniques [113], the combination with gradient method based controllers is novel.
In addition, the stability analysis does not rely on linearization and is based on
energy functions which allow us to establish rigorous stability results.

State transformation: In [64, 92] it is shown how a state transformation
of the closed-loop system can be used to eliminate the information about the
demand from the controller dynamics, which improves implementation of the
resulting controller. We pursue this idea and show that the same kind of state
transformation can also be used for more complex physical models as considered
in this chapter. This avoids the requirement of knowing the demand to determine
the market price.

Controller parameters: In the present chapter we show that both the physical
power network as well as the dynamic pricing controllers admit a port-Hamiltonian
representation, and in particular are passive systems. As a result, the interconnec-
tion between the controller and the nonlinear power system is power-preserving,
implying passivity of the closed-loop system as well. Consequently, we do not
have to impose any condition on controller design parameters for guaranteeing
asymptotic stability, contrary to [131–133].

Port-Hamiltonian framework: Because of the use of the port-Hamiltonian
framework, the proposed controller designs have the potential to deal with more
complex models for the power network compared to the model described in this
chapter. As long as the more complex model remains port-Hamiltonian, the results
continue to be valid. This may lead to inclusion of, for example, turbine dynamics
or automatic voltage regulators in the analysis, although this is beyond the scope
of the present chapter. Furthermore, higher order models for the synchronous
generator could be considered.
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In addition, we propose various extensions to the basic controller design that have
not been investigated in the aforementioned references.

Transmission costs: In addition to nodal power constraints and line congestion,
we also consider the possibility of including power transmission costs into the social
welfare problem. Including such costs may in particular be useful in reducing
energy losses or the risk of a breakdown of certain transmission lines.

Non-strict convex objective functions: By relaxing the conditions on the
objective function, we show that also non-strict convex/concave cost/utility func-
tions can be considered respectively. In addition, the proposed technique allows
to add damping in the gradient method based controller which may improve the
convergence rate of the closed-loop system.

Barrier functions: We highlight the possibility to use barrier functions to
enforce the trajectories to stay withing the feasible region, which allows operation
within the capacity constraints for all time, even during transients. This permits
a more realistic application of the proposed controller design.

Outline: The remainder of this chapter is organized as follows. In Section 5.2
the preliminaries are stated. Then the basic dynamic pricing algorithm is discussed
in Section 5.3 and convergence of the closed-loop system is proven. Variations of
the basic controller design are discussed in Section 5.4 where in Section 5.4.1 nodal
power congestion is included into the social welfare problem, and in Section 5.4.2
the case line congestion for the acyclic power networks is discussed. A dynamic
pricing algorithm is proposed in Section 5.4.3 which does not require knowledge
about the power supply and demand. In Section 5.4.4 the possibility to relax
the convexity assumption and to improve the transient dynamics of the basic
controller is discussed. Finally, the conclusions and suggestions for future research
are discussed in Section 5.5.

5.2 Preliminaries

5.2.1 Notation

Given a symmetric matrix A ∈ Rn×n, we write A > 0 (A ≥ 0) to indicate that A
is a positive (semi-)definite matrix. The set of positive real numbers is denoted
by R>0 and likewise the set of vectors in Rn whose elements are positive by Rn>0.
For u, v ∈ Rn we write u ⊥ v if uT v = 0. We use the compact notational form
0 ≤ u ⊥ v ≥ 0 to denote the complementarity conditions u ≥ 0, v ≥ 0, u ⊥ v. The
notation 1 ∈ Rn is used for the vector whose elements are equal to 1. Given a
twice-differentiable function f : Rn → Rn then the Hessian of f evaluated at x is
denoted by ∇2f(x). Given a vector η ∈ Rm, we denote by sin(.) the element-wise
sine function. Given a differentiable function f(x1, x2), x1 ∈ Rn1 , x2 ∈ Rn2 then
∇f(x1, x2) denotes the gradient of f with respect to x1, x2 evaluated at x1, x2
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and likewise ∇x1f(x1, x2) denotes the gradient of f with respect to x1. Given a
solution x of ẋ = f(x), where f : Rn → Rn is a Lebesgue measurable function and
locally bounded, the omega-limit set Ω(x) is defined as [26]

Ω(x) :=
{
x̄ ∈ Rn | ∃{tk}∞k=1 ⊂ [0,∞) with lim

k→∞
tk =∞ and lim

k→∞
x(tk) = x̄

}
.

5.2.2 Power network model

Consider a power grid consisting of n buses. The network is represented by a con-
nected and undirected R graph G = (V, E), where the nodes, V = In := {1, . . . , n},
is the set of buses and the edges, E ⊂ V × V, is the set of transmission lines
connecting the buses. The edges are arbitrarily labeled with a unique identifier
in Im = {1, . . . ,m} where the k-th edge connecting nodes i and j is denoted as
k ∼ {i, j}. The ends of edge k ∼ {i, j} are arbitrary labeled with a ‘+’ and a ‘-’,
so that the incidence matrix D of the resulting directed graph is given by

Dik =


+1 if i is the positive end of edge k

−1 if i is the negative end of edge k

0 otherwise.

Each bus represents a control area and is assumed to have a controllable power
supply and demand. The dynamics at each bus i ∈ In is assumed to be given by
[67, 113]

δ̇i = ωi

Miω̇i = −
∑
j∈Ni

BijE
′
qiE
′
qj sin δij −Aiωi + Pgi − Pdi (5.1)

T ′doiĖ
′
qi = Efi − (1− (Xdi −X ′di)Bii)E′qi − (Xdi −X ′di)

∑
j∈Ni

BijE
′
qj cos δij ,

which is commonly referred to as the flux-decay model. Here we use a similar
notation as used in established literature on power systems [4, 61, 67, 89]. See
Table 5.1 for a list of symbols used in the model (5.1) and throughout the chapter.
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δi voltage angle
ωbi frequency
ωs nominal synchronous frequency
ωi frequency deviation ωi := ωbi − ωs
E′qi q-axis transient internal voltage
Efi excitation voltage
Pdi power demand
Pgi power generation
Mi moment of inertia
Ni set of buses connected to bus i
Ai asynchronous damping constant
Bij negative of the susceptance of transmission line (i, j)
Bii self-susceptance
Xdi d-axis synchronous reactance of generator i
X ′di d-axis transient reactance of generator i
T ′doi d-axis open-circuit transient time constant

Table 5.1: Parameters and state variables of model (5.1).

Assumption 5.2.1 (Physical power network model). By using the power network
model (5.1) the following assumptions are made, which are standard in a broad
range of literature on power network dynamics [67].

• Lines are purely inductive, i.e., the conductance is zero. This assumption is
generally valid for the case of high voltage lines connecting different control
areas.

• The grid is operating around the synchronous frequency which implies ωbi ≈
ωs for each i ∈ V.

• In addition, we assume for simplicity that the excitation voltage Efi is
constant for all i ∈ V.

Define the voltage angle differences between the buses by η = DT δ. Further
define the angular momenta by p := Mω, where ω = ωb−1ωs are the (aggregated)
frequency deviations and M = diagi∈V{Mi} are the moments of inertia. Let
Γ(E′q) = diagk∈E{γk} and γk = BijE

′
qiE
′
qj = BjiE

′
qiE
′
qj where k ∼ {i, j}

corresponds to the edge between node i and j. Then we can write (5.1) more
compactly as [113]

η̇ = DTω

Mω̇ = −DΓ(E′q) sin η −Aω + Pg − Pd
T ′doĖ

′
q = −F (η)E′q + Ef

(5.2)



100 Chapter 5. Constrained social welfare optimization and frequency regulation

where A = diagi∈V{Ai}, Pg = coli∈V{Pgi}, Pd = coli∈V{Pdi}, T ′d =
diagi∈V{T ′doi}, E′q = coli∈V{E′qi}, Ef = coli∈V{Efi}. For a given η, the com-
ponents of the matrix F (η) ∈ Rn×n are defined as

Fii(η) =
1

Xdi −X ′di
+Bii, i ∈ V

Fij(η) = −Bij cos ηk = Fji(η), if k ∼ {i, j} ∈ E
(5.3)

and Fij(η) = 0 otherwise. Since for realistic power networks Xdi > X ′di, and
Bii =

∑
j∈Ni Bij > 0 for all i ∈ V, it follows that F (η) > 0 for all η ∈ Rm [61, 67].

Considering the physical energy1 stored in the generator and the transmission
lines respectively, we define the Hamiltonian as

Hp =
1

2

∑
i∈V

(
M−1
i p2

i +
(E′qi − Efi)2

Xdi −X ′di

)

+
1

2

∑
k∼{i,j}∈E

Bij
(
(E′qi)

2 + (E′qj)
2 − 2E′qiE

′
qj cos ηk

) (5.4)

where ηk = δi − δj . The first term of the Hamiltonian Hp represents the
shifted kinetic energy stored in the rotors of the generators and the second term
corresponds to the (shifted) magnetic energy stored in the generator circuits.
Finally, the last term of Hp corresponds to the magnetic energy stored in the
inductive transmission lines.

By (5.4), the system (5.2) can be written in port-Hamiltonian form [117] as

ẋp =

 0 DT 0
−D −A 0

0 0 −Rq

∇Hp +

0 0
I −I
0 0

up
yp =

[
0 I 0
0 −I 0

]
∇Hp =

[
ω
−ω

] (5.5)

where xp = (η, p, E′q), up = (Pg, Pd) and

Rq = (T ′do)
−1(Xd −X ′d) > 0,

T ′do = diagi∈V{T ′doi} > 0,

Xd −X ′d = diagi∈V{Xdi −X ′di} > 0.

For a study on the stability and equilibria of the flux-decay model (5.5), based on
the Hamiltonian function (5.4), we refer to [113]. The stability results established
in [113] rely on the following assumption.

1For aesthetic reasons we define the Hamiltonian Hp as ωs times the physical energy as the
factor 1/ωs appears in each of the energy functions. As a result, Hp has the dimension of power
instead of energy.
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Assumption 5.2.2 (Security constraint). Given constant optimal input up =
ūp = (P̄g, P̄d). There exists an equilibrium (η̄, p̄, Ē′q) of (5.5) that satisfies η̄ ∈
imDT , η̄ ∈ (−π/2, π/2)m and ∇2H(η̄, p̄, Ē′q) > 0.

What we mean with an optimal input will be discussed in the next section. The
assumption η̄ ∈ (−π/2, π/2)m is standard in studies on power grid stability and is
also referred to as a security constraint [113]. In addition, the Hessian condition
guarantees the existence of a local storage function around the equilibrium.
The following result, which establishes decentralized conditions for checking the
positive definiteness of the Hessian, was proven in [31]:

Proposition 5.2.3 (Sufficient condition for positive definite Hessian). Let Ē′qi ∈
Rn>0 and η̄ ∈ (−π/2, π/2)m. If for all i ∈ V we have

1

Xdi −X ′di
+Bii −

∑
k∼{i,j}∈E

Bij
Ēqi + Ēqj sin2 η̄k

Ēqi cos η̄k
> 0,

then ∇2Hp(x̄p) > 0.

It can be verified that the condition stated in Proposition 5.2.3 is satisfied if the
following holds [31]:

• the generator reactances are small compared to the transmission line reac-
tances

• the voltage (angle) differences are small.

Remarkably, these conditions hold for a typical operation point in power trans-
mission networks.

5.2.3 Social welfare problem

We define the social welfare by S(Pg, Pd) := U(Pd) − C(Pg), which consists of a
utility function U(Pd) of the power consumption Pd and the cost C(Pg) associated
to the power production Pg. We assume that C(Pg), U(Pd) are strictly convex and
strictly concave functions respectively.2 The objective is to maximize the social
welfare while achieving zero frequency deviation. By analyzing the equilibria of
(5.1), it follows that a necessary condition for zero frequency deviation is 1TPd =
1TPg, i.e., the total supply must match the total demand [113]. It can be noted
that (Pg, Pd) is a solution to the latter equation if and only if there exists a vector
v ∈ Rmc satisfying Dcv − Pg + Pd = 0 where Dc ∈ Rn×mc is the incidence matrix
of some connected communication graph with mc edges and n nodes. Because of
the latter equivalence, we consider the following convex minimization problem:

minimize
Pg,Pd,v

− S(Pg, Pd) = C(Pg)− U(Pd) (5.6a)

subject to Dcv − Pg + Pd = 0. (5.6b)
2Typically, C,U are in the additive form C(Pg) =

∑
i∈V Ci(Pg), U(Pd) =

∑
i∈V Ui(Pd) but

in our results it is also possible to include mutual costs and utilities among the different control
areas, provided that the convexity/concavity assumptions on C,U are satisfied.
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Remark 5.2.4 (Reactive power sharing). Although this chapter focuses on optimal
active power sharing, we stress that it is also possible to consider (optimal) reactive
power sharing simultaneously, see e.g. [31] for more details.

The Lagrangian corresponding to (5.6) is given by

L = C(Pg)− U(Pd) + λT (Dcv − Pg + Pd) (5.7)

with Lagrange multipliers λ ∈ Rn. The resulting first-order optimality conditions
are given by the Karush–Kuhn–Tucker (KKT) conditions

∇C(P̄g)− λ̄ = 0,

−∇U(P̄d) + λ̄ = 0,

DT
c λ̄ = 0,

Dcv̄ − P̄g + P̄d = 0.

(5.8)

Since the minimization problem is convex, strong duality holds and it follows that
(P̄g, P̄d, v̄) is an optimal solution to (5.6) if and only if there exists an λ̄ ∈ Rn that
satisfies (5.8) [12].

5.3 Basic primal-dual gradient controller

In this section we design the basic dynamic pricing algorithm which will be used
as the starting point for the controllers designs discussed in Section 5.4. Its
dynamics is obtained by applying the primal-dual gradient method [6, 64, 132]
to the minimization problem (5.6), resulting in

KgṖg = −∇C(Pg) + λ+ ugc (5.9a)

KdṖd = ∇U(Pd)− λ+ udc (5.9b)

Kv v̇ = −DT
c λ (5.9c)

Kλλ̇ = Dcv − Pg + Pd. (5.9d)

Here we introduce additional inputs uc = (ugc , u
d
c) which are to be specified later on,

and Kc := blockdiag(Kg,Kd,Kv,Kλ) > 0 are controller design parameters. Recall
from Section 5.2.3 that there is freedom in choosing a communication network and
the associated incidence matrix. Depending on the application, one may prefer all-
to-all communication where the underlying graph is complete, or communication
networks where its associated graph is a star, line or cycle graph. In addition,
Kc determines the converge rate of the dynamics (5.9); a large Kc gives a slow
convergence rate whereas a small Kc gives a fast convergence rate.

Observe that the dynamics (5.9) has a clear economic interpretation [2, 3, 57]:
each power producer aims at maximizing their own profit, which occurs whenever
their individual marginal cost is equal to the local price λi + ugci. At the same
time, each consumer maximizes its own utility but is penalized by the local price
λi − udci. The equations (5.9c), (5.9d) represent the distributed dynamic pricing
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mechanism where the quantity v represents a virtual power flow along the edges of
the communication graph with incidence matrix Dc. We emphasize virtual, since
v may not correspond to the real physical power flow as the communication graph
may be different than the physical network topology. Equation (5.9d) shows that
the local price λi rises if the power demand plus power outflow at node i ∈ V is
greater than the local power supply plus power inflow of power at node i and vice
versa. The inputs ugc , u

d
c are interpreted as additional penalties or prices that are

assigned to the power producers and consumers respectively. These inputs can
be chosen appropriately to compensate for the frequency deviation in the physical
power network as we will show now.

To this end, define the variables xc = (xg, xd, xv, xλ) = (KgPg,KdPd,Kvv,Kλλ) =
Kczc and note that, in the sequel, we interchangeably write the system dynamics
in terms of both xc and zc for ease of notation. In these new variables the dynamics
(5.9) admits a natural port-Hamiltonian representation [105], which is given by

ẋc =


0 0 0 I
0 0 0 −I
0 0 0 −DT

c

−I I Dc 0

∇Hc(xc) +


I 0
0 I
0 0
0 0

 (∇S(yc) + uc) (5.10)

yc =

[
I 0 0 0
0 I 0 0

]
∇Hc(xc) =

[
Pg
Pd

]
,

Hc(xc) =
1

2
xTc K

−1
c xc. (5.11)

Note that the system (5.10) is indeed an incrementally port-Hamiltonian system
since S is concave and therefore satisfies the incremental passivity property

(y1 − y2)T (∇S(y1)−∇S(y2)) ≤ 0, ∀y1, y2 ∈ R2n.

The port-Hamiltonian controller (5.10) is interconnected to the physical network
(5.5) by taking uc = −yp, up = yc. In z-coordinates the closed-loop system is then
described by

η̇ = DTω (5.12a)

Mω̇ = −DΓ(E′q) sin η −Aω + Pg − Pd (5.12b)

T ′doĖ
′
q = −F (η)E′q + Ef (5.12c)

KgṖg = −∇C(Pg) + λ− ω (5.12d)

KdṖd = ∇U(Pd)− λ+ ω (5.12e)

Kv v̇ = −∇CT (v)−DTλ (5.12f)

Kλλ̇ = Dv − Pg + Pd. (5.12g)

We define the equilibrium set of (5.12) by

Z̄1 = {z̄ = (η̄, ω̄, Ē′q, P̄g, P̄d, v̄, λ̄) | z̄ is an equilibrium of (5.12)}. (5.13)
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We note that Z̄1 corresponds to maximal social welfare and zero frequency
deviation in the physical network. To see this, let z̄ = (η̄, ω̄, Ē′q, P̄g, P̄d, v̄, λ̄) ∈ Z̄1

be an equilibrium of (5.12). Then by premultiplying (5.12g) by 1T we have the
power balance 1T P̄g = 1T P̄d. From (5.12a) it follows that ω = 1ws for some
ωs ∈ R. As a result, premultiplication of (5.12b) by 1T gives 1TA1ωs = 0 and
thus ω̄ = 1ωs = 0. Finally, since ω̄ = 0 we have that the optimality conditions
(5.8) are satisfied by (5.12d)-(5.12g) at the equilibrium condition.

For the stability analysis of (5.12) it is convenient to write the system in port-
Hamiltonian form. To this end, define the extended vectors of variables by

x :=



I 0 0 0 0 0 0
0 M 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 Kg 0 0 0
0 0 0 0 Kd 0 0
0 0 0 0 0 Kv 0
0 0 0 0 0 0 Kλ





η
ω
E′q
Pg
Pd
v
λ


=: Kz. (5.14)

Then the closed-loop port-Hamiltonian system takes the form

ẋ =



0 DT 0 0 0 0 0
−D −A 0 I −I 0 0

0 0 −Rq 0 0 0 0
0 −I 0 0 0 0 I
0 I 0 0 0 0 −I
0 0 0 0 0 0 −DT

c

0 0 0 −I I Dc 0


∇H(x) +



0 0
0 0
0 0
I 0
0 I
0 0
0 0


∇S(y),

y =

[
0 0 0 I 0 0 0
0 0 0 0 I 0 0

]
∇H(x)

(5.15)

where H = Hp+Hc is equal to the sum of the energy function (5.4) corresponding
to the physical model, and the controller Hamiltonian (5.11). We note that this
form of the coupled dynamics clearly reveals the damping and interconnection
structure of the system. In particular, we can write (5.15) as the incrementally
port-Hamiltonian system

ẋ = (J −R)∇H(x) +G∇S(y),

y = GT∇H(x)
(5.16)

where R = RT ≥ 0, J = −JT are formed by taking the symmetric, respectively
anti-symmetric part of the square matrix depicted in (5.15). Having established
the port-Hamiltonian form of the interconnected system, we now state the main
result of this section which is the local asymptotic stability of (5.12).

Theorem 5.3.1 (Local asymptotic of (5.12)). For every z̄ ∈ Z̄1 satisfying
Assumption 5.2.2 there exists a neighborhood Υ around z̄ where all trajectories
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z satisfying (5.12) with initial conditions in Υ converge to the set Z̄1. In addition,
the convergence of each such trajectory is to a point.

Proof. Let z̄ ∈ Z̄1 and consider the equivalent port-Hamiltonian form of the system
given by (5.15). Define the shifted Hamiltonian H̄ around x̄ := Kz̄ as [117]

H̄(x) = H(x)− (x− x̄)T∇H(x̄)−H(x̄). (5.17)

By (5.15), the time-derivative of the shifted Hamiltonian H̄ satisfies

˙̄H = −ωTAω + (y − ȳ)T (∇S(y)−∇S(ȳ))− (∇E′qH̄)TRq∇E′qH̄ ≤ 0, (5.18)

where equality holds if and only if∇E′qH̄(x) = ∇E′qH(x) = 0, ω = 0, Pg = P̄g, Pd =

P̄d since S(.) is strictly concave. Bearing in mind Assumption 5.2.2, it is observed
that ∇2H(x) = ∇2H̄(x) > 0 for all x in a sufficiently small open neighborhood

around x̄. Hence, as ˙̄H ≤ 0, there exists a compact sublevel set Υ of H̄ around z̄
contained in such neighborhood, which is forward invariant. By LaSalle’s invari-
ance principle, each the solution with initial conditions in Υ converges to the largest
invariant set S contained in Υ ∩ {z | ∇E′qH(x) = 0, ω = 0, Pg = P̄g, Pd = P̄d}.
On such invariant set λ, η, v, E′q are constant and thus S in contained in the set of

equilibria. As a result, for system (5.12), z converges to S ⊂ Z̄1 as t→∞.
Finally, we prove that the convergence of each solution of (5.15) initializing in

Υ is to a point. This is equivalent to proving that its omega-limit set Ω(x) is a
singleton. Since the solution x is bounded, Ω(x) 6= ∅ by the Bolzano-Weierstrass
theorem [88]. By contradiction, suppose now that there exist two distinct point
in Ω(x), say x̄1, x̄2 ∈ Ω(x), x̄1 6= x̄2. Then there exists H̄1(x), H̄2(x) defined
by (5.17) with respect to x̄1, x̄2 respectively and scalars c1, c2 ∈ R>0 such that
H̄−1

1 (≤ c1) := {x | H̄1(x) ≤ c1}, H̄−1
2 (≤ c2) := {x | H̄2(x) ≤ c2} are disjoint and

compact as the Hessian of H̄1, H̄2 is positive definite in the neighborhood Υ. Since
each trajectory z converges to Z1 as proven above, it follows that K−1x̄1,K

−1x̄2 ∈
Z̄1. Together with x̄1 ∈ Ω(x), this implies that there exists a finite time t1 > 0
such that x(t) ∈ H̄−1

1 (≤ c1) for all t ≥ t1 as the set H̄−1
1 (≤ c1) is invariant

by the dissipation inequality (5.18). Similarly, there exists a finite time t2 > 0
such that x(t) ∈ H̄−1

2 (≤ c2) for all t ≥ t2. This implies that the solution x(t)
satisfies x(t) ∈ H̄−1

1 (≤ c1) ∩ H̄−1
2 (≤ c2) = ∅ for t ≥ max(t1, t2) which result

in a contradiction with the existence of a solution. This concludes the proof of
Theorem 5.3.1.

5.4 Variations in the controller design

In this section we propose several variations and extensions of the controller
designed in the previous section. These include, among other things, the possibility
to incorporate nodal power constraints, and line congestion in conjunction with
transmission costs into the social welfare problem.
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5.4.1 Including nodal power constraints

The results of Section 5.3 can be extended to the case where nodal constraints on
the power production and consumption are included into the optimization problem
(5.6). To this end, consider the social welfare problem

minimize
Pg,Pd,v

− S(Pg, Pd) := C(Pg)− U(Pd) (5.19a)

subject to Dcv − Pg + Pd = 0, (5.19b)

g(Pg, Pd) ≤ 0 (5.19c)

where g : R2n → Rq is a convex function.

Example 5.4.1 (Box constraints). Note that (5.19c) captures the convex inequal-
ity constraints considered in the existing literature. For example, by choosing g
as

g(Pg, Pd) =


g1(Pg, Pd)
g2(Pg, Pd)
g3(Pg, Pd)
g4(Pg, Pd)

 =


Pg − Pmax

g

Pmin
g − Pg

Pd − Pmax
d

Pmin
d − Pd

 ,
the resulting inequality constraints (5.19c) become Pmin

g ≤ Pg ≤ Pmax
g , Pmin

d ≤
Pd ≤ Pmax

d which, among others, are used in [130, 132, 133].

In the sequel, we assume that (5.19) satisfies Slater’s condition [12]. As a result,
(P̄g, P̄d, v̄) is an optimal solution to (5.19) if and only if there exists λ̄ ∈ Rn, µ̄ ∈
Rq≥0 satisfying the following KKT optimality conditions:

∇C(P̄g)− λ̄+∇Pgg(P̄g, P̄d)µ̄ = 0,

−∇U(P̄d) + λ̄+∇Pdg(P̄g, P̄d)µ̄ = 0,

Dcv̄ − P̄g + P̄d = 0, DT
c λ̄ = 0,

0 ≤ g(P̄g, P̄d) ⊥ µ̄ ≥ 0.

(5.20)

Here we use the convention

∇Pgg(Pg, Pd) =
[
∂g1
∂Pg

(Pg, Pd) · · · ∂gq
∂Pg

(Pg, Pd)
]

where ∂gi
∂Pg

(Pg, Pd) denotes the gradient of gi with respect to Pg for each i ∈ Iq.
A likewise notation is used for ∇Pdg(Pg, Pd). Next, we introduce the following
subsystems [52, 105]

ẋµi = (gi(wi))
+
µi :=

{
gi(wi) if µi > 0

max{0, gi(w)} if µi = 0

yµi = ∇gi(wi)∇Hµi(xµi), Hµi(xµi) =
1

2
xTµiK

−1
µi xµi

(5.21)
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with state xµi := Kµiµi ∈ R≥0, outputs yµi ∈ Rq, inputs wi ∈ R2n, and i ∈
Iq = {1, . . . , q}. Here gi(.) is the i’th entry of the vector-valued function g(.) =
coli∈V{gi(.)}. Note that, for a given i ∈ Iq and for a constant input w̄i, the
equilibrium set Z̄µi of (5.21) is characterized by all (µ̄i, w̄i) satisfying

gi(w̄i) ≤ 0, gi(w̄i)µi = 0, µ̄i ≥ 0. (5.22)

More formally, for i ∈ Iq the equilibrium set Z̄µi of (5.21) is given by

Z̄µi := {(µ̄i, w̄i) | (µ̄i, w̄i) satisfies (5.22)}.

Example 5.4.2 (Form of subsystems for box constraints). In case the inequality
constraints of Remark 5.4.1 (e.g. Pg ≤ Pmax

g ) are considered, the subsystems
(5.21) take the decentralized form

ẋµi = (Pgi − Pmax
gi )+

µi =

{
Pgi − Pmax

gi if µi > 0

max{0, Pgi − Pmax
gi } if µi = 0

yµi = ∇Hµi(xµi), Hµi(xµi) =
1

2
xTµiK

−1
µi xµi , i ∈ V,

(5.23)

and similar expressions can be given for the remaining inequalities Pmin
g ≤

Pg, P
min
d ≤ Pd ≤ Pmax

d .

The subsystems (5.21) have the following passivity property, which we have
proven in Chapter 3 and [105].

Proposition 5.4.3 (Shifted passivity of (5.21) [105]). Let i ∈ Iq, (µ̄i, w̄i) ∈ Z̄µi
and define ȳµi := ∇gi(w̄i)µ̄i. Then (5.21) is passive with respect to the shifted
external port-variables w̃i := wi−w̄i, ỹµi := yµi−ȳµi . Additionally, (µi, wi)→ Z̄µi
as t→∞ for (µi, wi), wi = w̄i satisfying (5.21).

Consider a similar system as (5.15), given in the compact form

ẋ = (J −R)∇H(x) +G(∇S(y) + u)

y = GT∇H(x) =

[
Pg
Pd

]
(5.24)

where we introduced an additional input u ∈ R2n.

Remark 5.4.4 (Shifted passivity of (5.24)). Note that for any steady state (x̄, ū)
of (5.24), the latter system is passive with respect to the shifted external port-
variables ũ := u− ū, ỹ = y − ȳ, ȳ := GT∇H(x̄), using the local storage function

H̄(x) := H(x)− (x− x̄)T∇H(x̄)−H(x̄). (5.25)

We interconnect the subsystems (5.21) to (5.24) in a power-preserving way by

wi = w = y ∀i ∈ Iq, u = −
∑
i∈Iq

yµi



108 Chapter 5. Constrained social welfare optimization and frequency regulation

to obtain the closed-loop system

η̇ = DTω (5.26a)

Mω̇ = −DΓ(E′q) sin η −Aω + Pg − Pd (5.26b)

T ′doĖ
′
q = −F (η)E′q + Ef (5.26c)

KgṖg = −∇C(Pg) + λ−∇Pgg(Pg, Pd)µ− ω (5.26d)

KdṖd = ∇U(Pd)− λ−∇Pdg(Pg, Pd)µ+ ω (5.26e)

Kv v̇ = −∇CT (v)−DTλ (5.26f)

Kλλ̇ = Dv − Pg + Pd (5.26g)

Kµi µ̇i = (gi(Pg, Pd))
+
µi , i ∈ Iq. (5.26h)

Observe that the equilibrium set Z̄2 of (5.26), expressed in the co-energy vari-
ables, is characterized by all (z̄, µ̄) that satisfy (5.20) in addition to ω̄ = 0,
−DΓ(Ē′q) sin η̄+P̄g−P̄d = 0,−F (η̄)Ē′q+Ef = 0, and therefore corresponds to the
desired operation points. Since both the subsystems (5.21) and the system (5.15)
admit an incrementally passivity property with respect to their steady states, the
closed-loop system inherits the same property provided that an equilibrium of
(5.26) exists. This allows us to establish the following stability result.

Theorem 5.4.5 (Asymptotic stability of (5.26)). For every (z̄, µ̄) ∈ Z̄2 satisfying
Assumption 5.2.2 there exists a neighborhood Υ of (z̄, µ̄) where all trajectories
z satisfying (5.26) with initial conditions in Υ converge to the set Z̄2 and the
convergence of each such trajectory is to a point.

Proof. Let (z̄, µ̄) ∈ Z̄2 and consider the shifted Hamiltonian H̄e around (x̄, x̄µ) =
(Kz̄,Kµµ̄) defined by

H̄e(x, xµ) := H̄(x) +
∑
i∈Iq

H̄µi(xµi) = H̄(x) +
1

2
x̃TµK

−1
xµ x̃µ

where x̃µ := xµ− x̄µ and H̄ is defined by (5.25). By Proposition 5.4.3 and Remark
5.4.4, the time-derivative of H̄e satisfies

˙̄He ≤ ũT ỹ + w̃T
∑
i∈Iq

ỹµi = ũT ỹ − ũT ỹ = 0

where equality holds only if Pg = P̄g, Pd = P̄d, ω = 0,∇E′qH(x) = 0. On the largest

invariant set where ˙̄He = 0 it follows by the second statement of Proposition 5.4.3
that µ is constant and therefore also λ = λ̄ and v, η, E′q are constant on this
invariant set. We note that the right-hand side of (5.21) is discontinuous but
takes the same form as in [26]. Thus we are able to apply the invariance principle
for discontinuous Caratheodory systems [26, Proposition 2.1] to conclude that
(z, µ) → Z̄2 as t → ∞ for the system (5.26). By following the same line of
arguments as in the proof of Theorem 5.3.1, convergence of each trajectory to a
point is proven.
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Remark 5.4.6 (Caratheodory solutions). Theorem 5.4.5 uses the Caratheodory
variant of the Invariance Principle which requires that the Caratheodory solution
of (5.26) is unique and that its omega-limit set is invariant [26]. These requirements
are indeed satisfied by extending Lemmas 4.1-4.4 of [26] to the case where equality
constraints and nonstrict convex/concave (utility) functions are considered in the
optimization problem3 [26, equation (3)], noting that these lemmas only require
convexity/concavity instead of their strict versions. In particular, by adding
a quadratic function of the Lagrange multipliers associated with the equality
constraints to the Lyapunov function, it can be proven that monotonicity of the
primal-dual dynamics with respect to primal-dual optimizers as stated in [26,
Lemma 4.1] holds for this more general case as well, see also [25, 105].

Remark 5.4.7 (Barrier functions). Instead of using the projected dynamics (5.21)
for dealing with the inequality constraints (5.19c), we can instead introduce the so
called barrier functions Bi = −ν log(−gi(Pg, Pd)) that are added to the objective
function [12]. Simultaneously, the corresponding inequalities in the social welfare
problem (5.19) are removed to obtain the modified convex optimization problem

minimize
Pg,Pd,v

− S(Pg, Pd)− ν
∑
i∈Iq

log(−gi(Pg, Pd))

subject to Dcv − Pg + Pd = 0.

(5.27)

Here ν > 0 is called the barrier parameter and is usually chosen small. By applying
the primal-dual gradient method to (5.27) it can be shown that, if the system is
initialized in the interior of the feasible region, i.e. where (5.19c) holds in the
strict sense, then the trajectories of the resulting gradient dynamics remain within
the feasible region and the system converges to a suboptimal value of the social
welfare [6, 12, 120]. However, if Slater’s condition holds, this suboptimal value
which depends on ν approaches the optimal value of the social welfare problem
as ν → 0 [12]. The particular advantage of using barrier functions is to avoid the
use of projections of the Lagrange multiplier µ and to enforce that the trajectories
remain within the feasible region for all future time.

5.4.2 Including line congestion and transmission costs

The previous section shows how to include nodal power constraints into the
social welfare problem. In case the network is acyclic, line congestion and power
transmission costs can be incorporated into the optimization problem as well. To
this end, define the (modified) social welfare by U(Pd) − C(Pg) − CT (v) where
the convex function CT (v) corresponds to the power transmission cost. If security
constraints on the transmission lines are included as well, the optimization problem

3Note that objective function of the social welfare problem (5.6) is not strictly convex in v
and thus not strictly convex with respect to all optimization variables.
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(5.6) modifies to

minimize
Pg,Pd,v

− S(Pg, Pd, v) := C(Pg) + CT (v)− U(Pd) (5.28a)

subject to Dv − Pg + Pd = 0 (5.28b)

− κ ≤ v ≤ κ, (5.28c)

with κ ∈ Rm>0. Note that in this case the communication graph is chosen
to be identical to the topology of the physical network, i.e., Dc = D. As a
result, the additional constraints (5.28c) bound the (virtual) power flow along the
transmission lines as |vk| ≤ κk for each edge k. The Lagrangian of (5.28) is given
by

L = C(Pg) + CT (v)− U(Pd) + λT (Dv − Pg + Pd) + µT+(v − κ) + µT−(−κ− v)

with Lagrange multipliers λ ∈ Rn, µ+, µ− ∈ Rm≥0. The resulting KKT optimality
conditions are given by

∇C(P̄g)− λ̄ = 0, −∇U(P̄d) + λ̄ = 0,

∇CT (v̄) +DT λ̄+ µ̄+ − µ̄− = 0,

−κ ≤ v̄ ≤ κ, Dv̄ − P̄g + P̄d = 0,

µ̄+, µ̄− ≥ 0, µ̄T+(v̄ − κ) = 0, µ̄T−(−κ− v̄) = 0.

(5.29)

Suppose that Slater’s condition holds. Then, since the optimization problem (5.28)
is convex, it follows that (P̄g, P̄d, v̄) is an optimal solution to (5.28) if and only if
there exists λ̄ ∈ Rn, µ̄ = (µ̄+, µ̄−) ∈ R2m

≥0 satisfying (5.29) [12].
By applying the gradient method to (5.28) in a similar manner as before and

connecting the resulting controller with the physical model (5.2), we obtain the
following closed-loop system:

η̇ = DTω (5.30a)

Mω̇ = −DΓ(E′q) sin η −Aω + Pg − Pd (5.30b)

T ′doĖ
′
q = −F (η)E′q + Ef (5.30c)

KgṖg = −∇C(Pg) + λ− ω (5.30d)

KdṖd = ∇U(Pd)− λ+ ω (5.30e)

Kv v̇ = −∇CT (v)−DTλ− µ+ + µ− (5.30f)

Kλλ̇ = Dv − Pg + Pd (5.30g)

K+µ̇+ = (v − κ)+
µ+

(5.30h)

K−µ̇− = (−κ− v)+
µ− . (5.30i)
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The latter system can partially be put into a port-Hamiltonian form, since
equations (5.30a)-(5.30g) can be rewritten as

ẋ = (J −R)∇H(x) +G∇S(y) +Nµ

y = GT∇H(x)

N =

[
0 0 0 0 −I 0
0 0 0 0 I 0

]T
,

(5.31)

where the variables x, z and the Hamiltonian H are respectively defined by (5.14)
and (5.15) as before, and µ = (µ+, µ−). Since the network topology is a tree
(i.e. ker(D) = {0}), the equilibrium of (5.30) satisfies v̄ = Γ(Ē′q) sin η̄. Hence,
the controller variable v corresponds to the physical power flow of the network if
the closed-loop system is at steady state. Consequently, the constraints and costs
on v correspond to constraints and costs of the physical power flow if the system
converges to an equilibrium.

Theorem 5.4.8 (Asymptotic stability of (5.30)). Let the network topology be
acyclic and let (z̄, µ̄) be an (isolated) equilibrium of (5.30) satisfying Assumption
5.2.2. Then (z̄, µ̄) is locally asymptotically stable.

Proof. Let (z̄, µ̄) be the equilibrium of (5.30). By defining the shifted Hamiltonian
H̄(x) around x̄ := Kz̄ by

H̄(x) = H(x)− (x− x̄)T∇H(x̄)−H(x̄)

one can rewrite (5.31) as

ẋ = (J −R)∇H̄(x) +∇S(y)−∇S(ȳ) +Nµ̃

y − ȳ = GT∇H̄(x)
(5.32)

where µ̃ := µ− µ̄. Consider candidate Lyapunov function

V (x, µ) = H̄(x) +
1

2
µ̃+Kµ+

µ̃+ +
1

2
µ̃T−Kµ− µ̃−

and observe that

µ̃T+(v − κ)+
µ+
≤ µ̃T+(v − κ) = µ̃T+(v̄ − κ+ ṽ) ≤ µ̃T+ṽ

µ̃T−(−κ− v)+
µ− ≤ µ̃

T
−(−κ− v)

= µ̃T−(−κ− v̄ − ṽ) ≤ −µ̃T−ṽ.

(5.33)

Bearing in mind (5.32), the time-derivative of V amounts to

V̇ = −ωTAω − (∇E′qH(x))TRq∇E′qH(x) + (y − ȳ)T (∇S(y)−∇S(ȳ))

− ṽT µ̃+ + ṽT µ̃− + µ̃T+(v − κ)+
µ+

+ µ̃T−(−κ− v)+
µ−

≤ −ωTAω + (y − ȳ)T (∇S(y)−∇S(ȳ))− (∇E′qH(x))TRq∇E′qH(x) ≤ 0
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where equality holds only if ∇E′qH(x) = 0, ω = 0, Pg = P̄g, Pd = P̄d. On the

largest invariant set S where ∇E′qH(x) = 0, ω = 0, Pg = P̄g, Pd = P̄d it follows

that, since the graph contains no cycles λ = λ̄, v = v̄, µ = µ̄ and that η,E′q are
constant, which corresponds to an equilibrium. In particular ∇V (x, µ) = 0 for all
(x, µ) ∈ S and (x̄, µ̄) ∈ S. Since by Assumption 5.2.2 we have ∇2V (x̄, µ̄) > 0, it
follows that (x̄, µ̄) is isolated and by (5.33) we have that (x̄, µ̄) is Lyapunov stable.
Finally, by the invariance principle for discontinuous Caratheodory systems [26] all
trajectories (z, µ) of (5.30) initializing in a sufficienly small neighborhood around
(z̄, µ̄) converge to (z̄, µ̄).

Remark 5.4.9 (Combining nodal constraints and line congestion). It is possible to
include nodal power constraints, line congestion and transmission costs simulta-
neously. However, as the results in this section are only valid for acyclic graphs,
it should also be assumed for the more general case that the physical network is a
tree.

5.4.3 Demand uncertainty

Consider again the minimization problem (5.6). As shown before, by applying the
gradient method to the social welfare problem and the interconnection with the
power network dynamics, the closed-loop system (5.15) is obtained. Note that
in the λ-dynamics the demand Pd appears, which in practice is often uncertain.
A possibility to eliminate the demand from the controller dynamics is by a state
transformation [64, 92]. To this end, define the new variables

x̂ :=



η
p
E′q
xg
xd
xv
xθ


=



I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 I 0 0 0 0 I


x = K̂



η
p
E′q
Pg
Pd
v
θ


=: K̂ẑ,

i.e., xθ := Kθθ = p+ xλ. Then the port-Hamiltonian system (5.15) transforms to

˙̂x =



0 DT 0 0 0 0 DT

−D −A 0 I −I 0 −A
0 0 −Rq 0 0 0 0
0 −I 0 0 0 0 0
0 I 0 0 0 0 0
0 0 0 0 0 0 −DT

c

−D −A 0 0 0 Dc −A


∇Ĥ(x̂) +G∇S(y)

y = GT∇Ĥ(x̂)

(5.34)
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with G as defined in (5.16) and Hamiltonian

Ĥ(x̂) = Hp +
1

2
xTgK

−1
g xg +

1

2
xTdK

−1
d xd +

1

2
xTvK

−1
v xv +

1

2
(xθ − p)K−1

λ (xθ − p).

By writing the system of differential equations (5.34) explicitly we obtain

η̇ = DTω

Mω̇ = −DΓ(E′q) sin η −Aω + Pg − Pd
T ′doĖ

′
q = −F (η)E′q + Ef

KgṖg = −∇C(Pg) +K−1
λ (Kθθ −Mω)− ω

KdṖd = ∇U(Pd)−K−1
λ (Kθθ −Mω) + ω

Kv v̇ = −DT
c K
−1
λ (Kθθ −Mω)

Kθ θ̇ = Dcv −DΓ sin η −Aω.

(5.35)

Define Z̄4 as the set of all ẑ∗ := (η̄, ω̄, Ē′q, P̄g, P̄d, v̄, θ̄) that are an equilibrium of
(5.35). Using the previous established tools we can prove local convergence of
(5.35) to the set of optimal points Z̄4.

Theorem 5.4.10 (Asymptotic stability of transformed system (5.35)). For every
ẑ∗ ∈ Z̄4 satisfying Assumption 5.2.2 there exists a neighborhood Υ around ẑ∗

where all trajectories ẑ satisfying (5.35) and initializing in Υ converge to Z̄4. In
addition, the convergence of each such trajectory is to a point.

Proof. We proceed along the same lines as in the proof of Theorem 5.3.1 where
we note that the stability result of Theorem 5.3.1 is preserved after a state
transformation.

Note that the latter result holds for any gain matrices Kg,Kd,Kv,Kλ,Kθ > 0.
The controller appearing in (5.35) can be simplified by choosing Kλ = Kθ = M .
As a result, the controller dynamics is described by

KgṖg = −∇C(Pg) + θ − 2ω (5.36a)

KdṖd = ∇U(Pd)− θ + 2ω (5.36b)

Kv v̇ = −DT
c (θ − ω) (5.36c)

Mθ̇ = Dcv −DΓ(E′q) sin η −Aω. (5.36d)

The main advantage of controller design (5.36) is that no information about
the power supply and demand is required in the dynamic pricing algorithm
(5.36c), (5.36d), where we observe that the quantity θ − 2ω can be interpreted as
the (local) electricity price for the producers and consumers. Another benefit of
the proposed dynamic pricing algorithm is that, contrary to [135], no information
is required about ω̇. On the other hand, knowledge about the physical power
flows and the power system parameters M,A is required. Determining the radius
of uncertainty of these parameters under which asymptotic stability is preserved
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remains an open question [64]; see [69] for results in a similar setting where only
the damping term A is assumed to be uncertain.

5.4.4 Relaxing the strict convexity assumption

By making a minor modification to the social welfare problem (5.6), it is possible
to relax the requirement that the functions C,U are strictly convex and concave
respectively. To this end, consider the convex optimization problem

minimize
Pg,Pd,v

C(Pg)− U(Pd) +
1

2
ρ||Dcv − Pg + Pd||2 (5.37a)

subject to Dcv − Pg + Pd = 0, (5.37b)

where ρ > 0, C(Pg) is convex and U(Pd) is concave. Provided that there exists
a feasible solution to the minimization problem, then the set of optimal points of
(5.37) is identical to the set of optimal points of (5.6) which is characterized by
set of points satisfying the KKT conditions (5.8). The corresponding augmented
Lagrangian of (5.37) is given by

Lp = C(Pg)− U(Pd)− λT (Dcv + Pg − Pd) +
1

2
ρ||Dcv + Pg − Pd||2.

Consequenctly, the distributed dynamics of the primal-dual gradient method
applied to (5.37) amounts to

KgṖg = −∇C(Pg) + λ− ρ(Dcv + Pg − Pd)
KdṖd = ∇U(Pd)− λ+ ρ(Dcv + Pg − Pd)
Kv v̇ = DT

c λ− ρDT
c (Dcv + Pg − Pd)

Kλλ̇ = −Dcv − Pg + Pd,

(5.38)

which can be written in the same port-Hamiltonian form as (5.15) where in this
case

S(Pg, Pd, v) = U(Pd)− C(Pg)−
1

2
ρ||Dcv − Pg + Pd||2, (5.39)

GT =

0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0

 , (5.40)

y = GT∇H(x) =

PgPd
v

 . (5.41)

We note here that the dynamics (5.38) is still distributed as still only local
information (on the local power imbalance) is needed for the implementation. We
are now in the position to state the following result.
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Theorem 5.4.11 (Asymptotic stability of (5.15)). Consider the system (5.12)
or equivalently (5.15) where S is replaced by (5.39) and suppose that C,U are
convex and concave functions respectively. Then for every z̄ ∈ Z̄1 satisfying
Assumption 5.2.2, where Z̄1 is defined by (5.13), there exists a neighborhood Υ
around z̄ wherein each trajectory z satisfying (5.15) converges to a point in Z̄1.

Proof. Let z̄ ∈ Z̄1. By the proof of Theorem 5.3.1 it follows that

˙̄H = −ωTAω + (y − ȳ)T (∇S(y)−∇S(ȳ))− (∇E′qH̄)TRq∇E′qH̄,

where the second term can be written as

(Pd − P̄d)T (∇U(Pd)−∇U(P̄d))− (Pg − P̄g)T (∇C(Pg)−∇C(P̄g))

− ρ

P̃gP̃d
ṽ

T  −I I −Dc

I −I Dc

−DT
c DT

c −DT
c Dc

P̃gP̃d
ṽ

 ≤ 0 (5.42)

where P̃g = Pg − P̄g, P̃d = Pd− P̄d, ṽ = v− v̄. Hence, we obtain that ˙̄H ≤ 0 where

equality holds only if ω = 0,∇E′qH̄(x) = 0 and Dcṽ+P̃g−P̃d = Dcv+Pg−Pd = 0.

On the largest invariant set S where ˙̄Hc = 0 we have ω = 0 and η,E′q are constant

and (Pg, Pd, v, λ) satisfy the KKT optimality conditions (5.8). Therefore S ⊂ Z̄1

and by LaSalle’s invariance principle there exists a neighborhood Υ around z̄ where
all trajectories z satisfying (5.15) converge to the set S ⊂ Z̄1. By continuing along
the same lines as the proof of Theorem 5.3.1, convergence of each trajectory to a
point is proven.

Remark 5.4.12 (Damping injection). Adding the quadratic term in the social
welfare problem as done in (5.37a) provides an additional advantage. As this
introduces more damping in the resulting gradient-method-based controller, see
(5.42), it may improve the convergence properties of the closed-loop dynamics [13,
82, 96]. Moreover, the amount of damping injected into the system depends on
parameter ρ, which can be chosen freely.

5.5 Conclusions and possible extensions

In this chapter a unifying and systematic energy-based approach in modeling
and stability analysis of power networks has been established. Convergence of
the closed-loop system to the set of optimal points using gradient-method-based
controllers have been proven using passivity based arguments. This result is
extended to the case where nodal power constraints are included into the problem
as well. However, for line congestion and power transmission cost the power
network is required to be acyclic to prove asymptotic stability to the set of optimal
points.

The results established in this chapter lend themselves to many possible
extensions. One possibility is to design an additional (passive) controller that
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regulates the voltages to the desired values or achieves alternative objectives like
(optimal) reactive power sharing. This could for example be realized by continuing
along the lines of [31].

Later we observe that, see e.g. [108], the port-Hamiltonian framework also
lends itself to consider higher-dimensional models for the synchronous generator
compared to the third-order model used in this chapter, and thus allowing for
a power-preserving with a controller. This will be the topic of Chapter 7. In
addition, in the next chapter we extend some of the results of the present chapter
to network-preserving models where a distinction is made between generator and
load nodes.

One of the remaining open questions is how to deal with line congestion and
power transmission costs in cyclic power networks with nonlinear power flows. In
addition, all of the results established for the nonlinear power network only provide
local asymptotic stability to the set of optimal points. Future research includes
determining the region of attraction.



117

Chapter 6

Active power sharing in
structure-preserving power
networks

Abstract: This chapter studies the problem of maximizing the social welfare
while stabilizing both the physical power network as well as the market dynamics.
For the physical power grid a third-order structure-preserving model is considered
involving both frequency and voltage dynamics. By applying the primal-dual gradi-
ent method to the social welfare problem, a distributed dynamic pricing algorithm
in port-Hamiltonian form is obtained. After interconnection with the physical
system a closed-loop port-Hamiltonian system of differential-algebraic equations
is obtained, whose properties are exploited to prove local asymptotic stability of the
optimal point.
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6.1 Introduction

The future power network needs to operate reliably in the face of fluctuations
resulting from distributed energy resources and the increased variability in both
supply and demand. One of the feedback mechanisms that have been identified
for managing this challenge is the use of real-time dynamic pricing. This feedback
mechanism encourages consumers to modify their demand when it is difficult
for system operator to achieve a balance between supply and demand [11]. In
addition, real-time dynamic pricing allows to maximize the total social welfare by
fairly sharing utilities and costs associated with the generation and consumption
of energy among the different control areas [57].

Many of the existing dynamic pricing algorithms focus on the economic part
of optimal supply-demand matching [57, 84]. However, if market mechanisms are
used to determine the optimal power dispatch (with near real-time updates of the
dispatch commands) dynamic coupling occurs between the market update process
and the physical response of the power network dynamics [3].

Consequently, under the assumption of market-based dispatch, it is essential to
consider the stability of the coupled system incorporating both market operation
and electromechanical power system dynamics simultaneously.

While on this subject a vast literature is already available, we focus on a more
accurate and higher order model for the physical power network than convention-
ally used in the literature. In particular, a structure-preserving model for the power
network with a third-order order model for the synchronous generators including
voltage dynamics is used. As a result, market dynamics, frequency dynamics and
voltage dynamics are considered simultaneously.

Literature review

The coupling between a high-order dynamic structure-preserving power network
and market dynamics has been studied before in [3]. Here a fourth-order model
of the synchronous generator is used in conjunction with turbine and exciter
dynamics, which is coupled to a simple model describing the market dynamics.
The results established in [3] are based on an eigenvalue analysis of the linearized
system.

It is shown in [113] that the third-order (flux-decay) model for the synchronous
generator, as used in the present chapter, admits a useful passivity property that
allows for a rigorous stability analysis of the interconnection with optimal power
dispatch controllers, even in the presence of time-varying demand. In [115] a
structure-preserving power network model is considered with turbine dynamics
where a similar internal-model controller is applied, which also has applications in
microgrids, see [33].

Another commonly used approach to design optimal distributed controllers
in power grids is the use of the primal-dual gradient algorithm [6], which has
been proven useful in network flow theory [36]. The problem formulation varies
throughout the literature on power systems, with the focus being on either the
generation side [64, 92], the load side [68, 69, 135] or both [130, 131].
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Many of these references focus on linear power system models coupled with
gradient-method-based controllers [64, 68, 69, 92, 130, 137]. In these references the
property that the linear power system dynamics can be formulated as a gradient
method applied to a certain optimization problem is exploited. This is commonly
referred to as reverse-engineering of the power system dynamics [64, 92, 130].
However, this approach falls short in dealing with models involving nonlinear power
flows.

Nevertheless, [131, 135] show the possibility to achieve optimal power dispatch
in structure-preserving power networks with nonlinear power flows using gradient-
method-based controllers. On the other hand, the controllers proposed in [131]
have restrictions in assigning the controller parameters and in addition require
that the topology of the physical network is a tree.

Main contributions

The contribution of this chapter is to propose a novel energy-based approach to
the problem that differs substantially from the aforementioned works. We proceed
along the lines of [105, 107], where a port-Hamiltonian approach to the design of
gradient-method-based controllers in power networks is proposed. In those papers
it is shown that both the power network as well as the controller designs admit a
port-Hamiltonian representation which are then interconnected to obtain a closed-
loop port-Hamiltonian system. In the present chapter we extend some of these
results to structure-preserving power networks.

First it is shown that the dynamical model describing the power network as well
as the market dynamics admit a port-Hamiltonian representation. Then, following
[105, 107], it is proven that all the trajectories of the coupled system converge to
the desired synchronous solution and to optimal power dispatch.

Since our approach is based on passivity and does not require to reverse-
engineer the power system dynamics as a primal-dual gradient dynamics, it
allows to deal with more complex nonlinear models of the power network. More
specifically, the physical model for describing the power network in this chapter
admits nonlinear power flows and time-varying voltages, and is more accurate
and reliable than the classical second-order model [10, 61, 67, 89]. In addition, a
distinction is made between generator nodes and loads nodes, resulting in a system
of differential-algebraic equations.

The results that are established in the present chapter are valid for the case of
nonlinear power flows and cyclic networks, in contrast to [64, 92, 130, 137], where
the power flows are linearized and [131] where the physical network topology is a
tree. Moreover, in the aforementioned references the voltages are assumed to be
constant.

While the third-order model for the synchronous generators has been studied
before using passivity based techniques [107, 113], the combination of gradient
method based controllers with structure-preserving power network models is novel.
In addition, the stability analysis does not rely on linearization and is based on
energy functions which allow us to establish rigorous stability results. Moreover,
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we do not impose any restrictive condition on controller design parameters for
guaranteeing asymptotic stability, contrary to [131].

The remainder of this chapter is organized as follows. In Section 6.2 the
preliminaries are stated. Thereafter, the power system dynamics is introduced
in Section 6.3 and a port-Hamiltonian representation of the system of differential-
algebraic equations is given as well in this section. Then the dynamic pricing
algorithm in port-Hamiltonian form is presented in Section 6.4. The closed-loop
system is analyzed in Section 6.5 and local asymptotic stability of the optimal
points is proven. Finally, the conclusions and the future research directions are
discussed in Section 6.6.

6.2 Preliminaries

6.2.1 Notation

Given a symmetric matrix A ∈ Rn×n, we write A > 0 (A ≥ 0) to indicate that A
is a positive (semi-)definite matrix. The set of positive real numbers is denoted
by R>0 and likewise the set of nonnegative real numbers is denoted by R≥0. The
notation 1n ∈ Rn is used for the vector whose elements are equal to 1. The
n × n identity matrix is denoted by In. Given an ordered set I = {i1, i2, . . . , ik}
and a vector v ∈ Rn, k ≤ n, then coli∈I{vi},diagi∈I{vi} denotes the k-column
vector, respectively k×k diagonal matrix whose entries are given by vi1 , vi2 , . . . , vik .
Likewise, given vectors v1, v2 then col(v1, v2) := [ v1v2 ]. Let f(x, y) be a differentiable
function of x ∈ Rn, y ∈ Rm, then ∇f := col(∂f∂x ,

∂f
∂y ) and ∇xf := ∂f

∂x denotes the
gradient of f with respect to x.

6.2.2 Differential algebraic equations

Let us consider a system of differential-algebraic equations (DAE’s) of the form

ẋ = f(x, y), (6.1a)

0 = g(x, y), (6.1b)

where x ∈ Rn and y ∈ Rm.

Definition 6.2.1 (Regular DAE [33]). Let D ⊂ Rn × Rm be an open connected
set. The algebraic equation 0 = g(x, y) is regular if the Jacobian of g w.r.t. y has
constant full rank on D, that is,

rank(∇yg(x, y)) = m ∀(x, y) ∈ D.

If the DAE-system (6.1) is regular on D then by [44] the existence and
uniqueness of solutions of (6.1) in D over an interval I ⊆ R≥0 for any
(x(x0, y0, t), y(x0, y0, t)) is guaranteed.

By extending the usual LaSalle’s invariance principle for ordinary differential
equations, we obtain an invariance principle that can be used for the stability
analysis of DAE’s, see [33].
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Theorem 6.2.2 (Invariance principle for DAE’s). Suppose the DAE (6.1) is
regular on D and f, g are continuous differentiable functions. Let (x, y) = (x̄, ȳ)
be an equilibrium of (6.1). Let V (x, y) : DV → R≥0 be a smooth positive definite

function on a neighborhood DV ⊂ D of (x, y) = (x̄, ȳ), such that V̇ (x, y) ≤ 0. Let
E = {(x, y) ∈ DV | V̇ = 0}, and suppose that no solution can stay forever in E,
other than the trivial solution (x̄, ȳ). Then (x̄, ȳ) is locally asymptotically stable.

6.3 Power network model

Consider a power grid consisting of n buses. The network is represented by
a connected and undirected graph G = (V, E). Its associated node set, V =
{1, . . . , n} = Vg∪Vd, is partitioned in the set of generator nodes Vg with cardinality
ng, and the set of load nodes Vd with cardinality nd. In addition, the set of edges
E ⊂ V × V corresponds to the set of transmission lines connecting the buses. The
edges are arbitrarily labeled with a unique identifier in Im := {1, . . . ,m} where the
k-th edge connecting nodes i and j is denoted as k ∼ {i, j}. Each bus represents
either a synchronous generator or a frequency-dependent load [10]. It is assumed
that the synchronous generators are governed by the flux-decay model [61] with a
controllable mechanical power injection Pgi. By [3], the loads are assumed to have
a time-varying active power demand Pdi and a constant reactive power demand
Qdi = Q̄di. As a result, the dynamics at each bus is given by the following
equations [67, 113].

δ̇i = ωi i ∈ V (6.2a)

Miω̇i = −Pi −Aiωi + Pgi i ∈ Vg (6.2b)

T ′doiĖi = Efi − Ei − (Xdi −X ′di)E−1
i Qi i ∈ Vg (6.2c)

Pi = −Aiωi − Pdi i ∈ Vd (6.2d)

Qi = Q̄di i ∈ Vd (6.2e)

Here the active and reactive power injections are given by

Pi =
∑
j∈Ni

BijEiEj sin δij i ∈ V

Qi = BiiE
2
i −

∑
j∈Ni

BijEiEj cos δij , i ∈ V

with Bii =
∑
j∈Ni Bij + B̂ii and where B̂ii ≥ 0 is the negative of the shunt

susceptance at node i. See Table 6.1 for a list of symbols used in the model (6.2)
and throughout the chapter.

Assumption 6.3.1 (Power network dynamics (6.2)). By using the model (6.2)
the following assumptions are made, where most of them are standard in a broad
range of literature on power network dynamics [67].
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δi voltage angle
ωi frequency deviation w.r.t. nominal frequency
Ei transient internal voltage
Efi excitation voltage
Pgi, Pdi active power generation and demand
Qgi, Qdi reactive power generation and demand
Mi moment of inertia
Ni set of buses connected to bus i
Ai asynchronous damping constant
Bij negative of the susceptance of transmission line {i, j}
Bii negative of the self-susceptance
Xdi d-axis synchronous reactance of generator i
X ′di d-axis transient reactance of generator i
T ′doi open-circuit transient time constant

Table 6.1: Parameters and state variables of model (6.2).

• Lines are purely inductive, i.e., the conductance is zero. This assumption is
generally valid for the case of high voltage lines connecting different control
areas.

• The grid is operating around the synchronous frequency, say 50 Hz or 60 Hz.

• The voltages satisfy Ei > 0, i ∈ V for all time t ≥ 0 and the reactive powers
at the loads Q∗di ≥ 0, i ∈ Vd are constant.

• The excitation voltage Efi is constant for all i ∈ V.

Define the angular momenta pi = Miωi, i ∈ Vg. Based on the energy stored in
the generators and the transmission network, the Hamiltonian is defined by

Hp =
1

2

∑
i∈Vg

(
M−1
i p2

i +
(Ei − Efi)2

Xdi −X ′di

)
+

1

2

∑
i∈V

BiiE
2
i −

∑
{i,j}∈E

BijEiEj cos δij .

(6.3)
The algebraic constraint (6.2e) corresponding to the reactive power of the load
can then be written as

0 = −[Ed]∇EdHp + Q̄d, (6.4)

where [Ed] := diagi∈Vd{Ei}, Ed := coli∈Vd{Ei}. As the system (6.2) admits a
rotational symmetry with respect to the voltage angles [35], it is convenient to
consider a different set of coordinates. To this end, define without loss of generality
the coordinates ϕ = D̂T δ, δ = coli∈V{δi}, where D̂ ∈ Rn×(n−1) has full column
rank and satisfies ker(D̂T ) = span{1n}.

Example 6.3.2 (Possible state transformations). One possibility is to define D̂
as the incidence matrix of a tree graph with n nodes and n − 1 edges. In that
case, ϕ represents the angle differences δi − δj along the edges of this tree graph.
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Another possibility is to choose node n as the reference node, resulting in D̂T =
[In−1 − 1n−1], see also [33, 127].

Using this modified set of coordinates, and defining the state variable xp :=
col(ϕ, pg, Eg, Ed), the system (6.2) can be written in the form

ϕ̇
ṗg
Ėg
0
0

 =


0 D̂T

g 0 0 D̂T
d

−D̂g −Ag 0 0 0
0 0 −Rg 0 0
0 0 0 −[Ed] 0

−D̂d 0 0 0 −Ad

∇Wp +


0
Pg
0
Q̄d
−Pd

 ,
Wp(xp, ωd) = Hp(xp) + Up(ωd), Up(ωd) =

1

2
ωTd ωd.

(6.5)

Here D̂T =
[
D̂T
g D̂T

d

]
, Ad = diagi∈Vd{Ai} > 0, Ag = diagi∈Vg{Ai} > 0, Rg =

diagi∈Vg{
Xdi−X′di
T ′doi

} > 0, ωd = coli∈Vd{ωi} and Eg, Pg, Pd, pg are defined likewise.

The system (6.5) has external ports (Pg, ωg), (Pd, ωd) which will be interconnected
to the dynamic pricing algorithm introduced in the following section.

Remark 6.3.3 (Nonstandard port-Hamiltonian DAE). The system (6.5) has a
slightly different form compared to conventional port-Hamiltonian DAE-systems,
see [117]. In particular, Hp is the Hamiltonian of the system while Up can be
interpreted as an auxiliary energy function which is not used as part of the (shifted)
storage function to prove passivity. However, by exploiting the special structure
of the system (6.5), the stability analysis becomes convenient as we will show in
Section 6.5.

6.4 Dynamic pricing algorithm

The social welfare is defined as S(Pg, Pd) := U(Pd) − C(Pg), which consists of a
utility function U(Pd) of the power consumption Pd and the cost C(Pg) associated
to the power production Pg. We assume that C(Pg), U(Pd) are strictly convex and
strictly concave functions respectively. The objective is to maximize the social
welfare while achieving zero frequency deviation. By analyzing the equilibria of
(6.2), it follows that a necessary condition for zero frequency deviation is 1TngPg =

1TndPd. In other words, the total supply must match the total demand. It can
be noted that Pg, Pd satisfy this power balance if and only if there exists a vector
v ∈ Rmc such that

−
[
Dcg

Dcd

]
︸ ︷︷ ︸
Dc

v +

[
Pg
−Pd

]
= 0
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where Dc ∈ Rn×mc is the incidence matrix of some connected communication
graph with mc edges.

max
Pg,Pd,v

U(Pd)− C(Pg)

s.t.

[
Dcg

Dcd

]
v +

[
Pg
−Pd

]
= 0.

(6.6)

The corresponding KKT optimality conditions amount to

∇C(P̄g)− λ̄g = 0

−∇U(P̄d) + λ̄d = 0[
DT
cg DT

cd

] [λ̄g
λ̄d

]
= 0

−
[
Dcg

Dcd

]
v̄ +

[
P̄g
−P̄d

]
= 0

(6.7)

with λg ∈ Rng , λd ∈ Rnd . Inspired by our previous work [105, 107] and based on
the primal-dual gradient method [6, 64, 130], the following distributed dynamic
pricing algorithm is proposed:

KgṖg = −∇C(Pg) + λg − ωg (6.8a)

KdṖd = ∇U(Pd)− λd + ωd (6.8b)

Kv v̇ = −DT
cgλg −DT

cdλd (6.8c)

Kλg λ̇g = Dcgv − Pg (6.8d)

Kλd λ̇l = Dcdv + Pd (6.8e)

where Kg,Kd,Kv,Kλg ,Kλd > 0 are (controller design) parameters. Observe that
the dynamics (6.8) has a clear economic interpretation [3, 57]: each power producer
aims at maximizing their own profit which, under the assumption of perfect
competition, occurs whenever their individual marginal cost equals the local price
λgi − ωgi, which depends on the local frequency ωgi of the physical network. At
the same time, each consumer maximizes its own utility but is penalized by the
local price λdi − ωdi.
Remark 6.4.1 (Frequency as feedback signal). The idea to use the frequency
deviation in the pricing mechanism stems from our previous work [105, 107] (see
also Chapters 3,4 and 5), and helps to compensate for the power supply-demand
imbalance. Moreover, it allows for a power-preserving interconnection with the
physical model (6.2).

The equations (6.8c), (6.8d), (6.8e) represent the distributed dynamic pricing
algorithm where the quantity v represents a virtual power flow along the edges of
the communication graph with incidence matrix Dc. We emphasize virtual, since
v may not correspond to the real physical power flow as the communication graph
(which can be designed as desired) may be different than the physical network
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topology. By (6.8c) the flow v increases from areas with a lower price to areas
with a relatively higher price and vice versa. Equation (6.8d) shows that the local
price λi rises if the power outflow at node i ∈ V is greater than the local power
supply plus power inflow of power at node i and vice versa. A similar statement
holds for (6.8e).

An important observation is that the dynamic pricing algorithm (6.8) can be
written in port-Hamiltonian form as

ẋc =


0 0 0 Ing 0
0 0 0 0 −Ind
0 0 0 −DT

cg −DT
cd

−Ing 0 Dcg 0 0
0 Ind Dcd 0 0


︸ ︷︷ ︸

Jc

∇Hc +


Ing 0
0 Ind
0 0
0 0
0 0


︸ ︷︷ ︸

gc

([
ωg
−ωd

]
+∇S(yc)

)

yc =

[
Ing 0 0 0 0
0 Ind 0 0 0

]
∇Hc =

[
Pg
Pd

]
(6.9)

with Hc = 1
2x

T
c K
−1
c xc and
xg
xl
xv
xλg
xλd


︸ ︷︷ ︸
xc

=


Kg 0 0 0 0
0 Kd 0 0 0
0 0 Kv 0 0
0 0 0 Kλg 0
0 0 0 0 Kλd


︸ ︷︷ ︸

Kc


Pg
Pd
v
λg
λd


︸ ︷︷ ︸
zc

.

Since S is a concave function it satisfies the following dissipation inequality

(yc − ȳc)T (∇S(yc)−∇S(ȳc)) ≤ 0

for all yc, ȳc ∈ Rn. This property implies that the system (6.9) is passive with
respect to its steady states, see also [107].

6.5 Stability of the closed-loop system

It is observed that, by construction of the dynamic pricing algorithm, there is two-
way coupling between the physical power network (6.2) and the market dynamics
(6.8) through the ports (Pg, ωg), (Pd, ωd). In fact, the interconnection between
(6.2) and (6.8) is power-preserving. As a result, the closed-loop system, obtained
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by combining the systems (6.5) and (6.9), takes the form
ẋc
ϕ̇
ṗg
Ėg
0
0

 =



Jc 0 −GT1 0 0 GT2
0 0 D̂T

g 0 0 D̂T
d

G1 −D̂g −Ag 0 0 0
0 0 0 −Rg 0 0
0 0 0 0 −[Ed] 0

−G2 −D̂d 0 0 0 −Ad

∇W +


gc∇S(yc)

0
0
0
Q̄Td
0


yc = gTc ∇Hc(xc)

(6.10)

where W (x, ωd) = Hp(xp) + Up(ωd) +Hc(xc), with x = col(xc, xp) and

G1 =
[
Ing 0 0 0 0

]
, G2 =

[
0 Ind 0 0 0

]
.

Next, we examine the equilibria of the coupled system (6.10). From it follows
from (6.8c) that λ̄g = 1ng λ̄∗, λd = 1ndλ∗ for some λ∗ ∈ R. Hence, the prices
λgi ∈ Vg, λdi ∈ Vd are identical at each node. From (6.8d), (6.8e) follows the
power balance 1Tng P̄g = 1Tnd P̄d. Finally, from (6.2b) and (6.2d) we have that ω̄i =
0, i ∈ V. This implies that at steady state the KKT optimality conditions (6.7) are
satisfied. Hence, the equilibrium points of the combined system (6.2), (6.8) satisfy
the optimality conditions of the social welfare problem (6.6) and, moreover, the
frequency deviations are zero at steady state.

Suppose now that there exists an equilibrium (x̄c, x̄p, ω̄d) of (6.10) and define
ȳc = gTc ∇H(x̄c). Then we define the shifted Hamiltonian [117] by

H̄p(xp) = Hp(xp)− (xp − x̄p)T∇Hp(x̄p)−Hp(x̄p),

and similarly Ūp(ωd), H̄c(xc) are defined. As a result, the algebraic equation (6.4)
can be rewritten as

0 = −[Ed]
(
∇EdH̄p(xp) +∇EdH̄a(xp)

)
where

H̄a(xp) = ETd ∇EdH̄p(x̄p)− Q̄Td logEd.

with log(·) being the element-wise natural logarithm. Observe that H̄a is a convex
function since, by Assumption 6.3.1, Q̄d ≥ 0. Since the term H̄a only depends on
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Ed, the system (6.10) takes the equivalent form
ẋc
ϕ̇
ṗg
Ėg
0
0

 =



Jc 0 −G1 0 0 G2

0 0 D̂T
g 0 0 D̂T

d

GT1 −D̂g −Ag 0 0 0
0 0 0 −Rg 0 0
0 0 0 0 −[Ed] 0

−GT2 −D̂d 0 0 0 −Ad

∇W̄

+
[
(gc∇S(yc)− gc∇S(ȳc))

T 0 0 0 0 0
]T

(6.11)

where W̄ (x, ωd) := H̄(x) + Ūp(ωd), H̄(x) := H̄p(xp) + H̄a(xp) + H̄c(xc). After
elimination of the algebraic variable ωd, the closed-loop system (6.11) can in turn
equivalently be written as

ẋc
ϕ̇
ṗg
Ėg
0

 =


Jc −G2A

−1
d GT2 −G2A

−1
d D̂d −G1 0 0

−D̂T
d A
−1
d GT2 −D̂T

d A
−1
d D̂d D̂T

g 0 0

GT1 −D̂g −Ag 0 0
0 0 0 −Rg 0
0 0 0 0 −[Ed]

∇H̄
+
[
(gc∇S(yc)− gc∇S(ȳc))

T 0 0 0 0
]T
.

(6.12)

We are now ready to present the main convergence result.

Theorem 6.5.1 (Local asymptotic stability of (6.12)). Consider system (6.12)
and suppose that Dc ∈ Rn×(n−1) is the incidence matrix of a tree graph.
Furthermore assume that the system (6.12) admits an equilibrium x̄ satisfying
∇2H̄(x̄) > 0. Then x̄ is locally asymptotically stable.

Proof. The shifted Hamiltonian H̄ satisfies

˙̄H = −ωTg Agωg − ωTd Adωd − (∇EgH̄)TRg∇EgH̄
− (Pg − P̄g)T (∇C(Pg)−∇C(P̄g))

+ (Pd − P̄d)T (∇U(Pd)−∇U(P̄d)) ≤ 0

(6.13)

where ωd satisfies the algebraic constraint (6.2d). Observe that ˙̄H = 0 if and
only if ωg = 0, ωd = 0,∇EgH̄(x) = 0, Pg = P̄g, Pd = P̄d since C,U are strictly

convex/concave functions respectively. On the largest invariant set M where ˙̄H =
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0 we have

ϕ̇ = 0 λg = λ̄g

0 = D̂∇ϕH̄ λd = λ̄d

0 = ∇EgH̄ Kλg λ̇g = Dcg(v − v̄)

0 = [Ed]∇EdH̄ Kλd λ̇d = Dcd(v − v̄)

Kv v̇ = −DT
cg(λg − λ̄g)−DT

cd(λd − λ̄d)

Hence, λg = λ̄g, λd = λ̄d are constant and since Dc, D̂ have full column rank it
follows that v = v̄,∇ϕH̄(x) = 0 respectively. Hence, each element x ∈M satisfies
∇H̄(x) = 0. By (6.13) and since ∇H̄(x̄) = 0,∇2H̄(x̄) > 0, there exists a compact
level set D of H̄ around x̄ which is forward invariant and satisfies D ∩M = {x̄}.
Hence, by Theorem 6.2.2, x̄ is locally asymptotically stable.

Remark 6.5.2 (Cyclic communication graphs). While the communication graph is
assumed to be a tree in Theorem 6.5.1, we expect that the convergence result can
also be extended to the case of general (cyclic) connected communication graphs,
requiring a slightly modified invariance principle for DAE compared to Theorem
6.2.2. However, this is beyond the scope of the chapter.

In [32] a sufficient condition is given which guarantees that the Hessian∇2H̄(x̄)
evaluated at the equilibrium x̄ is positive definite, which is required in Theorem
6.5.1. Adapted for the model (6.2), the following distributed condition should be
verified.

Proposition 6.5.3 (Sufficient condition for positive definite Hessian). Suppose
that x̄ (with ϕ̄ = D̂T δ̄) satisfies

1

Xdi −X ′di
+Bii −

∑
j∈Ni

Bij
Ēi + Ēj sin2 δ̄ij

Ēi cos δ̄ij
> 0, i ∈ Vg

Bii −
∑
j∈Ni

Bij
Ēi + Ēj sin2 δ̄ij

Ēi cos δ̄ij
> 0, i ∈ Vd

with δ̄ij ∈ (−π2 ,
π
2 ),∀{i, j} ∈ E , and Ēi > 0,∀i ∈ V. Then ∇2H̄(x̄) > 0.

Remarkably, the above conditions are satisfied if the voltage (angle) differences
and generator reactances are sufficiently small and the shunt susceptances (at the
loads) are sufficiently large.

6.6 Conclusions

In this chapter an energy-based approach to the modeling and stability analysis of
structure-preserving power networks with markets dynamics has been established.
In particular, local convergence of the coupled system of differential-algebraic
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equations to an optimal point of the social welfare problem has been proven using
a suitable Lyapunov function.

A possible extension to the established results is to consider the more complex
case that the loads are not frequency-dependent. This introduces additional
challenges in the stability analysis as the closed-loop differential-algebraic system
does not satisfy the regularity condition given in Definition 6.2.1. As a result,
the extended LaSalle’s invariance principle considered in the present paper cannot
directly be applied to this case. Another direction for future research is to design
additional controllers for the physical power network that achieve optimal reactive
power sharing and/or voltage regulation. In addition, an extension could be to
include generator limits and line congestion as done in Chapter 5 of this thesis.
Finally, the influence of a possible delay in the communication of the dynamic
pricing algorithm on the stability of the closed-loop has to be investigated.
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Chapter 7

DAPI control of high-dimensional
multi-machine models

Abstract: This chapter investigates the problem of optimal frequency regulation
of multi-machine power networks where each synchronous machine is described by
a sixth-order model. By analyzing the physical energy stored in the network and
the generators, a port-Hamiltonian representation of the multi-machine system is
obtained. Moreover, it is shown that the open-loop system is passive with respect to
its steady states which allows the construction of passive controllers to control the
multi-machine network. As a special case, a distributed consensus based controller
is designed that regulates the frequency and minimizes a global quadratic generation
cost in the presence of a constant unknown demand. In addition, the proposed
controller allows freedom in choosing any desired connected undirected weighted
communication graph.

Published as:
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7.1 Introduction

The control of power networks has become increasingly challenging over the last
decades. As renewable energy sources penetrate the grid, the conventional power
plants have more difficulty in keeping the frequency around the nominal value, e.g.
50 Hz, leading to an increased chance of a network failure or even a blackout.

The current developments require a better understanding of more advanced
models for the power network as the grid is operating more often near its capacity
constraints. Considering high-order models of, for example, synchronous machines,
that better approximate the reality allows us to establish results on the control
and stability of power networks that are more reliable and accurate.

At the same time, incorporating economic considerations in the power grid
has become more difficult. As the scale of the grid expands, computing the
optimal power production allocation in a centralized manner as conventionally is
done is computationally expensive, making distributed control far more desirable
compared to centralized control. In addition, often exact knowledge of the power
demand is required for computing the optimal power dispatch, which is unrealistic
in practical applications. As a result, there is an increased desire for distributed
real-time controllers which are able to compensate for the uncertainty of the
demand.

In this chapter, we propose an energy-based approach for the modeling, analysis
and control of the power grid, both for the physical network as well as for the
distributed controller design. Since energy is the main quantity of interest, the
port-Hamiltonian framework is a natural approach to deal with the problem.
Moreover, the port-Hamiltonian framework lends itself to deal with complex large-
scale nonlinear systems like power networks [37, 105, 106].

The emphasis in the present chapter lies on the modeling and control of
(networked) synchronous machines as they play an important role in the power
network since they are the most flexible and have to compensate for the increased
fluctuation of power supply and demand. However, the full-order model of the
synchronous machine as derived in many power engineering books like [4, 61, 67]
is difficult to analyze, see e.g. [37] for a port-Hamiltonian approach, especially
when considering multi-machine networks [21, 75]. Moreover, it is not necessary
to consider the full-order model when studying electromechanical dynamics [67].

On the other hand of the spectrum, many of the recent optimal controllers in
power grids that deal with optimal power dispatch problems rely on the second-
order (non)linear swing equations as the model for the power network [64, 92, 95,
131, 135], or the third-order model as e.g. in [113]. However, the swing equations
are inaccurate and only valid on a limited time interval up to the order of a few
seconds so that asymptotic stability results are often invalid for the actual system
[4, 61, 67].

Hence, it is appropriate to make simplifying assumptions for the full-order
model and to focus on multi-machine models with intermediate complexity which
provide a more accurate description of the network compared to the second- and
third-order models [4, 61, 67]. However, for the resulting intermediate-order multi-
machine models the stability analysis is often carried out for the linearized system,
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see [3, 61, 67]. Consequently, the stability results are only valid around a specific
operating point.

Our approach is different as the nonlinear nature of the power network is
preserved. More specifically, in this chapter we consider a nonlinear sixth-
order reduced model of the synchronous machine that enables a quite accurate
description of the power network while allowing us to perform a rigorous analysis.

In particular, we show that the port-Hamiltonian framework is very convenient
when representing the dynamics of the multi-machine network and for the stability
analysis. Based on the physical energy stored in the generators and the transmis-
sion lines, a port-Hamiltonian representation of the multi-machine power network
can be derived. More specifically, while the system dynamics is complex, the
interconnection and damping structure of the port-Hamiltonian system is sparse
and, importantly, state-independent.

The latter property implies shifted passivity of the system [117] which respect
to its steady states which allows the usage of passive controllers that steer the
system to a desired steady state. As a specific case, we design a distributed real-
time controller that regulates the frequency and minimizes the global generation
cost without requiring any information about the unknown demand. In addition,
the proposed controller design allows us to choose any desired undirected weighted
communication graph as long as the underlying topology is connected.

The main contribution of this chapter is to combine distributed optimal
frequency controllers with a high-order nonlinear model of the power network,
which is much more accurate compared to the existing literature, and to prove
asymptotic stability to the set of optimal points by using Lyapunov function based
techniques.

Outline: The rest of the chapter is organized as follows. In Section 7.2 the
preliminaries are stated and a sixth-order model of a single synchronous machine
is given. Next, the multi-machine model is derived in Section 7.3. Then the energy
functions of the system are derived in Section 7.4, which are used to represent the
multi-machine system in port-Hamiltonian form, see Section 7.5. In Section 7.6
the design of the distributed controller is given and asymptotic stability to the set
of optimal points is proven. Finally, the conclusions and the possibilities for future
research are discussed in Section 7.7.

7.2 Preliminaries

Consider a power grid consisting of n buses. The network is represented by a con-
nected and undirected R graph G = (V, E), where the nodes, V = In := {1, . . . , n},
is the set of buses and the edges, E ⊂ V × V, is the set of transmission lines
connecting the buses. The edges are arbitrarily labeled with a unique identifier
in Im = {1, . . . ,m} where the k-th edge connecting nodes i and j is denoted as
k ∼ {i, j}. The ends of edge k ∼ {i, j} are arbitrary labeled with a ‘+’ and a ‘-’,
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δi rotor angle w.r.t. synchronous reference frame
ωi frequency deviation
Pgi mechanical power injection
Pdi power demand
Mi moment of inertia
Xqi, Xdi synchronous reactances
X ′qi, X

′
di transient reactances

X ′′di, X
′′
qi subtransient reactances

Efi exciter emf/voltage
E′qi, E

′
di internal bus transient emfs/voltages

E′′qi, E
′′
di internal bus subtransient emfs/voltages

Vqi, Edi external bus voltages
Iqi, Idi generator currents
T ′qi, T

′
di open-loop transient time-scales

T ′′qi, T
′′
di open-loop subtransient time-scales

Table 7.1: Model parameters and variables.

so that the incidence matrix D of the resulting directed graph is given by

Dik =


+1 if i is the positive end of k

−1 if i is the negative end of k

0 otherwise.

(7.1)

Each bus represents a synchronous machine and is assumed to have controllable
mechanical power injection and a constant unknown power load. The dynamics of
each synchronous machine i ∈ V is assumed to be given by [67]

Miω̇i = Pgi − Pdi − VdiIdi − VqiIqi
δ̇i = ωi

T ′diĖ
′
qi = Efi − E′qi + (Xdi −X ′di)Idi

T ′qiĖ
′
di = −E′di − (Xqi −X ′qi)Iqi

T ′′diĖ
′′
qi = E′qi − E′′qi + (X ′di −X ′′di)Idi

T ′′qiĖ
′′
di = E′di − E′′di − (X ′qi −X ′′qi)Iqi,

(7.2)

see also Table 7.1.

Assumption 7.2.1 (Power system model (7.2)). When using model (7.2), we
make the following simplifying assumptions [67]:

• The frequency of each machine is operating around the synchronous fre-
quency.

• The stator winding resistances are zero.

• The excitation voltage Efi is constant for all i ∈ V.
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Ef

j(Xd −X ′d) j(X ′d −X ′′d ) jX ′′d
Id

E
′
q E

′′
qT ′′dT ′d

j(Xq −X ′q) j(X ′q −X ′′q ) jX ′′q
Iq

E
′
d E

′′
d

T ′′qT ′q

V q

V d

Figure 7.1: Generator equivalent circuits for both dq-axes [67]. For aesthetic reasons the
subscript i is dropped.

• The subtransient saliency is negligible, i.e. X ′′di = X ′′qi,∀i ∈ V.

The latter assumption is valid for synchronous machines with damper windings in
both the d- and q-axes, which is the case for most synchronous machines [67].

Remark 7.2.2 (Asynchronous damping). The effects of the damper windings is
explicitly governed by the last two equations of (7.2). Consequently, there is no
asynchronous damping term appearing in the frequency dynamics of the model
(7.2), which is in constrast with the classical swing equations or the third-order
synchronous machine model (also adopted in Chapter 5).

It is standard in the power system literature to represent the equivalent
synchronous machine circuits along the dq-axes as in Figure 7.1, [61, 67]. Here

we use the conventional phasor notation E
′′
i = E

′′
qi + E

′′
di = E′′qi + jE′′di where

E
′′
qi := E′′qi, E

′′
di := jE′′di, j :=

√
−1, and the phasors Ii, V i are defined likewise [67,

90]. Remark that internal voltages E′q, E
′
d, E

′′
q , E

′′
d as depicted in Figure 7.1 are

not necessarily at steady state but are governed by (7.2), where it should be noted
that, by definition, the reactances of a round rotor synchronous machine satisfy
Xdi > X ′di > X ′′di > 0, Xqi > X ′qi > X ′′qi > 0 for all i ∈ V [61, 67].

By Assumption 7.2.1 the stator winding resistances are negligible so that syn-
chronous machine i can be represented by a subtransient emf behind a subtransient
reactance, see Figure 7.2 [61, 67]. As illustrated in this figure, the internal and
external voltages are related to each other by [67]

E
′′
i = V i + jX ′′diIi, i ∈ V. (7.3)
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E
′′
i

jX ′′di
Ii

V i

Figure 7.2: Subtransient emf behind a subtransient reactance.

7.3 Multi-machine model

Consider n synchronous machines which are interconnected by purely inductive
transmission lines and assume that the network is operating at steady state. As
the currents and voltages of each synchronous machine is expressed w.r.t. its local
dq-reference frame, the network equations are written as [90]

I = diag(e−jδi)Y diag(ejδi)E
′′
. (7.4)

Here the admittance matrix1 Y := D(R+ jX)−1DT satisfies Yij = −Gij− jBij and
Yii = Gii+ jBii =

∑
j∈Ni Gij + j

∑
j∈Ni Bij where G denotes the conductance and

B ∈ Rn×n≤0 denotes the susceptance of the network [90]. In addition, Ni denotes
the set of neighbors of node i.

Remark 7.3.1 (Reactance X ′′di as part of network). As the electrical circuit depicted
in Figure 7.2 is in steady state (7.3), the reactance X ′′di can also be considered
as part of the network (an additional inductive line) and is therefore implicitly
included into the network admittance matrix Y, see also Figure 7.3.

E
′′
i

jX ′′di jXTij
I l

jX ′′dj

E
′′
jV i V j

Figure 7.3: Interconnection of two synchronous machines by a purely inductive transmis-
sion line with reactance XTij .

Since the network is purely inductive G = 0 which simplifies the analysis
later. By equating the real and imaginary part of (7.4) we obtain the following

1Recall that D is the incidence matrix of the network defined by (7.1).
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expressions for the dq-currents entering generator i ∈ V:

Idi = BiiE
′′
qi −

∑
j∈Ni

[
Bij(E

′′
dj sin δij + E′′qj cos δij)

]
,

Iqi = −BiiE′′di −
∑
j∈Ni

[
Bij(E

′′
qj sin δij − E′′dj cos δij)

]
,

(7.5)

where δij := δi − δj . By substituting (7.5) and (7.3) into (7.2) we obtain after
some rewriting a sixth-order multi-machine model given by equation

Miω̇i = Pgi−Pdi+
∑
j∈Ni

Bij
[
(E′′diE

′′
dj+E

′′
qiE
′′
qj) sin δij+(E′′diE

′′
qj−E′′qiE′′dj) cos δij

]
δ̇i = ωi

T ′diĖ
′
qi = Efi − E′qi + (Xdi −X ′di)(BiiE′′qi −

∑
j∈Ni

[
Bij(E

′′
dj sin δij + E′′qj cos δij)

]
)

T ′qiĖ
′
di = −E′di + (Xqi −X ′qi)(BiiE′′di −

∑
j∈Ni

[
Bij(E

′′
dj cos δij − E′′qj sin δij)

]
)

T ′′diĖ
′′
qi = E′qi − E′′qi + (X ′di −X ′′di)(BiiE′′qi −

∑
j∈Ni

[
Bij(E

′′
dj sin δij + E′′qj cos δij)

]
)

T ′′qiĖ
′′
di = E′di − E′′di + (X ′qi −X ′′qi)(BiiE′′di −

∑
j∈Ni

[
Bij(E

′′
dj cos δij − E′′qj sin δij)

]
)

(7.6)

Remark 7.3.2 (Energy conservation). Since the transmission lines are purely
inductive by assumption, there are no energy losses in the transmission lines
implying that the following energy conservation law holds:

∑
i∈V Pei = 0 where

Pei = Re(EiI
∗
i ) = E′′diIdi +E′′qiIqi is the electrical power produced by synchronous

machine i.

7.4 Energy functions

When analyzing the stability of the multi-machine system one often searches for
a suitable Lyapunov function. A natural starting point is to consider the physical
energy as a candidate Lyapunov function. Moreover, when we have an expression
for the energy, a port-Hamiltonian representation of the associated multi-machine
model (7.6) can be derived, see Section 7.5.

Remark 7.4.1 (Common scalar factor in Hamiltonian). It is notationally conve-
nient in the definition of the Hamiltonian to multiply the energy stored in the
synchronous machine and the transmission lines by the synchronous frequency
ωs since a factor ω−1

s appears in each of the energy functions. As a result, the
Hamiltonian has the dimension of power instead of energy. Nevertheless, we still
refer to the Hamiltonian as the energy function in the sequel.
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In the remainder of this section we will first identify the electrical and
mechanical energy stored in each synchronous machine. Next, we identify the
energy stored in the transmission lines.

7.4.1 Synchronous machine

Electrical energy

Note that, at steady state, the energy (see Remark 7.4.1) stored in the first two
reactances2 of generator i as illustrated in Figure 7.1 is given by

Hedi =
1

2

(E′qi − Efi)2

Xdi −X ′di
+

1

2

(E′qi − E′′qi)2

X ′di −X ′′di

Heqi =
1

2

(E′di)
2

Xqi −X ′qi
+

1

2

(E′di − E′′di)2

X ′qi −X ′′qi
.

(7.7)

Remark 7.4.2 (Energy in reactance X ′′d ). The energy stored in the third (subtran-
sient) reactance will be considered as part of the energy stored in the transmission
lines, see also Remark 7.3.1 and Section 7.4.2.

Mechanical energy

The kinetic energy of synchronous machine i is given by

Hmi =
1

2
Miω

2
i =

1

2
M−1
i p2

i ,

where pi = Miωi is the angular momentum of synchronous machine i with respect
to the synchronous rotating reference frame.

7.4.2 Inductive transmission lines

Consider an interconnection between two synchronous machines with a purely
inductive transmission line (with reactance XTij ) at steady state, see Figure 7.3.
When expressed in the local dq-reference frame of generator i, we observe from
Figure 7.3 that at steady state one obtains3

jXkIk = E
′′
i − e−jδikE

′′
k , k ∼ {i, j}, (7.8)

where the total reactance between the internal buses of generator i and j is given
by Xk := X ′′di +XTij +X ′′dj . Note that at steady state the modified energy of the
inductive transmission line k ∼ {i, j} between nodes i and j is given by Hk =

2In both the d- and the q-axes.
3The mapping from dq-reference frame k to dq-reference frame i in the phasor domain is done

by multiplication of e−jδik [90].
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1
2XkI

∗
kIk, which by (7.8) can be rewritten as

Hk =−Bij
[(
E′′diE

′′
qj − E′′djE′′qi

)
sin δij −

(
E′′diE

′′
dj + E′′qiE

′′
qj

)
cos δij

+ 1
2E
′′2
di + 1

2E
′′2
dj + 1

2E
′′2
qi + 1

2E
′′2
qj

]
,

(7.9)

where the line susceptance satisfies Bij = − 1
Xk

< 0, k ∼ {i, j} [90].

7.4.3 Total energy

The total physical energy of the multi-machine system is equal to the sum of the
individual energy functions:

H =
∑
i∈V

(
Hedi +Heqi +Hmi

)
+
∑
k∈E

Hk. (7.10)

7.5 Port-Hamiltonian representation

Using the energy functions from the previous section, the multi-machine model
(7.6) can be put into a port-Hamiltonian form. To this end, we derive expressions
for the gradient of each energy function.

7.5.1 Transmission line energy

Recall that the energy stored in transmission line k ∼ {i, j} between internal buses
i and j is given by (7.9). It can be verified that the gradient of the total energy
stored in the transmission lines HL :=

∑
k∈E Hk takes the form

∂HL
∂δi
∂HL
∂E′′qi
∂HL
∂E′′di

 =

E′′diIdi + E′′qiIqi
−Idi
Iqi

 =

 Pei−Idi
Iqi

 ,
where Idi, Iqi are given by (7.5). Here it is used that the self-susceptances satisfy
Bii =

∑
j∈Ni Bij for all i ∈ V.

State transformation

In the sequel, it is more convenient to consider a different set of variable describing
the voltage angle differences. Define for each edge k ∼ {i, j} ∈ E , ηk := δij = δi−δj
where i, j are respectively the positive and negative ends of k. In vector form we
obtain η = DT δ ∈ Rm, and observe that this implies D ∂H

∂η = D ∂HL
∂η = Pe.
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7.5.2 Electrical energy of the synchronous generator

Further, notice that the electrical energy stored in the equivalent circuits along
the d- and q-axis of generator i is given by (7.7) and satisfies[

Xdi −X ′di Xdi −X ′di
0 X ′di −X ′′di

][∂Hedi
∂E′qi
∂Hedi
∂E′′qi

]
=

[
E′qi − Efi
E′′qi − E′qi

]
[
Xqi −X ′qi Xqi −X ′qi

0 X ′qi −X ′′qi

] [∂Heqi
∂E′di
∂Heqi
∂E′′di

]
=

[
E′di

E′′di − E′di

]
.

By the previous observations, and by aggregating the states, the dynamics of the
multi-machine system can now be written in the form

ẋ =



0 −D 0 0 0 0
DT 0 0 0 0 0

0 0 −(T ′d)
−1X̂d 0 −(T ′d)

−1X̂d 0

0 0 0 −(T ′q)
−1X̂q 0 −(T ′q)

−1X̂q

0 0 0 0 −(T ′′d )−1X̂ ′d 0

0 0 0 0 0 −(T ′′q )−1X̂ ′q

∇H(x)

+ g(Pg − Pd), (7.11)

y = gT∇H(x) = M−1p = ω, g =
[
I 0 0 0 0 0

]T
.

Here the Hamiltonian is given by (7.10) and X̂di := Xdi − X ′di, X̂
′
di := X ′di −

X ′′di, X̂d = diagi∈V{X̂di} and X̂ ′d, X̂q, X̂
′
q are defined likewise. In addition, T ′d =

diagi∈V{T ′di} and T ′d, Tq, T
′
q are defined similarly. Observe that the multi-machine

system (7.11) is of the form

ẋ = (J −R)∇H(x) + gu

y = gT∇H(x)
(7.12)

where J = −JT , R = RT are respectively the anti-symmetric and symmetric part
of the matrix depicted in (7.11). Notice that the dissipation matrix of the electrical
part is positive definite (which implies R ≥ 0) if2

Xdi−X′di
T ′di

Xdi−X′di
T ′di

Xdi−X′di
T ′di

2
X′di−X

′′
di

T ′′di

 > 0,

2
Xqi−X′qi

T ′qi

Xqi−X′qi
T ′qi

Xqi−X′qi
T ′qi

2
X′qi−X

′′
qi

T ′′qi

 > 0, ∀i ∈ V,

which, by invoking the Schur complement, holds if and only if

4(X ′di −X ′′di)T ′di − (Xdi −X ′di)T ′′di > 0

4(X ′qi −X ′′qi)T ′qi − (Xqi −X ′qi)T ′′qi > 0
, ∀i ∈ V. (7.13)
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Proposition 7.5.1 (Positive semi-definite dissipation matrix). Suppose that for
all i ∈ V the following holds:

4(X ′di −X ′′di)T ′di − (Xdi −X ′di)T ′′di > 0

4(X ′qi −X ′′qi)T ′qi − (Xqi −X ′qi)T ′′qi > 0.
(7.14)

Then (7.11) is a port-Hamiltonian representation of the multi-machine network
(7.6).

It should be stressed that (7.14) is not a restrictive assumption since T ′′di �
T ′di, T

′′
qi � T ′qi for a realistic generator, see also Table 4.2 of [61], Table 4.3 of

[67] and particularly Proposition 2.7.2 in Chapter 2 of this thesis. Because the
interconnection and damping structure J − R of (7.11) is state-independent, the
shifted Hamiltonian

H̄(x) = H(x)− (x− x̄)T∇H(x̄)−H(x̄) (7.15)

acts as a local storage function for proving passivity in a neighborhood of a steady
state x̄ of (7.12), provided that the Hessian of H evaluated at x̄ (denoted as
∇2H(x̄)) is positive definite4.

Proposition 7.5.2 (Shifted passivity). Let (x̄, ū, ȳ) correspond to a steady state
of (7.12) and satisfy ∇2H(x̄) > 0, ȳ = gT∇H(x̄). Then the system (7.12) is
passive in a neighborhood of x̄ with respect to the shifted external port-variables
(u− ū, y − ȳ).

Proof. Define the shifted Hamiltonian by (7.15), then we obtain

ẋ = (J −R)∇H(x) + gu

= (J −R)(∇H̄(x) +∇H(x̄)) + gu

= (J −R)∇H̄(x) + g(u− ū)

y − ȳ = gT (∇H(x)−∇H(x̄)) = gT∇H̄(x).

(7.16)

As ∇2H(x̄) > 0 we have that H̄(x̄) = 0 and H̄(x) > 0 for all x 6= x̄ in a
sufficiently small neighborhood around x̄. Hence, by (7.16) the passivity property
automatically follows where H̄ acts as a local storage function of the multi-machine
system.

7.6 Minimizing generation costs

The objective is to minimize the total quadratic generation cost while achieving
zero frequency deviation. By analyzing the steady states of (7.6), it follows that
a necessary condition for zero frequency deviation is 1TPg = 1TPd, i.e., the total
supply must match the total demand. Therefore, consider the following convex

4Observe that ∇2H(x) = ∇2H̄(x) for all x.
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minimization problem:

minimize
Pg

1

2
PTg QPg

subject to 1TPg = 1TPd,

(7.17)

where Q = QT > 0 and Pd is a constant unknown power load.

Remark 7.6.1 (More general quadratic cost functions). Note that that minimiza-
tion problem (7.17) is easily extended to quadratic cost functions of the form
1
2P

T
g QPg+bTPg for some b ∈ Rn. However, for simplicity of notation this extension

is omitted in this chapter.

As the minimization problem (7.17) is convex, it follows that Pg is an optimal
solution if and only if the Karush-Kuhn-Tucker conditions are satisfied [12]. Hence,
the optimal point of (7.17) is given by

P ∗g = Q−11λ∗, λ∗ =
1TPd

1TQ−11
(7.18)

Next, based on the design of [113] and the distributed averaging proportional
integral (DAPI) control proposed in [95], we consider a distributed controller of
the form

T θ̇ = −Lcθ −Q−1ω

Pg = Q−1θ −Kω
(7.19)

where T = diagi∈V{Ti} > 0,K = diagi∈V{ki} > 0 are controller parameters and
θ ∈ Rn is the controller variable. In addition, Lc is the Laplacian matrix of some
connected undirected weighted communication graph. The controller (7.19) con-
sists of three parts. Firstly, the term −Kω corresponds to a primary (proportional)
controller and adds damping into the system. The term −Q−1ω corresponds to
secondary (integral) control for guaranteeing zero frequency deviation on longer
time-scales. Finally, the term −Lcθ corresponds to tertiary (distributed averaging)
control for achieving optimal production allocation over the network. We note that
(7.19) admits the port-Hamiltonian representation

ϑ̇ = −Lc∇Hc(ϑ)−Q−1ω

Pg = Q−1∇Hc(ϑ)−Kω, Hc(ϑ) =
1

2
ϑTT−1ϑ,

(7.20)

where ϑ := Tθ. By interconnecting the controller (7.20) with (7.11), the closed-
loop system amounts to[

ẋ

ϑ̇

]
=

[
J −R−RK GT

−G −Lc

]
∇He(x, ϑ)−

[
g
0

]
Pd

G =
[
Q−1 0 0 0 0 0

] (7.21)

where the matrix J − R is given as in (7.11), He := H + Hc, and RK =
blockdiag(0,K, 0, 0, 0, 0). Define the set of steady states of (7.21) by Ω and observe
that any xe := (x, ϑ) ∈ Ω satisfies the optimality conditions (7.18) and ω = 0.
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To show asymptotic stability of the closed-loop system we need the following
assumption.

Assumption 7.6.2 (Hessian condition). We have Ω 6= ∅ and there exists x̄e ∈ Ω
such that ∇2He(x̄e) > 0.

Remark 7.6.3 (Sufficient conditions for positive definite Hessian). While the
Hessian condition of Assumption 7.6.2 is required for proving local asymptotic
stability of (7.21), guaranteeing that this condition holds can be bothersome.
However, while we omit the details, it can be shown that ∇2He(x̄e) > 0 if

• the generator reactances are small compared to the transmission line reac-
tances.

• the subtransient voltage differences are small.

• the rotor angle differences are small.

which hold for typical operating conditions.

Theorem 7.6.4 (Local asymptotic stability). Let Pd be constant and x̄e ∈ Ω such
that Assumption 7.6.2 is satisfied. Then all trajectories of the closed-loop system
(7.21) initialized in a sufficiently small neighborhood around x̄e converge to the set
of optimal points Ω.

Proof. Let x̄e ∈ Ω be an equilibrium satisfying Assumption 7.6.2 and define
the shifted Hamiltonian H̄e as in (7.15). Observe by (7.16) that the shifted
Hamiltonian defined by (7.15) satisfies

˙̄He = −(∇H̄e)
T blockdiag(R+RK , Lc)∇H̄e ≤ 0

where equality holds if and only if ω = 0, T−1ϑ = θ = 1θ∗ for some θ∗ ∈ R, and
∇EH̄e(xe) = ∇EHe(xe) = 0. Here ∇EHe(xe) is the gradient of He with respect to
the internal voltages E′q, E

′
d, E

′′
q , E

′′
d . By Assumption 7.6.2 there exists a compact

neighborhood Υ around x̄e which is forward invariant. By invoking LaSalle’s
invariance principle, trajectories initialized in Υ converge to the largest invariant

set where ˙̄He = 0. On this set ω, η, θ, E′q, E
′
d, E

′′
q , E

′′
d are constant and, more

specifically, ω = 0, θ = 1λ∗ = 1 1TPd
1TQ−11

corresponds to an optimal point of (7.17)

as Pg = Q−11λ∗ where λ∗ is defined in (7.18). We conclude that the trajectories
of the closed-loop system (7.21) initialized in a sufficiently small neighborhood
around x̄e converge to the set of optimal points Ω.

7.7 Conclusions

We have shown that a much more advanced multi-machine model than convention-
ally used can be analyzed using the port-Hamiltonian framework. Based on the
energy functions of the system, a port-Hamiltonian representation of the model is
obtained. Moreover, the system is proven to be incrementally passive which allows
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the use of a passive controller that regulates the frequency in an optimal manner,
even in the presence of an unknown constant demand.

While the focus in this chapter is about (optimal) frequency regulation, further
effort is required to investigate the possibilities of (optimal) voltage control using
passive controllers. Another extension is to consider the case where inverters and
frequency dependent loads are included into the network as well. Finally, one could
look at the possibility to include transmission line resistances in the network.
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Chapter 8

Primal-dual dynamics with hard
inequality constraints

Abstract: In this chapter we study the convergence of projected primal-dual
dynamics under mild conditions on the (general) optimization problem. In par-
ticular, we do not require strict convexity of the objective function nor uniqueness
of the optimizer. By regarding the inequality constraints as hard constraints,
we construct a suitable primal-dual dynamics in the complementarity formalism.
We establish pointwise asymptotic stability of the set primal-dual optimizers by
a suitable invariance principle involving two different Lyapunov functions. In
addition, we show how these results can be applied for online optimization in data
centers.

Published as:

T.W. Stegink, T. Van Damme, C. De Persis, “Convergence of projected primal-dual

dynamics with applications in data centers.” 7th IFAC Workshop on Distributed

Estimation and Control in Networked Systems (NecSys), 2018.
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8.1 Introduction

The (constrained) primal-dual dynamics is a well-known continuous-time algo-
rithm for determining the primal-dual optimizers of a constrained convex opti-
mization problem. Research on such dynamics has a rich history starting from the
classical work of [6] and has regained interest in the last decade, see for example
[52], [26], [40], and [36]. In particular, the passivity property the primal-dual
dynamics naturally admits (see [105]) has been exploited in numerous applications
including network flow control [126], power networks [107], data centers [116] and
energy efficient buildings [43].

However, throughout the literature several assumptions on the underlying
optimization problem are typically made. Firstly, most works consider soft
constraints meaning that the constraints may be violated throughout execution
of the algorithm. However, this may not be feasible when considering for example
(input) saturation or nonnegativity constraints. In addition, in the previous
mentioned references strict convexity of the objective function is required for the
stability analysis. An exception is the work of [81], but here (i) linear programs
are considered which (ii) are in standard form.

In this chapter we relax some of the commonly made assumptions in the
literature while retaining the asymptotic stability properties of the primal-dual
dynamics. More specifically, our contributions are summarized as follows.

1. We consider hard inequality constraints, that is, constraints that may not
be violated throughout execution of the algorithm.

2. A general form of the (in)equality constraints is considered, not only (decou-
pled) box constraints.

3. Only convexity is required for the objective function, capturing also the
special case of linear programs.

4. We do not assume uniqueness of the optimal point. Instead, we establish
convergence

(a) to the set of primal-dual optimizers.

(b) to a point within this set.

5. As an application, we show the results can be used for online thermal-aware
job scheduling in data centers.

In our problem setup, we consider a general constrained convex optimization
problem and write the associated primal-dual dynamics as a complementarity
system. By implicitly using the equivalence with evolutionary variational inequal-
ities and projected dynamical systems as shown in [15], we can show that there
exists a unique (slow) solution of the primal-dual dynamics, which in addition is
continuous with respect to the initial condition. These properties of the dynamics
are exploited to establish pointwise asymptotic stability of the set of primal-dual
optimizers.
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In the last part of this chapter, we apply the suggested primal-dual algorithm
to find setpoints for earlier established controllers, see [116], which minimizes the
energy consumption of the cooling equipment in data centers. Due to the highly
dynamic environment inside data centers where the optimal solution of the energy
minimization problem changes very frequently, it is natural to look into ways of
solving the optimization problem in a dynamic way. This is more so the case when
the changes in the optimal solution are comparatively small over time as well. As
such we will study the convergence behavior of our algorithm.

Notation:

For A ∈ Rm×n, we let ‖A‖ denote the induced 2-norm. Given v ∈ Rn and positive

definite matrix A ∈ Rn×n, we write ‖v‖A :=
√
vTAv. For vectors u, v ∈ Rn we

write u ⊥ v if uT v = 0. We use the compact notational form 0 ≥ u ⊥ v ≥ 0 to
denote the complementarity conditions u ≤ 0, v ≥ 0, u ⊥ v.

8.2 Primal-dual dynamics (hard constraints)

We consider a convex optimization problem of the form

minimize
x∈Rn

f(x) (8.1a)

subject to Ax = b (8.1b)

g(x) ≤ 0, (8.1c)

with g(.) = col(g1(.), . . . , gq(.)), A ∈ Rm×n, b ∈ Rm. The inequality (8.1c) holds
element-wise. For problem (8.1) we assume the following.

Assumption 8.2.1 (Convexity and Slater’s condition).
f, g1, . . . , gq : Rn → R are continuously differentiable convex functions and there
exists an x ∈ Rn such that gi(x) < 0,∀i = 1, . . . , q.

In particular, Assumption 8.2.1 ensures that strong duality of problem (8.1)
holds, see [12]. As a result x̄ ∈ Rn is an optimizer of (8.1) if and only if there exists
λ̄ ∈ Rm, µ̄ ∈ Rq such that the Karush–Kuhn–Tucker (KKT) optimality conditions
of (8.1), which are given by

0 = ∇f(x̄) +AT λ̄+∇g(x̄)µ̄,

0 = Ax̄− b,
0 ≥ g(x̄) ⊥ µ̄ ≥ 0,

(8.2)

are satisfied. Here we use the convention ∇g(.) =
[
∇g1(.) . . . ∇gq(.)

]
. It will

be convenient later to define the set of optimal points by

X̄ = {(x̄, λ̄) | ∃µ̄ ∈ Rq such that (8.2) holds} ⊂ Rn+m.



148 Chapter 8. Primal-dual dynamics with hard inequality constraints

In the sequel, we assume that there exists at least one primal-dual triple (x̄, λ̄, µ̄)
satisfying (8.2), i.e., X̄ 6= ∅. Based on the KKT conditions (8.2), we propose the
following projected primal-dual dynamics to deal with the hard constraints (8.1c).

ẋ
a.e.
= −∇f(x)−ATλ−∇g(x)µ−ATΞ(Ax− b), (8.3a)

λ̇
a.e.
= Ax− b, (8.3b)

0
a.e.
≥ g(x) ⊥ µ

a.e.
≥ 0. (8.3c)

Here ‘a.e.’ stands for almost everywhere, and Ξ ∈ Rm×m is a positive definite
matrix. Note that the last term of (8.3a) does not alter the equilibria of (8.3).
Moreover, this augmented term improves the convergence rate of the dynamics
(see e.g. [96]) and allows for weaker assumptions on the objective function for the
convergence as we will show later. The state variables x, λ are denoted compactly
as x := (x, λ) ∈ Rn, with n = m+ n. As observed from (8.3), the (x, λ)-dynamics
are projected on the closed convex set K = {x ∈ Rn | g(x) ≤ 0}. Furthermore
note that the set of equilibria of (8.3) is identical to X̄ ⊂ K.

The following result guarantees the existence and uniqueness of a solution
x(t, t0, x0) of (8.3) for t ≥ t0 and x0 ∈ K. Moreover, the unique solution can be
proven to be slow, that is, ẋ(t) is of minimal norm in the set it belongs to:1

ẋ = −∇f(x)−ATλ−ATΞ(Ax− b)−∇g(x)µ,

λ̇ = Ax− b,
(8.4)

µ∈arg min
µ̂i≥0,i∈I(x)
µ̂i=0,i/∈I(x)

‖∇f(x)+ATλ+ATΞ(Ax−b)+∇g(x)µ̂‖
(8.5)

with I(x) := {i | gi(x) = 0} and ẋ ≡ ẋ(t; t0, x0), µ ≡ µ(t).

Proposition 8.2.2 (Existence and uniqueness of solutions).
Let Assumption 8.2.1 hold. Then for each x0 ∈ K, there exists a unique solution
x(t; t0, x0) ∈ C0([t0,∞);Rn) of (8.3), which is slow and right-differentiable on
[t0,∞).

Proof. Let the function F be defined by

F (x) = F (x, λ) =

[
∇f(x) +ATλ+ATΞ(Ax− b)

−(Ax− b)

]
.

We observe that F is hypomonotone, see [16, Remark 3]. Then the existence and
uniqueness of solutions of the system (8.3) is guaranteed by [15, Theorem 1] as K is
closed and convex, F is a hypomonotone operator and the fact that the constraint
qualifications are guaranteed by Slater’s condition (Assumption 8.2.1).

1Note that by exploiting closedness and convexity of (8.5), at each time t there is a unique
ẋ(t) (and λ̇(t)) of minimal norm.
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In addition, the solutions of (8.3) are continuous with respect to the initial
condition, which is crucial for showing that the limit set Ω(x0) defined by (8.6) is
invariant

Ω(x0) := {z | ∃{τi} ⊂ [t0,∞); τi →∞, x(τi; t0, x0)→ z}. (8.6)

Proposition 8.2.3 (Continuity w.r.t. the initial condition).
Consider the system (8.2) and suppose Assumption 8.2.1 holds. Let t ≥ t0 be fixed.
Then the function (8.7) is continuous.

x(t; t0, .) : K → Rn, x0 7→ x(t; t0, x0) (8.7)

Proof. The claim follows from the fact that F is monotone, the equivalence
between complementarity systems and evolutionary variational inequalities, and
[16, Theorem 2].

Now we come to the main result, which establishes pointwise asymptotic
stability of (8.3).

Theorem 8.2.4 (Convergence of primal-dual dynamics (8.3)).
Consider system (8.3) and let Assumption 8.2.1 hold. The set of optimizers X̄ is
asymptotically stable. Moreover, the convergence of each trajectory x(t, t0, x0) of
(8.3) with x0 ∈ K is to a point in X̄ .

Remark 8.2.5 (Structure of the proof). The proof of Theorem 8.2.4 consists of two
parts. Firstly, we invoke the usual arguments of the invariance principle along the
lines of [16] to show convergence to the nonempty limit set. Here we exploit the
properties of the complementarity system which allows for a more convenient and
shorter proof. For completeness, we include the full proof of this result. In the
second part of the proof we use ideas from [7] to further characterize the limit set
and to show that it is contained in the set of equilibria. We finalize the proof by
showing that the convergence is to a point.

Proof. Let x̄ := (x̄, λ̄) ∈ X̄ and let x0 := (x0, λ0) ∈ K be given. We show first
that limit set Ω(x0) is invariant.

Invariance of Ω(x0): Let z ∈ Ω(x0) be given. Then there exists a time
sequence τi, i = 1, 2, . . . with τi → ∞ as i → ∞ such that limi→∞ x(τi; t0, x0) =
z. Let τ ≥ t0 be given. By continuity with respect to the initial conditions
(Proposition 8.2.3) we have limi→∞ x(t; t0, zi) = x(t; t0, z). Then by the uniqueness
of solutions (Proposition 8.2.2) we have x(τ ; t0, x(τi; t0, x0)) = x(τ − t0 + τi; t0, x0)
and therefore limi→∞ x(τ − t0 + τi; t0, x0) = x(τ, t0, z). Setting wi = τ − t0 + τi we
see that wi ≥ t0, wi →∞ and x(wi; t0, x0)→ x(τ ; t0, z). Thus x(τ ; t0, z) ∈ Ω(x0).

Limit points correspond to sublevel set of V : Consider the function V (x) =
V (x, λ) = 1

2‖x− x̄‖
2 + 1

2‖λ− λ̄‖
2, then there exists a compact sublevel set Ψ of V

such that x0 ∈ Ψ since V is radially unbounded. We claim that

V (y) = k, ∀y ∈ Ω(x0). (8.8)
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Let T > 0 be given. Let us define the mapping V ∗ : [t0,∞) → R by V ∗(t) =
V (x(t; t0, x0)). The function x(.) ≡ x(.; t0, x0) is absolutely continuous on [t0, t0 +
T ] and thus V ∗ is a.e. strongly differentiable on [t0, t0 +T ]. Specifically, by writing
x = x(t), λ = λ(t), we have

dV ∗

dt
(t)=〈∇V (x(t)),

dx

dt
(t)〉=−(x− x̄)T (∇f(x) +ATλ)

−(x− x̄)T (ATΞ(Ax− b) +∇g(x)µ) + (λ− λ̄)T (Ax− b)
(8.2)
= −(x− x̄)T (∇f(x)−∇f(x̄) +∇g(x)µ−∇g(x̄)µ̄)

− ‖Ax− b‖2Ξ + (x− x̄)T (AT (λ− λ̄)−AT (λ− λ̄)) (8.9)

≤ −(x− x̄)T (∇f(x)−∇f(x̄)) + (g(x))T µ̄+ (g(x̄))Tµ

− ‖Ax− b‖2Ξ ≤ 0, a.e. t ∈ [t0, t0 + T ].

We have x ∈ C0([t0, t0 + T ];Rn), dxdt ∈ L
∞(t0, t0 + T ;Rn) and V ∈ C1(Rn;R). It

follows that V ∗ ∈W 1,1(t0, t0 +T ;Rn) and thus V ∗ is non-increasing on [t0, t0 +T ].
Since T has been chosen arbitrary, V ∗ is non-increasing on [t0,∞). By continuity
of x(t) it then follows that the orbit γ(x0) := {x(τ ; t0, x0); t ≥ t0} satisfies γ(x0) ⊂
Ψ ∩K as Ψ is a compact sublevel set of V . It results that

lim
τ→∞

V (x(τ ; t0, x0)) = k,

for some k ∈ R. Let y ∈ Ω(x0). There exists {τi} ⊂ [t0,∞) such that τi →∞ and
x(τi, t0, x0)→ y. By continuity,

lim
i→∞

V (x(τi; t0, x0)) = V (y). (8.10)

Therefore, V (y) = k. Here, y has been chosen arbitrary in Ω(x0) and thus (8.8)
holds. In addition, the set γ(x0) is bounded and thus Ω(x0) is non-empty and

lim
τ→∞

d(x(τ, t0, x0),Ω(x0)) = 0. (8.11)

Dynamics on sublevel sets of V : Let z ∈ Ω(x0) be given. By the invariance
of Ω(x0) we see that x(t; t0, z) ∈ Ω(x0),∀t ≥ t0 and thus V (x(t; t0, z)) = k, ∀t ≥ t0.
It results that

d

dt
V (x(t; t0, z)) = 0, a.e. t ≥ t0. (8.12)

Consequently, by (8.9) we have

Ax(t) = b, ∇f(x(t)) = ∇f(x̄),

(g(x(t)))T µ̄ = 0, (g(x̄))Tµ(t) = 0,
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a.e. t ≥ t0 where x(t) ≡ x(t; t0, z). In particular, by (8.3)

ẋ(t) = c−∇g(x(t))µ(t),

λ̇(t) = 0,

0 ≥ g(x(t)) ⊥ µ(t) ≥ 0,

(8.13)

a.e. t ≥ t0 where c = −∇f(x̄)−ATλ(t0) is constant. Since the unique solution of
(8.13) is slow, at any time t ≥ t0, µ(t) minimizes the norm of ẋ(t) (and λ̇(t)):

µ(t) ∈ U(x(t)) := arg min
µ̂i≥0,i∈I(x(t))
µ̂i=0,i/∈I(x(t))

{‖c−∇g(x(t))µ̂‖}, (8.14)

where I(x) := {i | gi(x) = 0}, see also [87] and [15]. For notational convenience
we do not explicitly write time-dependency of the variables in the following part
of the proof. Instead of considering (8.14), at each time t ≥ t0 we can set µi = 0
for i 6= I(x) and for i ∈ I(x) solve the the equivalent minimization problem

minimize
µI(x)

1

2
‖c−∇gI(x)(x)µI(x)‖2

subject to µI(x) ≥ 0,

(8.15)

where gI(x)(.) is formed similarly as g(.) but by taking only the gi’s with i ∈ I(x)
and likewise µI(x) = coli∈I(x)(µi) is defined. The Lagrangian of (8.15) takes the
form

L =
1

2
‖c−∇gI(x)(x)µI(x)‖2 − νTI(x)µI(x),

which results in the following KKT optimality conditions.

∇gI(x)(x)T (c−∇gI(x)(x)µI(x)) + νI(x) = 0, (8.16)

0 ≤ νI(x) ⊥ µI(x) ≥ 0. (8.17)

In particular, by premultiplying (8.16) with µTI(x) we have

‖∇gI(x)(x)µI(x)‖2 = cT∇gI(x)(x)µI(x) a.e. t ≥ t0. (8.18)

Nonincreasing function W : Define the map W : Rn → R as W (x) = −cTx,
then

d

dt
W (x(t; t0, z))=〈∇W (x), ẋ〉=〈∂W∂x (x, λ), c−∇g(x)µ〉

= −cT c+ cT∇g(x)µ = −cT c+ cT∇gI(x)(x)µI(x)

(8.18)
= −cT c+ 2cT∇gI(x)(x)µI(x) − ‖∇gI(x)(x)µI(x)‖2 (8.19)

= −‖c−∇gI(x)(x)µI(x)‖2 ≤ 0, a.e. t ≥ t0.
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By using the same arguments as before, W ∗(t) := W (x(t; t0, z)) is non-increasing
on [t0,∞). Moreover, we have γ(z) ∈ K ∩Ψ and thus W ∗ is bounded from below
on [t0,∞). It results that

lim
τ→∞

W (x(τ ; t0, z)) = α, (8.20)

for some α ∈ R.
Limit points correspond to sublevel sets of W : Since z ∈ Ω(x0), there exists

a sequence {τi} ⊂ [t0,∞) such that τi → ∞ and limi→∞ x(τi, t0, x0) = z. By the
uniqueness of solutions we have that x(τ ; t0, x(τi; t0, x0)) = x(τ − t0 + τi; t0, x0).
By taking the limit i→∞ and the continuity with respect to the initial condition
we therefore have that

lim
i→∞

x(τ ; t0, x(τi; t0, x0)) = x(τ, t0, z) = lim
i→∞

x(τ − t0 + τi; t0, x0).

As a result, by (8.20)

lim
τ→∞

W ( lim
i→∞

x(τ − t0 + τi; t0, x0))= lim
t→∞

W (x(t; t0, x0))=α.

By repeating the same arguments as for (8.10), we have

W (y) = α ∀y ∈ Ω(x0).

Limit points are equilibria: In particular, W (z) = α and

W (x(t; t0, z)) = α ∀t ≥ t0,

as x(t; t0, z) ∈ Ω(x0),∀t ≥ t0. It results that

d

dt
W (x(t; t0, z) = 0 a.e. t ≥ t0,

and thus c = ∇gI(x)(x)µI(x) = ∇g(x)µ by (8.19), stating that ẋ(t; t0, z) = 0,∀t ≥
t0. Hence, z ∈ X̄ . Since z was chosen arbitrary, it follows that Ω(x0) ⊂ X̄ .

Asymptotic stability of X̄ : Since x0 ∈ K, x̄ ∈ X̄ were chosen arbitrary, each
point in X̄ is Lyapunov stable. In addition, by (8.11) and Ω(x0) ⊂ X̄ we obtain
for each x0,

lim
τ→∞

d(x(τ, t0,x0), X̄ ) = 0. (8.21)

Hence, the set X̄ is asymptotically stable. Finally, we show that the convergence
is to a point.

Convergence to a point : Let x0 ∈ K and consider the function Ṽ (x) =
1
2‖x− z‖

2 where z ∈ Ω(x0) ⊂ X̄ . Then there exists a sequence {τi} ⊂ [t0,∞) such
that x(τi; t0, x0)→ z. Given ε > 0, let k ∈ Z be such that 1

2‖x(τk; t0, x0)−z‖2 ≤ ε.
Then we know that 1

2‖x(t; t0, x0) − z‖2 ≤ ε for all t ≥ τk as the sublevel set

{x | Ṽ (x) ≤ ε} = {x | 1
2‖x − z‖

2 ≤ ε} of Ṽ is forward invariant by (8.9), taking
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V ∗(t) = Ṽ (x(t; t0, x0)). As ε > 0 can be taken arbitrary small, we conclude that
the convergence is to a point.

Remark 8.2.6 (Comparison with [40]). The dynamics (8.3) can be interpreted as
special case of the projected saddle point dynamics of [40]. To see this, define

H(x, λ) =

{
h(x, λ) if g(x) ≤ 0

∞ if g(x) � 0
,

h(x, λ) = f(x) + λT (Ax− b) + ‖Ax− b‖2Ξ,

and note that ẋ = PTKx (x)(−∇xh(x, λ)), λ̇ = ∇λh(x, λ) with Kx = {x ∈
Rn | g(x) ≤ 0} and TKx(x) denoting the tangent cone at x with respect to Kx.
However, it remains an open question whether [40, Assumption 3.2] holds for this
case, which in that work is required for establishing pointwise asymptotic stability.

8.2.1 Primal-dual dynamics with gains

Now we discuss briefly how we can extend the previous results to the modified
projected primal-dual dynamics

LxL
T
x ẋ

a.e.
= −∇f(x)−ATλ−ATΞ(Ax− b)−∇g(x)µ,

LλL
T
λ λ̇

a.e.
= Ax− b, (8.22)

0
a.e.
≥ g(x) ⊥ µ

a.e.
≥ 0.

with symmetric gain matrices of the form LxL
T
x > 0, LλL

T
λ > 0, Lx ∈ Rn×n, Lλ ∈

Rm×m. Define x̃ = LTx x, λ̃ = LTλλ and define f̃ : Rn → R as x̃ 7→ f(L−Tx x̃), and

g̃ : Rn → R1×q as x̃ 7→ g(L−Tx x̃). In addition, let Ã = L−1
λ AL−Tx , b̃ = L−1

λ b, Ξ̃ =
LλΞLTλ , µ̃ = µ. We observe that the system (8.22) can then be rewritten as

˙̃x
a.e.
= −∇f̃(x̃)− ÃT λ̃− ÃT Ξ̃(Ãx̃− b̃)−∇g̃(x̃)µ̃,

˙̃
λ

a.e.
= Ãx̃− b̃,

0
a.e.
≥ g̃(x̃) ⊥ µ̃

a.e.
≥ 0.

(8.23)

It is easily seen that f̃ , g̃i, i = 1, . . . , q are convex functions. Hence, by applying
Theorem 8.2.4 to (8.23), we establish convergence to an (optimal) equilibrium
for both the transformed system (8.23) as well as the original system (8.22) with
positive definite gain matrices.

8.2.2 Strict convexity case

The convergence result of Theorem 8.2.4 relies on the fact that Ξ which appears
in (8.3) is a positive definite matrix. Indeed, if this assumption is not satisfied,
then oscillations may occur or the trajectories are divergent.
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Example 8.2.7 (No convergence if Ξ ≯ 0). Consider the simple optimization
problem

minimize
x∈R

x

subject to x = 1

which by (8.3) results in the following primal-dual dynamics

ẋ = −1− λ− Ξ(x− 1)

λ̇ = x− 1
(8.24)

with Ξ ∈ R. The convergence of (8.24) is guaranteed for Ξ > 0 by Theorem 8.2.4.
However, the trajectories are oscillatory for Ξ = 0 and divergent for Ξ < 0.

On the other hand, under the assumption that the objective function f is
strictly convex, the convergence result is unaffected for any positive semi-definite
Ξ.

Proposition 8.2.8 (Asymptotic stability of (8.3) for Ξ ≥ 0). Consider system
(8.3) and let Assumption 8.2.1 hold. Assume furthermore that f is strictly convex
and Ξ is a positive semi-definite matrix. The set of optimizers X̄ is asymptotically
stable. Moreover, the convergence of each trajectory x(t, t0, x0) of (8.3) with x0 ∈
K is to a point in X̄ .

Proof. The proof of Proposition 8.2.8 is analogous to the proof of Theorem 8.2.4
with the following changes. Let (zx, zλ) ∈ Ω(x0). Since f is strictly convex it
follows by (8.9) and (8.12) that x(t; t0, zx) = x̄ and λ(t; t0, zλ) = zλ for all t ≥ t0.
As a result, Ω(x0) ⊂ X̄ .

8.3 Application in data centers

A practical application of above theory can be found when considering energy
savings in data centers, see [116]. Data centers are large consumers of electricity
which comes with proportionally high operating costs. In order to drive down these
costs, researchers and data center operators have looked into ways of reducing these
energy costs. One way to reduce energy consumption is by increasing the efficiency
of the cooling process in the data center.

A data center consists of a multitude of computing racks, each generating heat
proportional to the workload assigned to that computing rack. The generated heat
is cooled via cold air which is sucked through the racks. A Computer Room Air
Conditioner (CRAC) unit blows the cold air into the data center, extracts the hot
air which exits the racks, and cools the air again to a target setpoint temperature.
Modeling the thermodynamics of the system, the change of the rack temperature
is given by

d

dt
Tout(t) = G(Tout(t)− 1Tsup(t)) +M−1P (t). (8.25)
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Here
Tout(t) :=

[
T 1

out(t) T 2
out(t) · · · Tnout(t)

]T
is the vector collecting the temperature [◦C] of the exhaust air at the racks, and

G := ρcpM
−1(ΓT − In)F,

F := diag(f1, f2, · · · , fn),

M := diag(cpm1, cpm2, · · · , cpmn),

Γ := [γij ]n×n,

where ρ [kg m−3] is the density of the air in the racks, cp [J ◦C−1 kg−1] is the
specific heat capacity of air, fi [m3 s−1] is the air flow rate through rack i, mi

[kg] is the mass of the air inside rack i, and γij is the percentage of the air flow
which recirculates from rack i to rack j. Furthermore Tsup [◦C] is the temperature
setpoint of the cold air exiting the CRAC unit, and P is the vector collection the
power consumption of each rack. The power consumption P is modeled as the
linear function

P (t) = V +WD(t), (8.26)

where

P (t) :=
[
P1(t) P2(t) · · · Pn(t)

]T
,

V :=
[
v1 v2 · · · vn

]T
,

W := diag(w1, w2, · · · , wn),

D(t) :=
[
D1(t) D2(t) · · · Dn(t)

]T
.

Here vi [Watts] is the power consumption for the racks being powered on,
wi [Watts CPU−1] is the power consumption per CPU in use, and Di(t) the
number of CPU’s the scheduler assigns to rack i at time t.

The key part here is that it is impossible to completely extract the hot air
from the data center. Some leakages occur and these cause inefficiencies in the
cooling system of the data center. These leakages are captured in the recirculation
parameters, γij , and cause an uneven temperature profile among the racks. Since
the CRAC unit cannot cool a single rack and any change to the temperature
setpoint Tsup affects all the racks, an uneven temperature profile results in much
wasted cooling efforts.

To find the optimal temperature profile at a given workload level, which results
in the lowest possible energy consumption of the cooling equipment, we set up an
optimization problem. From [116, Theorem 1] we obtain the optimization problem

minimize
Tout

cTTout (8.27a)

subject to 0 ≤ ATout + b(D∗) ≤ Dmax (8.27b)

Tout ≤ Tsafe, (8.27c)
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where D∗ is the total workload which has to processed by the data center at
a given time, Tsafe is the maximally allowed temperature of the racks, Dmax is
the computational capacity of the racks, and ATout + b(D∗) = D is the relation
between the chosen temperature profile and the necessary workload allocation
to achieve that temperature profile. The solution to (8.27), T̄out, is the desired
temperature distribution which guarantees the minimal energy consumption of
the cooling equipment in the data center. With this solution, and (8.27b) and a
similar relation for Tsup, it is then possible to calculate the optimal inputs for the
cooling equipment and the workload distribution, D.

In [116] controllers were designed to dynamically adjust Tsup and D in response
to changing workload levels, D∗, based on temperature measurements at the racks,

Ṫsup = K1(Tout − T̄out),

Ḋ = K2(Tout − T̄out),

where K1 and K2 are gains depending on the data center parameters.
Ideally T̄out is equal to Tsafe, however at very high or very low workload levels

the computational bounds will cause the optimal solution to deviate from Tsafe.
To allow for these edge cases we apply the proposed primal-dual algorithm from
this chapter to find the optimal temperature profile. Adapted to the example of
data centers, and augmented with an arbitrary gain LT̄out

∈ Rn×n, this algorithm
is given by

LT̄out

˙̄Tout = −c−
[
−A A I

]
µ

0 ≥

−AA
I

 T̄out +

 −b
b−Dmax

−Tsafe

 ⊥ µ ≥ 0.
(8.28)

8.3.1 Simulation results

To test the performance of the algorithm we simulate a realistic data center setting
where a high level of workload is applied to the data center, i.e. 91.7% of the total
computing capacity of the data center. The simulations results are given in Figure
8.1 to 8.3. The same simulation setup is used as in [116], where the data center
consists of 30 racks, each with a maximum allowed temperature of Tsafe = 30 ◦C,
and a computational capacity of Dmax = 20 tasks. To have the convergence time
within acceptable limits we set the gain LT̄out

= 1
20In. The simulation is initialized

relatively far away from the optimal solution and we see in Figure 8.1 that using
our primal-dual algorithm, the estimated optimal solution T̄ estout converges to the
real optimal solution of (8.27), T̄ solout, in 4 seconds. To check that the constraints
are indeed not violated during the transient, the temperature evolution is plotted
in Figure 8.2, and the workload assignment is plotted in 8.3. Here we see that
the temperature never exceeds the safe threshold of 30◦C and that the assigned
workload never exceeds the computational bound of 20 tasks.
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Figure 8.1: Convergence of T̄ estout to the solution of optimization problem (8.27), T̄ solout.
Within 4 seconds our primal-dual algorithm converges to the real optimal solution.
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Figure 8.2: Evolution of the estimated optimal temperature of each rack. The safe
temperature threshold of 30 ◦C is not violated during the transient.
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Figure 8.3: Evolution of the estimated optimal workload assignment to each rack. The
computational capacity of each rack, between 0 and 20 tasks is never violated during
transient.
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8.4 Conclusions

We considered the stability of constrained primal-dual dynamics represented by
a complementarity system. For each unique (slow) solution initialized in the
feasible set, we established the convergence to a primal-dual optimizer of the
underlying constrained optimization problem. The stability proof involves the
use of a generalized invariance principle using two different storage functions and
the result relies only on mild assumptions including the convexity of the objective
function and the existence of at least one primal-dual optimizer. Simulations on
online optimization in data centers illustrated the applicability of our results.

Future research includes studying the robustness of the proposed dynamics,
possibly in the lines of [27] and [81]. Another research direction is to study
initialization-free algorithms as for example in [128] which allows for a plug-
and-play implementation of the constrained primal-dual dynamics. Lastly, a
future research direction is to study the interconnection of the proposed dynamics
with other physical systems (including power networks) to analyze real-time
applications of the algorithm in dynamic environments.
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Introduction

In the last decades, there has been a massive expansion of renewable energy
resources (RES) in many countries of the world. More and more small distributed
generation units such as small hydro, biomass, biogas, solar and wind power plants
are connected to the grid, typically at the lower voltage levels. As a result,
the structure of the energy system in terms of energy production is changing to
decentralized generation units located in distribution grids. This has resulted in
several trends including (i) the non-continuous power generation of RES requires
balancing their production to follow the load (ii) distributed energy resources
(DERs) must provide system services such as frequency regulation (iii) it is
becoming more challenging to economically dispatch generation from centralized
locations [124].

In the current operation, ancillary services like frequency regulation are typ-
ically provided by conventional big generation units. They are activated either
automatically or upon request of the transmission system operators2 (TSO’s).
Once renewable energy resources in distribution grids displace such units either
completely or temporarily, the ancillary services must be provided by DERs via the
distribution system operators (DSO). The observability and controllability of the
distributed energy resources units connected to the distribution grids are inevitable
requirements to provide such services. Consequently, the management of DERs
becomes more and more important and there is a growing need to coordinate also
with control centers at the distribution level. Among these things, they coordinate
power dispatch and ensure continuous operation to avoid grid instability. In
support of these activities, control centers at the transmission level include a range
of monitoring functions such as continuous observation of frequency deviation, real
and reactive tie-line flows, and generation output with the aim to act against active
power imbalances. In addition, by merging the dispatch potential of several (DER)
units to a single potential, the TSO can make use of such aggregated dispatch
potentials to achieve economic dispatch at the transmission level.

Market design

As mentioned above, DERs can potentially provide services in a cost-effective
manner, including frequency control for the TSO. To tap the potential of DERs
and ensure cost-effective solutions, regulators must create and define new market
mechanisms to enable those services. Such local market mechanisms will have to
be integrated into the (frequency) regulation framework to allow to take advantage

2The United States has a similar organizational entity called the independent system operator
(ISO).
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of flexibility services from DERs [41]. This calls for a new comprehensive system
of prices, which would serve to coordinate resources installed and operated at
separate locations, and in this way, unlock the provision of flexibility and value
the different services provided. A few of the characteristics of such a price system
are described below, see also [124] and references therein.

Firstly, an increase time-differentiation in prices in envisioned as the marginal
system costs may vary significantly at various times, reflecting the marginal costs of
different technologies. This would improve not only the efficient system operation
but potentially, in the long run, also the DER investment made by network
users. In addition, increasing locational price differentiation for energy will deliver
efficiency gains and provide economic incentives for optimal location and dispatch
of DERs. Also the power system characteristics and the regulatory context need to
be considered. Since the electricity services value varies in time and location, the
prices should therefore reflect those variations. Furthermore, the improvements
in the design of the system of prices could significantly change the profits and
potentially increase the volatility of prices [85]. Therefore, also price stability and
the competitive aspect of the market has to be taken into account.

Contributions

In part III of this thesis, we deal with several aspects of these challenges outlined
above. The background of this part of the research is that we consider an (US)
electricity market consisting of an independent system operator (ISO) and a group
of (virtual) large scale generators. The goal of the ISO is solve the economic
dispatch problem while regulating the grid frequency to its nominal value while.
Each strategic generator seeks to maximize its individual profit and is not willing
to share its cost function with anyone. The ISO operates the market, where
generators bid prices at which there are willing to provide power, and makes
power generation assignments based on them. Our first contribution is that we
analyze the underlying price-competition game among the generators, where the
generators act as price-setters instead of price-takers as what is typically assumed
in the literature. In particular, we characterize the Nash equilibria that correspond
to optimal power dispatch which we call efficient Nash equilibria and we establish
the existence of such an equilibrium and provide a sufficient condition for its
uniqueness. We also propose continuous-time and discrete-time Nash equilibrium
seeking schemes that capture the negotiation process between the generators and
the ISO. In these schemes, each generator adjust its bid in a myopically selfish
fashion based on its current bid and the production level that the ISO requests
from them. At the same time, the ISO adjusts the generation setpoints to
minimize the total payment to the generators according to both the generator
bids and the local frequency deviation. The use of the local frequency error as
a feedback signal in the bidding process couples the ISO-generator coordination
scheme with the continuous-time swing dynamics of the power network. We show
that each equilibrium of the interconnected system corresponds to an efficient Nash
equilibrium, optimal generation levels and zero frequency regulation. By a rigorous
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stability analysis, we furthermore establish local (exponential) convergence to such
an equilibrium by utilizing suitable Lyapunov functions for the closed-loop system.
In particular, we show that the coupled dynamics is robust against additive
disturbances by establishing its local input-to-state stability (LISS) property using
a suitable LISS Lyapunov function.

Outline

Chapter 9: In this chapter, we study a frequency-aware continuous-time bidding
mechanism for real-time electricity markets. We start with the description of
the physical power network defined by the swing equations and then state the
economic dispatch problem with nonnegativity constraints. Here we also define the
inelastic market game of the generators and give the definition of an efficient Nash
equilibrium. For such an equilibrium, we establish its existence and give a sufficient
condition for its uniqueness. Then we introduce a dynamic bidding scheme between
the ISO and the generators which also takes into account the physical frequency
deviation of the network. We analyze its interconnection with the swing dynamics
and show that its dynamics can be described by a complementarity system. For
the closed-loop system we establish convergence to an efficient Nash equilibrium,
economic dispatch and zero frequency deviation by providing a suitable Lyapunov
function and by invoking a suitable invariance principle.

Chapter 10: Compared to Chapter 9, here we consider an iterative bidding
mechanism coupled with the continuous-time frequency swing dynamics, resulting
in an hybrid system considering both discrete and continuous updates. After stat-
ing the existence and uniqueness of an efficient Nash equilibrium, we establish local
input-to-state stability (LISS) of the continuous-time variant of the interconnected
system by constructing a LISS Lyapunov function. In particular, this guarantees
local exponential convergence to an equilibrium corresponding to an efficient Nash
equilibrium, cost efficiency and frequency regulation. The LISS property is then
used to show that its hybrid implementation, composed of the discrete bidding
scheme and the continuous evolution of the frequency dynamics, is asymptotically
stable. Specifically, based on the mismatch between the continuous-time and
hybrid implementations, we establish bounds on the discrete step sizes for the
bidding iterates and market clearing instances that guarantee the convergence of
the coupled system.
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Chapter 9

Frequency-aware Bertrand market
mechanism

Abstract: This chapter studies real-time bidding mechanisms for economic
dispatch and frequency regulation in electrical power networks. We consider a
market administered by an independent system operator (ISO) where a group of
strategic generators participate in a Bertrand game of competition. Generators
bid prices at which they are willing to produce electricity. Each generator aims
to maximize their profit, while the ISO seeks to minimize the total generation
cost and to regulate the frequency of the system. We consider a continuous-time
bidding process coupled with the swing dynamics of the network through the use of
frequency as a feedback signal for the negotiation process. We analyze the stability
of the resulting interconnected system, establishing frequency regulation and the
convergence to a Nash equilibrium and optimal generation levels. The results are
verified in the IEEE 14-bus benchmark case.

Published as:

T.W. Stegink, A. Cherukuri, C. De Persis, A.J. van der Schaft, J. Cortés. “Stable inter-

connection of continuous-time price-bidding mechanisms with power network dynamics.”

Proceedings of the 20th Power Systems Computation Conference (PSCC), 2018.
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9.1 Introduction

Power generation dispatch is typically done in a hierarchical fashion, where the
different layers are separated according to their time scales. Broadly, at the
top layer economic efficiency is ensured via market clearing and at the bottom
layer frequency control and regulation is achieved via primary and secondary
controllers. However, the intermittent and uncertain nature of distributed energy
resources (DERs) and their integration into the power grid represents a major
challenge to the current design. Of particular concern is the need to maintain
both frequency regulation and cost efficiency of regulation reserves in the face
of increasing fluctuations in renewables. To this end, we propose an integrated
dynamic market mechanism which combines the real-time market and frequency
regulation, allowing competitive market players, including renewable generation,
to negotiate electricity prices while using the most recent information on the grid
frequency.

Literature review

The combination of economic dispatch and frequency regulation has received
increasing attention in recent years. Various works have sought to move be-
yond the traditional and compartmentalized hierarchical control layers to instead
simultaneously achieve frequency stabilization and economic dispatch in power
networks [65, 113, 131] and microgrids [20, 35]. Along this line of research, the
various agents involved work cooperatively towards the satisfaction of a common
goal. An alternative body of research has investigated the use of price-based
incentives for economic generation- and demand-side management and frequency
regulation [3, 93, 107]. To achieve these goals, these works consider dynamic
pricing mechanisms in conjunction with system dynamics of the power network.
We also adopt this approach, with the important distinction that here we allow
generators to bid in the market (hence, they are price-setters rather than price-
takers). This viewpoint results in a Bertrand game of competition among the
generators. Our previous work [23, 24] studied this type of games established
that iterative bidding can achieve convergence to an optimal allocation of power
generation, without considering the effects on the dynamics of the power network.
The underlying assumption was that generation setpoints could be commanded
after convergence, which in practice poses a limitation, considering the fast time-
scales at which DERs operate. Instead, this chapter proposes an online bidding
scheme where the setpoints are updated continuously throughout time to better
cope with fast changes in the network. In this way, we tackle simultaneously both
frequency regulation, optimal power dispatch and the competitive aspect among
the generators.

Statement of contributions

We consider an electrical power network consisting of an independent system
operator (ISO) and a group of competitive generators. Each generator seeks
to maximize its individual profit, while the ISO aims to solve the economic
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dispatch problem and regulate the frequency. Since the generators are not willing
to share their cost functions, the ISO is unable to solve the economic dispatch
problem. Instead, it has the generators compete in a bidding market where
they submit bids to the ISO in the form of a price at which they are willing
to produce electricity. In return, the ISO determines the power generations levels
the generators have to meet. We analyze the underlying Bertrand game among
the generators and characterize the Nash equilibria that correspond to optimal
power dispatch termed efficient Nash equilibria. In particular, we establish the
existence of such efficient Nash equilibria and provide a sufficient condition for
its uniqueness. We also propose a Nash equilibrium seeking scheme in the form
of a continuous-time bidding process that captures the interaction between the
generators and the ISO. In this scheme, the generators adjust their bid based on
their current bid and the production level that the ISO requests from them with
the aim to maximize their profit. At the same time, the ISO adjusts the generation
setpoints to minimize the total payment to the generators while taking the power
balance and frequency deviation into account. Moreover, along the execution of
the algorithm the nonnegativity constraints on the bids and power generation
quantities are satisfied. The use of the local frequency error as a feedback signal
in the negotiation process couples the ISO-generator coordination scheme with
the swing dynamics of the power network. We show that each equilibrium of
the interconnected system corresponds to an efficient Nash equilibrium, optimal
generation levels and zero frequency regulation. We furthermore establish local
convergence to such an equilibrium by invoking a suitable invariance principle
for the closed-loop projected dynamical system. Finally, the numerical results on
the IEEE 14-bus benchmark show fast convergence of the closed-loop system to an
optimal equilibrium, even under sudden changes of the load and the cost functions.

Notation

Let R,R≥0,R>0 be the set of real, nonnegative real, and positive real numbers,
respectively. We write the set {1, . . . , n} compactly as In. We denote by 1 ∈ Rn
the vector whose elements are equal to 1. Given a twice differentiable function
f : Rn → R, its gradient and its Hessian evaluated at x is written as ∇f(x) and
∇2f(x), respectively. A twice continuously differentiable function f : Rn → R is
strongly convex on S ⊂ Rn if it is convex and, for some µ > 0, its Hessian satisfies
∇2f(x) > µI for all x ∈ S. For scalars a, b ∈ R we denote by [a]+b the operator

[a]+b =

{
a if b > 0

max(a, 0) if b = 0.
(9.1)

For vectors a, b ∈ Rn, [a]+b denotes the vector whose i-th element is given by
[ai]

+
bi

for i ∈ In. For A ∈ Rm×n, the induced 2-norm is denoted by ‖A‖.
Given v ∈ Rn,K ∈ Rn×n, we write ‖v‖K :=

√
vTKv. Given a set of numbers

v1, v2, . . . , vn ∈ R, col(v1, . . . , vn) denotes the column vector
[
v1, . . . , vn

]T
and

likewise diag(v1, . . . , vn) denotes the n× n diagonal matrix with entries v1, . . . , vn
on the diagonal. For u, v ∈ Rn we write u ⊥ v if uT v = 0. We use the



168 Chapter 9. Frequency-aware Bertrand market mechanism

compact notational form 0 ≤ u ⊥ v ≥ 0 to denote the complementarity conditions
u ≥ 0, v ≥ 0, u ⊥ v. The notations sin(.) and cos(.) are used to represent the
element-wise sine and cosine functions respectively.

9.2 Power network model and dynamics

We consider an electrical power network consisting of n buses and m transmission
lines. The network is represented by a connected and undirected graph G = (V, E),
where nodes V = In represent buses and edges E ⊂ V×V are the transmission lines
connecting the buses. The edges are arbitrarily labeled with a unique identifier in
Im and the ends of each edge are arbitrary labeled with ‘+’ and ‘-’. The incidence
matrix D ∈ Rn×m of the resulting directed graph is

Dik =


+1 if i is the positive end of edge k,

−1 if i is the negative end of edge k,

0 otherwise.

Each bus i represents a control area and is assumed to have one generator and
a load Pdi. The dynamics at the buses is assumed to be governed by the swing
equations [67], given by

δ̇ = ω

Mω̇ = −DΓ sin(DT δ)−Aω + Pg − Pd
(9.2)

with Pd = col(Pd1, . . . , Pdn). Here Γ = diag(γ1, . . . , γm), where γk = BijViVj =
BjiViVj and k ∈ Im corresponds to the edge between nodes i and j. Table 9.1
presents a list of symbols employed in the model (9.2).

δ ∈ Rn voltage phase angle

ω ∈ Rn frequency deviation w.r.t. the nominal frequency

Pg ∈ Rn≥0 power generation

Pd ∈ Rn≥0 power load

M ∈ Rn×n≥0 diagonal matrix of moments of inertia

A ∈ Rn×n≥0 diagonal matrix of asynchronous damping constants

Vi ∈ R>0 voltage magnitude at bus i

Bij ∈ R>0 negative of the susceptance of transmission line (i, j)

Table 9.1: State variables and parameters of swing equations (9.2).

For the stability analysis carried out later, it is convenient to work with the
voltage phase angle differences ϕ = DT

t δ ∈ Rn−1. Here Dt ∈ Rn×(n−1) is the
incidence matrix of an arbitrary tree graph on the set of buses In (e.g., a spanning
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tree of the physical network). Furthermore, let U(ϕ) = −1TΓ cos(DTD†Tt ϕ),

where D†t = (DT
t Dt)

−1DT
t denotes the Moore-Penrose pseudo-inverse of Dt. Then

the physical system (9.2) in the (ϕ, ω)-coordinates takes the form

ϕ̇ = DT
t ω

Mω̇ = −Dt∇U(ϕ)−Aω + Pg − Pd,
(9.3)

where we observe that DtD
†
tD = (I − 1

n11
T )D = D.

9.3 Problem description

In this section we formulate the problem statement, introduce the necessary game-
theoretic tools and discuss the goals of the chapter.

9.3.1 ISO-generator coordination

Taking as starting point the electrical power network model described in Sec-
tion 9.2, here we outline the elements of the ISO-generator coordination problem
following the exposition of [23, 24]. Let Ci : R≥0 → R≥0 be the cost incurred by
generator i ∈ In in producing Pgi units of power. We assume Ci is strongly convex
on the domain R≥0 and satisfies ∇Ci(0) ≥ 0. Given the total network cost

C(Pg) :=
∑
i∈In

Ci(Pgi) (9.4)

and a power load Pd, the ISO seeks to solve the economic dispatch (ED) problem

minimize
Pg

C(Pg), (9.5a)

subject to 1TPg = 1TPd, (9.5b)

Pg ≥ 0, (9.5c)

and, at the same time, to regulate the frequency of the physical power network.
We assume the total load to be positive, i.e., 1TPd > 0 such that (9.5) is feasible.
Since the constraints (9.5b) (9.5c) are affine, Slater’s condition holds implying
that (9.5) has zero duality gap. We can also show that its primal-dual optimizer
(P ∗g , λ

∗, µ∗) (where λ∗ corresponds to (9.5b) and µ∗ corresponds to (9.5c)) is unique
by exploiting strong convexity of C. We assume that for the power injection
Pg = P ∗g , there exists an equilibrium (ϕ̄, ω̄) of (9.3) that satisfies DTD†Tt ϕ̄ ∈
(−π/2, π/2)m. The latter assumption is standard and is referred to as the security
constraint in the power systems literature [67].

We note that the ISO cannot determine the optimizer of the ED problem (9.5)
because generators are strategic and they do not reveal their cost functions to
anyone. Instead, the ISO operates a market where each generator i ∈ In submit
a bid bi ∈ R≥0 in the form of a price at which it is willing to provide power.
Based on these bids, the ISO aims to find the power allocation that meets the
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load and minimizes the total payment to the generators. Thus instead of solving
the ED problem (9.5) directly, the ISO considers, given a bid b ∈ Rn≥0, the convex
optimization problem

minimize
Pg

bTPg, (9.6a)

subject to 1TPg = 1TPd, (9.6b)

Pg ≥ 0. (9.6c)

A fundamental difference between (9.5) and (9.6) is that the latter optimization is
linear and may in general have multiple solutions. Let P opt

g (b) be the optimizer of
(9.6) the ISO selects given bids b and note that this might not be unique. Knowing
the ISO’s strategy, each generator i bids a quantity bi ≥ 0 to maximize its payoff

Πi(bi, P
opt
gi (b)) := P opt

gi (b)bi − Ci(P opt
gi (b)), (9.7)

where P opt
gi (b) is the i-th component of the optimizer P opt

g (b). Note that this
function is not continuous in the bid b. Since each generator is strategic, we analyze
the market clearing, and hence the dispatch process explained above using tools
from game theory [8, 39].

9.3.2 Inelastic electricity market game

We define the inelastic electricity market game as

• Players: the set of generators In.

• Action: for each player i, the bid bi ∈ R≥0.

• Payoff: for each player i, the payoff Πi defined in (9.7).

In the sequel we interchangeably use the notation b ∈ Rn≥0 and (bi, b−i) ∈ Rn≥0

for the bid vector, where b−i ∈ Rn−1
≥0 represents the bids of all players except i.

We note that the payoff of generator i not only depends on the bids of the other
players but also on the optimizer P opt

g (b) the ISO selects. Therefore, the concept
of a Nash equilibrium is defined slightly differently compared to the usual one.

Definition 9.3.1 (Nash equilibrium [23]). A bid profile b∗ ∈ Rn≥0 is a Nash
equilibrium of the inelastic electricity market game if there exists an optimizer
P opt
g (b∗) of (9.6) such that for each i ∈ In,

Πi(bi, P
opt
gi (bi, b

∗
−i)) ≤ Πi(b

∗
i , P

opt
gi (b∗))

for all bi ∈ R≥0 with bi 6= b∗i and all optimizers P opt
gi (bi, b

∗
−i) of (9.6) given bids

(bi, b
∗
−i).

We are particularly interested in bid profiles for which the optimizer of (9.5)
is also a solution to (9.6). This is captured in the following definition.
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Definition 9.3.2 (Efficient bid and efficient Nash equilibrium). An efficient bid
of the inelastic electricity market is a bid b∗ ∈ Rn≥0 for which the optimizer P ∗g of
(9.5) is also an optimizer of (9.6) given bids b = b∗ and

P ∗gi = arg max
Pgi≥0

{Pgib∗i − Ci(Pgi)} for each i ∈ In. (9.8)

A bid b∗ ∈ Rn≥0 is an efficient Nash equilibrium of the inelastic electricity market
game if it is an efficient bid and a Nash equilibrium.

At the efficient Nash equilibrium, the optimizer of the ED problem coincides
with the production levels that maximize the individual profits (9.7) of the
generators. This justifies studying the efficient Nash equilibria.

9.3.3 Chapter objectives

Given the problem setup described above, neither the ISO nor the individual
strategic generators are able to determine the efficient Nash equilibrium a priori.
As a first objective, we are interested in designing a Nash equilibrium seeking
mechanism in the form of a bidding process where the generators coordinate with
the ISO to dynamically update their bids and production levels, while respecting
the nonnegativity constraints throughout its execution. Our second objective is
the characterization of the stability properties of the interconnection of the bidding
process with the physical dynamics of the power network.

9.4 Existence and uniqueness of Nash equilibria

In this section we establish existence of an efficient Nash equilibrium and also
provide a condition for its uniqueness. While [23] has established the existence
of one specific efficient Nash equilibrium, we provide in the following result a
characterization of all efficient Nash equilibria.

Proposition 9.4.1. (Characterization of efficient Nash equilibria): Let
(P ∗g , λ

∗, µ∗) be the unique primal-dual optimizer of (9.5), that is, P ∗g ∈ Rn, λ∗ ∈
R, µ∗ ∈ Rn satisfy the Karush-Kuhn-Tucker (KKT) conditions

∇C(P ∗g ) = 1λ∗ + µ∗, 1TP ∗g = 1TPd,

0 ≤ P ∗g ⊥ µ∗ ≥ 0.
(9.9)

Suppose P ∗gi > 0 for at least two distinct generators. Then, any b∗ ∈ Rn≥0 satisfying
1λ∗ ≤ b∗ ≤ ∇C(P ∗g ) is an efficient Nash equilibrium of the inelastic electricity
market game.

Proof. Let (P ∗g , λ
∗, µ∗) satisfy (9.9), then in particular 1λ∗ ≤ ∇C(P ∗g ). Fix any

bid b∗ ∈ Rn≥0 satisfying 1λ∗ ≤ b∗ ≤ ∇C(P ∗g ). We will now prove that b∗ is efficient.
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Define ν∗ := b∗ − 1λ∗ and note that (P ∗g , λ
∗, ν∗) satisfies

b∗ = 1λ∗ + ν∗, 1TP ∗g = 1TPd

0 ≤ P ∗g ⊥ ν∗ ≥ 0.
(9.10)

We note that Slater’s condition holds for (9.6) and its KKT conditions are given
by (9.10). Consequently, P ∗g is a primal optimizer of (9.6). In addition, the bid b∗

satisfies

P ∗gi = arg max
Pgi≥0

{Pgib∗i − Ci(Pgi)} for each i ∈ In. (9.11)

This is true as for each i ∈ In, the following optimality conditions

∇Ci(P ∗gi) = b∗i + η∗i , 0 ≤ P ∗gi ⊥ η∗i ≥ 0,

are satisfied for η∗i = ∇Ci(P ∗gi) − b∗i . Note that in the above set of conditions,
P ∗giη

∗
i = 0 because if P ∗gi > 0, then ∇Ci(P ∗gi) = λ∗ = b∗i . Thus, we have established

that b∗ is efficient. In the remainder of the proof we show that b∗ is a Nash
equilibrium. Suppose generator i deviates from the bid b∗i . We distinguish between
two cases. Suppose first that bi > b∗i , then by replacing b∗ by (bi, b

∗
−i) in (9.6) and

checking the optimality conditions, we obtain P opt
gi (bi, b

∗
−i) = 0 as, by assumption,

there is at least one other generator j such that b∗j = λ∗ < bi. Without loss of

generality assume that P ∗gi > 0 since otherwise Πi(b
∗
i , P

∗
gi) = Πi(bi, P

opt
gi (bi, b

∗
−i)).

For P ∗gi > 0, we have b∗i = ∇Ci(P ∗gi) and therefore ∇Ci(Pgi) ≤ b∗i for all Pgi ∈
[0, P ∗gi]. As a result

Πi(bi, P
opt
gi (bi, b

∗
−i)) = C(0) ≤ Πi(b

∗
i , P

∗
gi)

This shows that a bid bi > b∗i does not increase its payoff. Suppose now that
bi < b∗i , then

Πi(bi, P
opt
gi (bi, b

∗
−i)) = biP

opt
gi (bi, b

∗
−i))− Ci(P

opt
gi (bi, b

∗
−i))

≤ b∗iP
opt
gi (bi, b

∗
−i))− Ci(P

opt
gi (bi, b

∗
−i))

≤ b∗iP ∗gi − Ci(P ∗gi) = Πi(b
∗
i , P

∗
gi)

where the second inequality follows from (9.11) as b∗ is efficient. Hence, each
generator i has no incentive to deviate from bid b∗i given b∗−i. We conclude that
b∗ is an efficient Nash equilibrium of the inelastic electricity market game.

The proof of Proposition 9.4.1 shows that if P ∗gi > 0, then generator i’s efficient
Nash equilibrium bid b∗i is equal to the (unique) Lagrange multiplier λ∗ associated
to the power balance (9.5b). In the other case that P ∗gi = 0, generator i’s Nash
equilibrium bid is larger than or equal to λ∗. This represents the case that
generator i’s marginal costs at zero power production is larger than or equal to
the market clearing price, and hence generator i is not willing to produce any
electricity in that case. The underlying assumption in Proposition 9.4.1 is that at
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least two generators have a positive production at the optimal generation levels.
We assume this condition holds for the remainder of the chapter unless stated
otherwise.

The previous observations lead to the identification of the same sufficient
condition as in [23] to guarantee the uniqueness of the efficient Nash equilibrium,
which we state here for completeness.

Corollary 9.4.2 (Uniqueness of the efficient Nash equilibrium [23]). Let
(P ∗g , λ

∗, µ∗) be the primal-dual optimizer of (9.5) and suppose that P ∗g > 0, then
b∗ = ∇C(P ∗g ) = 1λ∗ is the unique efficient Nash equilibrium of the inelastic
electricity market game.

Remark 9.4.3 (Any efficient Nash equilibrium is positive). We observe from the
optimality conditions (9.9) that, since 1TPd > 0, and P ∗g ≥ 0, we must have that
P ∗gi > 0 and µ∗i = 0 for some i ∈ In. As ∇Ci(P ∗gi) > 0 by the strict convexity of
Ci and the assumption ∇Ci(0) ≥ 0, this implies that λ∗ > 0 and therefore also
b∗ > 0. •

9.5 Interconnection of bid update scheme with
power network dynamics

In this section we introduce a Nash equilibrium seeking mechanism between the
generators and the ISO. Each generator dynamically updates its bid based on
the power generation setpoint received from the ISO, while the ISO changes the
power generation setpoints depending on the generator bids and the frequency of
the network. This update mechanism of the bids and the setpoints is written as
a continuous-time dynamical system. We assume that each generator can only
communicate with the ISO and is not aware of the number of other generators
participating, their respective cost functions, or the load at its own bus. We study
the interconnection of the online bidding process with the power system dynamics
and establish local convergence to an efficient Nash equilibrium, optimal power
dispatch, and zero frequency deviation.

9.5.1 Price-bidding mechanism

In our design, each generator i ∈ In changes its bid bi ≥ 0 according to the
projected dynamical system

Kbiḃi = [Pgi −∇C∗i (bi)]
+
bi
, (9.12a)

with gain Kbi > 0. The projection operator in the above dynamics ensures that
trajectories starting in the nonnegative orthant remain there. The map C∗i :
R≥0 → R≥0 denotes the convex conjugate of the cost function Ci and is defined as

C∗i (bi) := max
Pgi≥0

{biPgi − Ci(Pgi)}.
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Using tools from convex analysis [46, Section I.6], one can deduce that C∗i
is convex and continuously differentiable on the domain R≥0 and strictly con-
vex on the domain [∇Ci(0),∞). Moreover, its gradient satisfies ∇C∗i (bi) =
arg maxPgi≥0{biPgi − Ci(Pgi)} for all bi ≥ 0.

The motivation behind the update law (9.12a) is as follows. Given the bid
bi > 0, generator i seeks to produce power that maximizes its profit, which is
given by

P des
gi = ∇C∗i (bi) = arg max

Pgi≥0
{biPgi − Ci(Pgi)}.

However, if the ISO requests more power from the generator compared to its
desired quantity, i.e., Pgi > P des

gi , then i will increase its bid to increase its profit.

On the other hand if Pgi < P des
gi , then i will decrease its bid.

For the ISO we also provide an update law which depends on the generator
bids and the network frequency. This involves seeking a primal-dual optimizer of
(9.6) or, equivalently, finding a saddle-point of the augmented Lagrangian

L(Pg, λ) = bTPg + λ1T (Pd − Pg) + ρ‖1T (Pd − Pg)‖2,

with parameter ρ > 0. By writing the associated projected saddle-point dynamics
(see e.g., [25, 40]), the ISO dynamics takes the form

KgṖg = [1λ− b+ ρ11T (Pd − Pg)− σ2ω]+Pg ,

kλλ̇ = 1T (Pd − Pg),
(9.12b)

with design parameters σ, kλ ∈ R>0 and diagonal positive definite matrix Kg ∈
Rn×n. Bearing in mind the ISO’s second objective of driving the frequency
deviation to zero, we add the feedback signal −σ2ω to adjust the generation based
on the frequency deviation in the grid.

The dynamics (9.12b) can be interpreted as follows. If generator i bids higher
than the Lagrange multiplier λ (which can be interpreted as a price) associated
with the power balance constraint (9.6b), then the power generation setpoint at
node i is decreased, and vice versa. The terms ρ11T (Pg−Pd) and −σ2ω in (9.12b)
help to compensate for the supply-demand mismatch in the network.

In the following, we analyze the equilibria and the stability of the interconnec-
tion of the physical power network dynamics (9.3) with the bidding process (9.12).
We assume that the bids and power generations are initialized within the feasible
domain, i.e., b(0) ≥ 0, Pg(0) ≥ 0.
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9.5.2 Equilibrium analysis of the interconnected system

The closed-loop system composed of the ISO-generator bidding scheme (9.12) and
the power network dynamics (9.3) is described by

ϕ̇ = DT
t ω (9.13a)

Mω̇ = −Dt∇U(ϕ)−Aω + Pg − Pd (9.13b)

Kbḃ = [Pg −∇C∗(b)]+b (9.13c)

KgṖg = [1λ− b+ ρ11T (Pd − Pg)− σ2ω]+Pg (9.13d)

kλλ̇ = 1T (Pd − Pg) (9.13e)

where C∗(b) :=
∑
i∈In C

∗
i (bi), Kb = diag(Kb1, . . . ,Kbn) ∈ Rn×n. We investigate

the equilibria of (9.13). In particular, we are interested in equilibria that
correspond simultaneously to an efficient Nash equilibrium, economic dispatch
and frequency regulation, as specified next.

Definition 9.5.1 (Efficient equilibrium). An equilibrium x̄ = col(ϕ̄, ω̄, b̄, P̄g, λ̄) of
(9.13) is efficient if ω̄ = 0, b̄ is an efficient Nash equilibrium, and P̄g is a primal
optimizer of (9.5).

The next result shows that all equilibria of (9.13) are efficient.

Proposition 9.5.2. (Equilibria are efficient): Any equilibrium x̄ = col(ϕ̄, ω̄, b̄, P̄g, λ̄)
of (9.13) is efficient.

Proof. Let x̄ be an equilibrium of (9.13), then there exist µ̄b, µ̄g ∈ Rn such that

0 = DT
t ω̄ (9.14a)

0 = −Dt∇U(ϕ̄)−Aω̄ + P̄g − Pd (9.14b)

0 = P̄g −∇C∗(b̄) + µ̄b (9.14c)

0 = 1λ̄− b̄+ µ̄g (9.14d)

0 = 1T (Pd − P̄g) (9.14e)

0 ≤ b̄ ⊥ µ̄b ≥ 0 (9.14f)

0 ≤ P̄g ⊥ µ̄g ≥ 0 (9.14g)

We first show that ω̄ = 0. From (9.14a) it follows that ω̄ = 1ωs for some ωs ∈ R.
Then by pre-multiplying (9.14b) by 1T and using (9.14e) we obtain 1TA1ωs = 0,
which implies that ω̄ = 1ωs = 0. We prove next that P̄g is a primal optimizer of
(9.5). We claim that µ̄b = 0 since, by contraction, if µ̄bi > 0 for some i ∈ In, then
b̄i = 0 and therefore 0 = P̄gi−∇C∗i (b̄i)+µ̄bi = P̄gi+µ̄bi > 0, see also Remark 9.4.3.
Therefore, (9.14c) implies that P̄g = ∇C∗(b̄) = arg maxPg≥0{PTg b̄ − C(Pg)} and
thus satisfies the optimality conditions

∇C(P̄g) = b̄+ η̄, 0 ≤ P̄g ⊥ η̄ ≥ 0, (9.15)

for some η̄. Let us define µ̄ = b̄+ η̄−1λ̄ ≥ 0 where the inequality holds by (9.14d).
By (9.14g) and (9.15) we have P̄Tg µ̄ = P̄Tg (b̄− 1λ̄) = PTg µ̄g = 0. Hence, (P̄g, λ̄, µ̄)
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satisfies

∇C(P̄g) = 1λ̄+ µ̄, 1T P̄g = 1TPd,

0 ≤ P̄g ⊥ µ̄ ≥ 0,
(9.16)

implying that (P̄g, λ̄, µ̄) is a primal-dual optimizer of (9.5). Furthermore, (9.15)
implies b̄ ≤ ∇C(P̄g) and thus, by Proposition 9.4.1, b̄ is an efficient Nash
equilibrium. Hence, x̄ is an efficient equilibrium of (9.13).

9.5.3 Convergence analysis

In this section we establish the local asymptotic convergence of (9.13) to an efficient
equilibrium.

Theorem 9.5.3. Consider the subset of (efficient) equilibria,

X := {x̄ = col(ϕ̄, ω̄, b̄, P̄g, λ̄) : x̄ is an equilibrium of (9.13)

and DTD†Tt ϕ̄ ∈ (−π/2, π/2)m}.

Then X is locally asymptotically stable under (9.13). Moreover, the convergence
is to a point.

Proof of Theorem 9.5.3. Our proof strategy to show local convergence to X
is based on applying Theorem 9.5.4, which is a special case of the invariance
principle stated in [16] adapted for complementarity systems. We restate that
theorem below.

Theorem 9.5.4 (Invariance principle for complementarity systems [16]). Con-
sider the system

ẋ = F (x) + CTΛ (9.17a)

0 ≤ Cx+ d ⊥ Λ ≥ 0 (9.17b)

with Lipschitz continuous F and let K be the polyhedron

K = {x : Cx+ d ≥ 0}. (9.18)

Let Ψ ⊂ Rn be a compact set and V : Rn → R be a continuous differentiable
function such that

(I) x−∇V (x) ∈ K, for all x ∈ ∂K ∩Ψ,
(II) 〈∇V (x), F (x)〉 ≤ 0, for all x ∈ K ∩Ψ.

Let E ⊂ Rn be given by

E := {x ∈ K ∩Ψ : 〈F (x),∇V (x)〉 = 0}
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and denote the largest invariant subset of E by M. Then, for each x0 ∈ K such
that its orbit satisfies γ(x0) ⊂ Ψ, we have

lim
t→∞

d(x(t; t0, x0),M) = 0.

Proof of Theorem 9.5.3 (continued). To be able to apply Theorem 9.5.4, we
rewrite the projected dynamical system (9.13) as the equivalent complementarity
system1

ϕ̇ = DT
t ω (9.19a)

Mω̇ = −Dt∇U(ϕ)−Aω + Pg − Pd (9.19b)

Kbḃ = Pg −∇C∗(b) + µb (9.19c)

KgṖg = 1λ− b+ ρ11T (Pd − Pg)− σ2ω + µg (9.19d)

kλλ̇ = 1T (Pd − Pg) (9.19e)

0 ≤ b ⊥ µb ≥ 0 (9.19f)

0 ≤ Pg ⊥ µg ≥ 0, (9.19g)

where µb, µg ∈ Rn. We write (9.19) in the compact form

ẋ = F (x) + CTΛ (9.20a)

0 ≤ Cx+ d ⊥ Λ ≥ 0 (9.20b)

with x = col(ϕ, ω, b, Pg, λ),Λ = col(µb, µg), and

F (x) =


DT
t ω

M−1(−Dt∇U(ϕ)−Aω + Pg − Pd)
K−1
b (Pg −∇C∗(b))

K−1
g (1λ− b+ ρ11T (Pd − Pg)− σ2ω)

k−1
λ 1T (Pd − Pg)

 (9.21a)

C =

[
0 0 K−1

b 0 0 0
0 0 0 K−1

g 0 0

]
, d = 0 ∈ R2n. (9.21b)

Note that F is Lipschitz continuous2. For the equivalence of the projected
dynamical system (9.13) and the complementarity system (9.19) to hold, we
consider absolutely continuous solutions t 7→ x(t) that satisfy (9.19) almost
everywhere (in time) in the sense of Lebesgue measure. In addition, we consider
(unique) solutions of (9.20) that are slow. That is, at each time t, Λ satisfies
(9.20b) and is such that ẋ(t) is of minimal norm, see also [15].

Let x̄ ∈ X be arbitrary and fixed for the remainder of the proof. For aesthetic
reasons we first consider the case where σ = 1 in (9.13d) or (9.19d) and later we
explain how to generalize the convergence result. Consider the function V defined

1See also [15, Theorem 1] for more details.
2Here we observe that, since C is continuously differentiable and µ-strongly convex on R≥0,

C∗ is 1
µ

-Lipschitz continuous on R≥0.
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by

V (x) = U(ϕ)− (ϕ− ϕ̄)T∇U(ϕ̄)− U(ϕ̄) +
1

2
||x− x̄||2K (9.22)

with K = blockdiag(0,M,Kb,Kg, kλ). Note that V (x̄) = 0,∇V (x̄) = 0 and, since

DTD†Tt ϕ̄ ∈ (−π/2, π/2)m, ∇2V (x̄) > 0. Consequently, there exists a compact
level set Ψ of V around x̄. We show now that the two conditions of Theorem 9.5.4
are satisfied.

Condition (I): For C given in (9.21b) and d = 0 the polyhedron (9.18) takes
the form

K = {x = col(ϕ, ω, b, Pg, λ) : b ≥ 0, Pg ≥ 0}.

Consequently, for all x ∈ ∂K ∩Ψ we have

x−∇V (x) =


ϕ−∇U(ϕ) +∇U(ϕ̄)

ω −Mω
b−Kb(b− b̄)

Pg −Kg(Pg − P̄g)
λ− kλ(λ− λ̄)

 =


∗
∗
Kbb̄
KgP̄g
∗

 ∈ K.

Condition (II): Since x̄ ∈ X there exists Λ̄ such that F (x̄) + CT Λ̄ = 0. As a
result, for each x ∈ K we have

〈∇V (x), F (x)〉 = 〈∇V (x), F (x)− F (x̄)− CT Λ̄〉
= (∇U(ϕ)−∇U(ϕ̄))DTω

+ ωT (−D(∇U(ϕ)−∇U(ϕ̄))−Aω + Pg − P̄g)
+ (b− b̄)T (Pg −∇C∗(b)− P̄g +∇C∗(b̄)− µ̄b)
+ (Pg − P̄g)T (1(λ− λ̄)− b+ b̄+ ρ11T (P̄g − Pg)
− σ2ω − µ̄g) + (λ− λ̄)1T (P̄g − Pg)
= −ωTAω − (b− b̄)T (∇C∗(b)−∇C∗(b̄))
− ρ‖1T (P̄g − Pg)‖2 − (b− b̄)T µ̄b − (Pg − P̄g)T µ̄g ≤ 0

(9.23)

where the inequality holds because C∗ is convex, b̄T µ̄b = 0, P̄Tg µ̄g = 0 and
µ̄b, µ̄g, b, Pg ≥ 0. Hence, the second condition of Theorem 9.5.4 is satisfied.

Invariance of Ψ: We note that (9.23) does not necessarily imply that Ψ
is forward invariant. We show this next. Observe that for each x,Λ satisfying
0 ≤ Cx ⊥ Λ ≥ 0 we have

〈∇V (x), F (x) + CTΛ〉 = 〈∇V (x), F (x)〉+ 〈∇V (x), CTΛ〉 ≤ 〈∇V (x), CTΛ〉
= (b− b̄)Tµb + (Pg − P̄g)Tµg = −b̄Tµb − P̄Tg µg ≤ 0.

(9.24)
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Figure 9.1: Schematic of the modified IEEE 14-bus benchmark. Each edge in the graph
represents a transmission line. Red nodes represent loads. All the other nodes represent
synchronous generators, with different colors that match the ones used in Figure 9.2.
The physical dynamics are modeled by (9.2).

Hence, the V is non-increasing along trajectories initialized in K ∩Ψ. Since Ψ is
a level set of V , this implies that Ψ is forward invariant.

Largest invariant set: Define

E = {x ∈ K ∩Ψ : 〈F (x),∇V (x)〉 = 0}

and denote the largest invariant subset of E by M. By (9.23) we note that each
x ∈ M satisfies ω = 0,1T (Pd − Pg) = 0 and, bi = b̄i > 0 (otherwise, if b̄i = 0,
then 0 = P̄gi − ∇C∗i (b̄i) + µ̄bi = P̄gi + µ̄bi > 0, which results in a contradiction)
for each i ∈ In with P̄gi > 0 as C∗i is strictly convex around such b̄i. For these i,
Pgi = P̄gi > 0 by (9.13c) and bi = λ = λ̄ by (9.13d). For each x ∈ M and i ∈ In
with P̄gi = 0, we have ∇C∗i (bi) = ∇C∗i (b̄i) = 0 by the convexity of Ci and thus
Pgi = P̄gi = µbi = 0 and thus bi = λ + µgi. Hence, M ⊂ X and therefore each
trajectory initialized in Ψ converges to X . Moreover, from (9.24), we deduce that
x̄ is stable. Since this equilibrium has been chosen arbitrarily, we conclude that
every point in X is Lyapunov stable, implying that convergence of the trajectories
is to a point.

The proof for the case σ > 0, σ 6= 1 proceeds in the same way as before except
that we appropriately scale the Lyapunov function. Specifically, we define the
Lyapunov function V as in (9.22) but with K = blockdiag(0,M, σKb, σKg, σkλ) >
0.

9.6 Simulations

We simulate the closed-loop dynamics (9.13) for the modified IEEE 14-bus
benchmark model illustrated in Figure 9.1. We assume quadratic costs at each
node i ∈ I14 of the form

Ci(Pgi) =
1

2
qiP

2
gi + ciPgi
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with qi > 0 and ci ≥ 0. In the original 14-bus model, nodes 1, 2, 3, 6, 8 have
synchronous generators while the other nodes are load nodes and have no power
generation. We replicate this by increasing the cost (by setting qi, ci � 0) at
the load nodes to ensure positive power generation is not profitable at them. In
addition, we choose Mi ∈ [4, 5.5] for generator nodes i ∈ {1, 2, 3, 6, 8} and Mi � 1
for the load nodes. We set Ai ∈ [2, 3], Vi ∈ [1, 1.06] for all i ∈ In and ρ = 300. At
t = 0 s, the load (in MW’s) is given by

Pd = (0, 22, 80, 48, 7.6, 11, 0, 0, 30, 9.0, 3.5, 6.1, 14, 15).

Initially, we set (q1, q2, q3, q6, q8) = (26, 70, 150, 150, 300) and (c1, c2, c3, c6, c8) =
(7.5, 30, 90, 82.5, 75). The system (9.13) is initialized at steady state at the optimal
generation level

(Pg1, Pg2) = (201, 44)

and with Pgi = 0 for all other nodes. Figure 9.2 shows the evolution of the system
in the case when σ = 300 and Figure 9.3 in the case when σ = 0. Note that in the
latter case, there is no frequency signal fed back into the bidding process, so the
dynamics (9.13) effectively becomes a cascaded system (where the bidding process
drives the physical dynamics of the power network). At t = 1 s the load at node
3 is increased from 80 MW to 94.2 MW and the trajectories converge to a new
efficient equilibrium with optimal power generation level (Pg1, Pg2) = (211, 48)
and Pgi = 0 for all other nodes. Furthermore, at steady state generators 1, 2 bid
equal to the Lagrange multiplier while generators 3, 6, 8 bid their marginal cost at
zero production (bi = ci, for i = 3, 6, 8) and thus, by Proposition 9.4.1, we know
that this corresponds to an efficient Nash equilibrium.

At t = 15 s the cost of producing electricity is decreased in areas 3, 6, 8 by
setting (q3, q6, q8) = (60, 75, 68) and (c3, c6, c8) = (38, 45, 23). This allows these
generators to make profit by participating in the bidding process and results in
a reduction of the total cost of the generation from 9711 $/h to 8540 $/h. As
illustrated in both Figures 9.2 and 9.3, the power generations converge to the new
optimal steady state given by

(Pg1, Pg2, Pg3, Pg6, Pg8) = (161, 29, 21, 7, 41).

In addition, we observe that after each change of either the load or the cost
function, the frequency is stabilized and the bids converge to a new efficient Nash
equilibrium. The fact that the frequency transients are better in Figure 9.2 than
in Figure 9.3 is consistent, since in the latter case there is no frequency feedback
in the bidding process.

9.7 Conclusions

We have studied a market-based power dispatch scheme and its interconnection
with the swing dynamic of the physical network. From the market perspective, we
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have considered a continuous-time bidding scheme that describes the negotiation
process between the independent system operator and a group of competitive gen-
erators. Using the frequency as a feedback signal in the bidding dynamics, we have
shown that the interconnected projected dynamical system provably converges to
an efficient Nash equilibrium (where generation levels minimize the total cost) and
to zero frequency deviation. In this way, competitive generators are enabled to
participate in the real-time electricity market without compromising efficiency and
stability of the power system. Future work consists of investigating finite-horizon
scenarios and incorporating generator bounds and power flow constraints in the
economic dispatch formulation.
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(a) Evolution of the frequency devia-
tion. After each change of the load
or the cost functions, the frequency is
restored to its nominal value.
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(b) Evolution of the power generation at
each node. After the change of the cost
functions in nodes 3, 6, 8, there is more
competition among the generators, re-
sulting in lower power productions at
node 1 and 2.
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(c) Evolution of the bids and the La-
grange multiplier (represented by the
dashed black colored line). Initially,
the marginal costs (and the bids) at
zero power production are higher than
the market equilibrium price for nodes
3, 6, 8.

Figure 9.2: Simulations of the interconnection (9.13) between the ISO-generation bidding
mechanism and the power network dynamics with σ = 300. At t = 1 s the load at node
3 is increased from 80 MW to 94.2 MW. At t = 15 s the marginal cost decreases at
nodes 3, 6, 8 which allows these generators to make profit by lowering their bids to have
a positive power production as illustrated in plots (b) and (c).
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(a) Evolution of the frequency devia-
tions with σ = 0. Compared to Fig-
ure 9.2(a), there are more oscillations
and a larger overshoot of the frequency
deviations.
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(b) Evolution of the power generations
at each node. As σ = 0, the gener-
ations are updated only according to
the bidding process without using any
frequency measurements.
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(c) Evolution of the bids and the La-
grange multiplier. Compared to Fig-
ure 9.2(c), the convergence is faster in
this scenario because the bidding pro-
cess does not take into account its im-
pact on the dynamics of the power net-
work.

Figure 9.3: Simulations of the interconnection (9.13) between the ISO-generation bidding
mechanism and the power network dynamics for the case of σ = 0, i.e., when there is no
frequency feedback signal in the bidding process. The scenario is the same as in Figure
9.2. As illustrated, the closed-loop system also converges in this case to an efficient
equilibrium.
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Chapter 10

Integrating iterative bidding and
frequency regulation

Abstract This chapter considers a real-time electricity market involving an
independent system operator (ISO) and a group of strategic generators. The
ISO operates a market where generators bid prices at which there are willing
to provide power. The ISO makes power generation assignments with the goal
of solving the economic dispatch problem and regulating the network frequency.
We propose a multi-rate hybrid algorithm for bidding and market clearing that
combines the discrete nature of iterative bidding with the continuous nature of the
frequency evolution in the power network. We establish sufficient upper bounds
on the inter-event times that guarantee that the proposed algorithm asymptotically
converges to an equilibrium corresponding to an efficient Nash equilibrium and zero
frequency deviation. Our technical analysis builds on the characterization of the
robustness properties of the continuous-time version of the bidding update process
interconnected with the power network dynamics via the identification of a novel
LISS-Lyapunov function. Simulations on the IEEE 14-bus system illustrate our
results.
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10.1 Introduction

The dispatch of power generation in the grid has been traditionally done in a hier-
archical fashion. Broadly speaking, cost efficiency is ensured via market clearing at
the upper layers and frequency regulation is achieved via primary and secondary
controllers at the bottom layers. Research on improving the performance of
these layers has mostly developed independently from each other, motivated by
their separation in time-scales. The increasing penetration of renewables poses
significant challenges to this model of operation because of its intermittent and
uncertain nature, see e.g., [47, 48]. At the same time, the penetration of renewables
also presents an opportunity to rethink the architecture and its hierarchical
separation towards the goal of improving efficiency and adaptiveness. A key
aspect to achieve the integration of different layers is the characterization of the
robustness properties of the mechanisms used at each layer, since variables at
the upper layers cannot be assumed in steady state any more at the lower ones.
These considerations motivate our work on iterative bidding schemes combined
with continuous physical network dynamics and the correctness analysis of the
resulting multi-rate hybrid interconnected system.

Literature review

The integration of economic dispatch and frequency regulation in power networks
has attracted increasing attention in the last decades. Many recent works [35, 65,
80, 113, 121, 131, 134, 136] envision merging the design of primary, secondary,
and tertiary control layers for several models of the power network/micro-grid
dynamics with the aim of bridging the gap between long-term optimization and
real-time frequency control. In scenarios where generators are price-takers, the
literature has also explored the use of market mechanisms to determine the
optimal allocation of power generation and to stabilize the frequency with real-
time (locational marginal) pricing, see [3, 93, 94, 107]. Our present work shares
with [97, 98] the use of dynamic iterative bidding schemes by the ISO, although
in these works the setting is stochastic, the agents react in a price-taking manner,
and their dynamics is assumed to be decoupled from one another. Instead, [24]
proposes iterative bidding schemes where the generators are strategic, leading to
efficient Nash equilibria where power generation levels minimize the total cost as
intended by the ISO. Inspired by [24] and [107], our work [102] has shown that
the integration with the frequency dynamics of the network can also be achieved
in scenarios where generators are price-setters. However, the integration in [102]
relies on a continuous-time model for the bidding process, where the frequency
coming from the power network dynamics enters as a feedback signal in the
negotiation process. Instead, we account here for the necessarily discrete nature of
the bidding process and explore the design of provably correct multi-rate hybrid
implementations that realize this integration. This involves the identification
of a strictly decreasing Lyapunov function (compared to the weak Lyapunov
function employed in [102]) that allows us to go beyond the characterization
of asymptotic stability of the continuous-time dynamics and establish strong
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robustness guarantees. These guarantees set the basis for our design here of a
provably correct, multi-rate hybrid algorithm implementation.

Statement of contributions

We consider an electrical power network consisting of an ISO and a group of
strategic generators. The ISO seeks to ensure that the generation meets the
load with the minimum operation cost and the grid frequency is regulated to
its nominal value. Each generator seeks to maximize its individual profit and
does not share its cost function with anyone. The ISO operates the market,
where generators bid prices at which there are willing to provide power, and
makes power generation assignments based on the bids and the local frequency
measurements. Our goal is to design mechanisms that ensure the stability of
the interconnection between the ISO-generator bidding process and the physical
network dynamics while accounting for the different nature (iterative in the first
case, evolving in continuous time in the second) of each process. Our starting point
is a continuous-time bid update scheme coupled with the physical dynamics of the
power network whose equilibrium corresponds to an efficient Nash equilibrium
and zero frequency deviation. Our first contribution is the characterization of
the robustness properties of these dynamics against additive disturbances. To
achieve this, we identify a novel local Lyapunov function that includes the energy
function of the closed-loop system. The availability of this function not only
leads us to establish local exponential convergence to the desired equilibrium,
but also allows us rigorously establish its local input-to-state stability properties.
Building on these results, our second contribution develops a time-triggered hybrid
implementation that combines the discrete nature of iterative bidding with the
continuous nature of the frequency evolution in the power network. In our design,
we introduce two iteration loops, one (faster) inner-loop for the bidding process
that incorporates at each step the frequency measurements, and one (slower)
outer-loop for the market clearing and the updates in the power generation
levels, that are sent to the continuous-time power network dynamics. We refer
to this multi-rate hybrid implementation as time-triggered because we do not
necessarily prescribe the time schedules to be periodic. To analyze its convergence
properties, we regard the time-triggered implementation as an approximation of
the continuous-time dynamics and invoke the robustness properties of the latter,
interpreting as a disturbance their mismatch. This allows us to derive explicit
upper bounds on the length between consecutive triggering times that guarantee
that the time-triggered implementation remains asymptotically convergent. The
computation of these upper bounds does not require knowledge of the efficient
Nash equilibrium. Simulations on the IEEE 14-bus power network illustrate our
results.

Notation

Let R,R≥0,R>0,Z≥0,Z≥1 be the set of real, nonnegative real, positive real,
nonnegative integer, and positive integer numbers, respectively. For m ∈ Z≥1, we
use the shorthand notation Im = {1, . . . ,m}. For A ∈ Rm×n, we let ‖A‖ denote
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the induced 2-norm. Given v ∈ Rn, A = AT ∈ Rn×n, we denote ‖v‖2A := vTAv.
The notation 1 ∈ Rn is used for the vector whose elements are equal to 1. The
Hessian of a twice-differentiable function f : Rn → R is denoted by ∇2f .

10.2 Power network frequency dynamics

Here we present the model of the physical power network that describes the
evolution of the grid frequency. The network is represented by a connected,
undirected graph G = (V, E), where nodes V = In represent buses and edges
E ⊂ V × V are the transmission lines connecting the buses. Let m denote the
number of edges, arbitrarily labeled with a unique identifier in Im. The ends of
each edge are also arbitrary labeled with ‘+’ and ‘-’, so that we can associate to
the graph the incidence matrix D ∈ Rn×m given by

Dik =


+1 if i is the positive end of edge k,

−1 if i is the negative end of edge k,

0 otherwise.

(10.1)

A spanning tree T is as a connected acyclic subgraph of G that contains all vertices
of G. The incidence matrix DT associated to T is constructed as in (10.1). Each
bus represents a control area and is assumed to have one generator and one load.
Following [67], the dynamics at the buses is described by the swing equations
(10.2).

δ̇ = ω

Mω̇ = −DΓ sin(DT δ)−Aω + Pg − Pd
(10.2)

Here Γ = diag{γ1, . . . , γm} ∈ Rm×m, γk = BijViVj , where k ∈ Im corresponds
to the edge between nodes i and j. For the asymptotic stability analysis carried
out in Sections 10.4 and 10.5, we assume that the load Pd is constant. Table 10.1
specifies the meaning of the symbols used in the model (10.2). The validity of this

δ ∈ Rn (vector of) voltage phase angles

ω ∈ Rn frequency deviation w.r.t. the nominal frequency

Vi ∈ R>0 voltage magnitude at bus i

Pd ∈ Rn power load

Pg ∈ Rn power generation

M ∈ Rn×n≥0 diagonal matrix of moments of inertia

A ∈ Rn×n≥0 diagonal matrix of asynchronous damping constants

Bij ∈ R≥0 negative of the susceptance of transmission line (i, j)

Table 10.1: Parameters and state variables of model (10.2).
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model relies on the following assumptions, which are standard in the literature on
power network dynamics [61, 67], and we state here for completeness.

Assumption 10.2.1. (Swing equation model): For the power network dynamics
described by (10.2), the following hold:

• Lines are lossless, i.e., the conductance of all lines is zero. This is generally
valid for transmission lines;

• Nodal voltages Vi are constant;

• Reactive power flows are ignored;

• Network is balanced such that the three-phase network can be analyzed by
a single phase.

To avoid issues in the stability analysis of (10.2) due to the rotational invariance
of δ, see e.g., [34], we introduce a new set of variables. To this end, consider an
arbitrary spanning tree T of G and let DT be its associated incidence matrix.
Consider ϕ = DT

T δ ∈ Rn−1 representing the voltage phase angle differences along
the edges of this spanning tree. The physical energy stored in the transmission
lines is given by

U(ϕ) = −1TΓ cos(DTD†Tt ϕ). (10.3)

By noting that DtD
†
tD = (I − 1

n11
T )D = D, the physical system (10.2) in the

(ϕ, ω)-coordinates takes the form

ϕ̇ = DT
t ω

Mω̇ = −Dt∇U(ϕ)−Aω + Pg − Pd
(10.4)

In the sequel we assume that, for the power generation Pg = P̄g, there exists an

equilibrium col(ϕ̄, ω̄) of (10.4) that satisfies DTD†Tt ϕ̄ ∈ (−π2 ,
π
2 )m. The latter

assumption is standard and often referred to as the security constraint [67].

10.3 Problem statement

In this section we formulate the problem statement and then discuss the chapter
objectives. We start from the power network model introduced in Section 10.2
and then explain the game-theoretic model describing the interaction between the
ISO and the generators following the exposition of [23, 24].

The cost incurred by generator i ∈ In in producing Pgi units of power is given
by

Ci(Pgi) :=
1

2
qiP

2
gi + ciPgi, (10.5)
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where qi > 0 and ci ≥ 0. The total network cost is then

C(Pg) :=
∑
i∈In

Ci(Pgi) =
1

2
PTg QPg + cTPg, (10.6)

with Q = diag{q1, . . . , qn} and c = col(c1, . . . , cn). Given the cost (10.6) and the
constant power loads Pd, the ISO seeks to solve the economic dispatch problem

minimize
Pg

C(Pg), (10.7a)

subject to 1TPg = 1TPd, (10.7b)

and, at the same time, regulate the network frequency to its nominal value. Since
the function C is strongly convex, there exists a unique optimizer P ∗g of (10.7).
However, we assume that the generators are strategic and they do not reveal
their cost functions to anyone, including the ISO. Consequently, the ISO is unable
to determine the optimizer of (10.7). Instead, it determines the power dispatch
according to a market clearing procedure in which each generator submits bids to
the ISO.

We consider price-based bidding: each generator i ∈ In submits the price per
unit electricity bi ∈ R at which it is willing to provide power. Based on these bids,
the ISO finds the power generation allocation that minimizes the total generator
payment while meeting the load. More precisely, given the bid b = col(b1, . . . , bn),
the ISO solves

minimize
Pg∈Rn

bTPg, (10.8a)

subject to 1TPg = 1TPd. (10.8b)

The optimization problem (10.8) is linear and may in general have multiple (un-
bounded) solutions. Among these solutions, let P opt

g (b) = col(P opt
g1 (b), . . . , P opt

gn (b))
be the optimizer of (10.8) the ISO selects given bids b. Knowing this process, each
generator i aims to bid a quantity bi to maximize its payoff

Πi(bi, P
opt
gi (b)) := P opt

gi (b)bi − Ci(P opt
gi (b)). (10.9)

For an unbounded optimizer we have Πi(bi,±∞) = −∞. To analyze the clearing
of the market, we resort to tools from game theory [39]. To this end, we define
the inelastic electricity market game:

• Players: the set of generators In.

• Action: for each player i ∈ In, the bid bi ∈ R.

• Payoff: for each player i ∈ In, the payoff Πi in (10.9).

We refer to the game as inelastic, as the load is not affected by the bids bi. For the
bid vector we interchangeably use the notation b ∈ Rn and (bi, b−i) ∈ Rn, where
b−i represents the bids of all players except i. A bid profile b∗ ∈ Rn is a Nash
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equilibrium if there exists an optimizer P opt
g (b∗) of (10.8) such that ∀i ∈ In,

Πi(bi, P
opt
gi (bi, b

∗
−i)) ≤ Πi(b

∗
i , P

opt
gi (b∗))

for all bi 6= b∗i and all optimizers P opt
gi (bi, b

∗
−i) of (10.8). In particular, we are

interested in bid profiles that can be associated to economic dispatch. More
specifically, a bid b∗ ∈ Rn is efficient is a bid if there exists an optimizer P ∗g
of (10.7) which is also an optimizer of (10.8) given bids b = b∗ and

P ∗gi = arg max
Pgi

{Pgib∗i − Ci(Pgi)} for all i ∈ In. (10.10)

A bid b∗ is an efficient Nash equilibrium if it is both efficient and a Nash
equilibrium. At the efficient Nash equilibrium, the optimal generation allocation
determined by (10.7) coincides with the production that the generators are willing
to provide, maximizing their profit (10.9). Following the same arguments as in
the proof of [23, Lemma 3.2] and Chapter 9, one can establish the existence and
uniqueness of the efficient Nash equilibrium.

Proposition 10.3.1. (Existence and uniqueness of efficient Nash equilibrium):
Let (P ∗g , λ

∗) be a primal-dual optimizer of (10.7), then b∗=∇C(P ∗g ) =1λ∗ is the
unique efficient Nash equilibrium of the inelastic electricity market game.

In the scenario described above, neither the ISO nor the individual strategic
generators are able to determine the efficient Nash equilibrium beforehand. Our
goal is then to design an online bidding algorithm where ISO and generators
iteratively exchange information about the bids and the generation quantities
before the market is cleared and dispatch commands are sent. The algorithm
should be truly implementable, meaning that it should account for the discrete
nature of the bidding process, and at the same time ensure that network frequency,
governed by the continuous-time power system dynamics, is regulated to its
nominal value. The combination of these two aspects leads us to adopt a hybrid
implementation strategy to tackle the problem.

10.4 Robustness of the continuous-time bid and
power-setpoint update scheme

In this section, we introduce a continuous-time dynamics that prescribes a policy
for bid updates paired with the frequency dynamics of the power network whose
equilibrium corresponds to an efficient Nash equilibrium and zero frequency devia-
tion. In this scheme, generators update their bids in a decentralized fashion based
on the power generation quantities received by the ISO, while the ISO changes
the generation quantities depending on both the generator bids and the network
frequency. This design is a simplified version of the one proposed in our previous
work [102]. The main contribution of our treatment here is the identification
of a novel Lyapunov function that, beyond helping establish local exponential
convergence, allows us to characterize the input-to-state stability properties of the
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dynamics. We build on this characterization later to develop our time-triggered
hybrid implementation that solves the problem outlined in Section 10.3.

10.4.1 Bidding process coupled with physical network dy-
namics

Recall from Section 10.3 that given bid bi, generator i ∈ In wants to produce the
amount of power that maximizes its individual profit, given by

P des
gi := arg max

Pgi

{biPgi − Ci(Pgi)} = q−1
i (bi − ci) (10.11)

Hence, if the ISO wants generator i to produce more power than its desired
quantity, that is Pgi > P des

gi , generator i will increase its bid, and vice versa.
Bearing this rationale in mind, the generators update their bids according to

Kbḃ = Pg −Q−1b+Q−1c. (10.12a)

Here Kb ∈ Rn×n is a diagonal positive definite matrix. Next, we provide an update
law for the ISO depending on the bid b ∈ Rn and the local frequency of the power
network. The ISO updates its actions according to

KgṖg = 1λ− b+ ρ11T (Pd − Pg)− σ2ω

kλλ̇ = 1T (Pd − Pg)
(10.12b)

with parameters ρ, σ, kλ ∈ R>0 and where Kg ∈ Rn×n is a diagonal positive
definite gain matrix.

The intuition behind the dynamics (10.12b) is explained as follows. If generator
i bids higher than the Lagrange multiplier λ (sometimes referred to as the shadow
price [110]) associated to (10.8b), then the power generation (setpoint) of node i
is decreased, and vice versa. By adding the term with ρ > 0, one can enhance
the convergence rate of (10.12b), see e.g., [13]. We add the feedback signal −σ2ω
to compensate for the frequency deviations in the physical system. Interestingly,
albeit we do not pursue this here, the dynamics (10.12) could also be implemented
in a distributed way without the involvement of a central regulating authority like
the ISO.

For the remainder of the chapter, we assume that there exists an equilibrium
x̄ = col(ϕ̄, ω̄, b̄, P̄g, λ̄) of (10.4)-(10.12) such that DTD†Tt ϕ̄ ∈ (−π/2, π/2)m (cf.
Section 10.2). Note that this equilibrium satisfies

λ̄ =
1T (Pd +Q−1c)

1TQ−11
> 0, ω̄ = 0, b̄ = 1λ̄,

P̄g = Q−11λ̄−Q−1c, 1T P̄g = 1TPd.

(10.13)

In particular, at the steady state, the frequency deviation is zero, the power balance
1T P̄g = 1TPd is satisfied, and 1λ̄ = b̄ = ∇C(P̄g), implying that P̄g is a primal
optimizer of (10.7) and b̄ is an efficient Nash equilibrium by Proposition 10.3.1.
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Hence, at steady state the generators do not have any incentive to deviate from
the equilibrium bid.

10.4.2 Local input-to-state (LISS) stability

While the ISO dynamics (10.12b) is a saddle-point dynamics of the linear opti-
mization problem (10.8) (and hence, potentially unstable), we show next that the
interconnection of the physical power network dynamics (10.4) with the bidding
process (10.12) is locally exponentially stable and, furthermore, robust to additive
disturbances. For x = col(ϕ, ω, b, Pg, λ), define the function

V (x) = U(ϕ)− (ϕ− ϕ̄)T∇U(ϕ̄)− U(ϕ̄) + 1
2ω

TMω

+ 1
2σ2 (‖b− b̄‖2Kb + ‖Pg − P̄g‖2Kg + ‖λ− λ̄‖2kλ). (10.14)

Then the closed-loop system obtained by combining (10.4) and (10.12) is com-
pactly written as

ẋ = F (x) = Q−1AQ−1∇V (x) (10.15)

with Q = QT = blockdiag(I,M, Kbσ ,
Kg
σ ,

kλ
σ ) > 0 and

A =


0 DT

t 0 0 0
−Dt −A 0 σI 0

0 0 −Q−1 I 0
0 −σI −I −ρ11T 1

0 0 0 −1T 0

 .
By exploiting the structure of the system, we obtain the dissipation inequality

V̇ =
1

2
(∇V (x))TQ−1(A+AT )Q−1∇V (x) ≤ 0 (10.16)

However, since R := − 1
2 (A +AT ) is only positive semi-definite, V is not strictly

decreasing along the trajectories of (10.15). Nevertheless, one can employ this
function, cf. [102], and invoke the LaSalle Invariance Principle to characterize the
local asymptotic convergence properties of the dynamics. Here, we show that, in
fact, the dynamics is locally input-to-state (LISS) stable, as defined in [99], and
therefore robust to additive disturbances [24]. Our key tool to establish this is the
identification of a LISS-Lyapunov function, which in general is far from trivial for
dynamics that involve saddle-point dynamics. To this end, consider the system

ẋ = F (x) +Bd (10.17)

with B ∈ R4n×q and a disturbance signal d ∈ Rq. While the function V defined
in (10.14) does not qualify for being a LISS Lyapunov function, the next result
shows that adding suitable cross-terms to it yields an LISS-Lyapunov function for
the system (10.17).
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Theorem 10.4.1. (LISS-Lyapunov function for the interconnected dynamics):
Consider the interconnected dynamics (10.17) and define the function

Wε(x) = V (x) + ε0ε1(ϕ− ϕ̄)TD†tMω (10.18)

− ε0ε2
σ2 (b− b̄)TKg(Pg − P̄g)− ε0ε3

σ2 (λ− λ̄)1TKg(Pg − P̄g),

with parameters ε = col(ε0, ε1, ε2, ε3) ∈ R4
>0 and V given by (10.14). Given the

equilibrium x̄ = col(ϕ̄, ω̄, b̄, P̄g, λ̄) of (10.15), let η̄ = DTD†Tt ϕ̄. For γ such that
‖η̄‖∞ < γ < π

2 , define the closed convex set

Ω = {x = col(ϕ, ω, b, Pg, λ) |DTD†Tt ϕ ∈ [−γ, γ]m}. (10.19)

Then there exist sufficiently small ε such that Wε is an LISS-Lyapunov function
of (10.17) on Ω. In particular, there exist constants α, χ, c1, c2 > 0 such that for
all x ∈ Ω and all d satisfying ‖d‖ ≤ χ‖x− x̄‖,

1
2c1‖x− x̄‖

2 ≤Wε(x) ≤ 1
2c2‖x− x̄‖

2, (10.20a)

(∇Wε(x))T (F (x) +Bd) ≤ −α‖x− x̄‖2. (10.20b)

We observe that, using the characterization (10.20) and [56, Theorem 4.10],
each trajectory of (10.15) initialized in a compact level set contained in Ω
exponentially converges to the equilibrium x̄ corresponding to economic dispatch
and the efficient Nash equilibrium. Moreover, we exploit the local ISS property
of (10.17) guaranteed by Theorem 10.4.1 in Section 10.5 to develop a time-triggered
hybrid implementation. The rest of this section is devoted to the proof of Theorem
10.4.1.

Proof of Theorem 10.4.1. We structure the proof of Theorem 10.4.1 in two sepa-
rate parts, corresponding to the inequalities (10.20a) and (10.20b), respectively.

Positive definiteness of Lyapunov function Wε

Let x̄ be the equilibrium of (10.15) satisfying the hypothesis. We now prove the
existence of constants c1, c2, ε0 > 0 such that (10.20a) holds, given the constants
ε1, ε2, ε3 > 0. The Hessian of Wε (eq. (10.18)) is given by a block-diagonal matrix
∇2Wε(x) = blockdiag(H1(ϕ), H2) with the upper left block given by

H1(ϕ) =

[
∇2U(ϕ) ε0ε1D

†
tM

ε0ε1MD†Tt M

]
and the lower right block is given by

H2 =
1

σ2

 Kb −ε0ε2Kg 0
−ε0ε2Kg Kg −ε0ε3Kg1

0 −ε0ε31TKg kλ

 .
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We will now show that there exists sufficiently small ε0 such that H1(ϕ), H2 are
both positive definite for all x ∈ Ω. To this end, let us define the function

U(η) = D†tDΓ cos(η)DTD†Tt (10.21)

and note that U(DTD†Tt ϕ) = ∇2U(ϕ), implying that 0 < U(γ1) ≤ ∇2U(ϕ) ≤
∇2U(0) = U(0) for all x ∈ Ω, see (10.19). Consequently, for D := ε0ε1D

†
tM , we

have [
U(γ1) D
DT M

]
︸ ︷︷ ︸

K1

≤ H1(ϕ) ≤
[
U(0) D
DT M

]
︸ ︷︷ ︸

K2

, ∀x ∈ Ω.

By considering the Schur complements, the matrices K1, H2 are shown to be
positive definite by choosing ε0 > 0 sufficiently small such that

U(γ1)− ε20ε21D
†
tMD†Tt > 0,

Kb − ε20ε22Kg > 0,

kλ − ε20ε231TKbKg(Kb − ε20ε22Kg)
−11 > 0.

(10.22)

Next we define

c1 := min{λmin(K1), λmin(H2)}, (10.23)

c2 := max{λmax(K2), λmax(H2)}, (10.24)

where λmin(A), λmax(A) denote the smallest and largest eigenvalue of the matrix
A ∈ Rn×n. Note that c1, c2 > 0 and the following holds

0 < c1I ≤ ∇2Wε(x) ≤ c2I, ∀x ∈ Ω (10.25)

Note that since Wε(x̄) = 0,∇Wε(x̄) = 0, we have

Wε(x) = Wε(x)−Wε(x̄) = (x− x̄)T
∫ 1

0

(
∇Wε((x− x̄)τ + x̄)−∇Wε(x̄)

)
dτ

= (x− x̄)T
∫ 1

0

∫ 1

0

τ∇2Wε((x− x̄)τθ + x̄)dτdθ(x− x̄).

Since Ω is convex, it follows that xτθ + (1 − τθ)x̄ ∈ Ω for all τ, θ ∈ [0, 1], x ∈ Ω.
Consequently, by (10.25) we have

c1I ≤ ∇2Wε(xτθ + (1− τθ)x̄) ≤ c2I, ∀τ, θ ∈ [0, 1],

and ∀x ∈ Ω. Since
∫ 1

0

∫ 1

0
τdθdτ = 1

2 , inequality (10.20a) follows.
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Dissipation inequality

Here we establish the inequality (10.20b). First we consider the case without
disturbance, i.e., d = 0. Given the equilibrium x̄ of (10.15), we define x̃ := x− x̄
and likewise ϕ̃, ω̃, b̃, P̃g, λ̃. Then, the system (10.15) reads as

˙̃ϕ = DT
t ω̃,

M ˙̃ω = −Dt(∇U(ϕ)−∇U(ϕ̄))−Aω̃ + P̃g,

Kb
˙̃
b = P̃g −Q−1b̃,

Kg
˙̃Pg = 1λ̃− b̃− ρ11T P̃g − σ2ω̃,

kλ
˙̃
λ = −1T P̃g.

In addition, note that Wε (eq. (10.18)) takes the form

Wε(x) = V (x) + Vε(x), (10.26)

Vε(x) = ε0ε1ϕ̃
TD†tMω − ε0ε2

σ2
b̃TKgP̃g −

ε0ε3
σ2

λ̃1TKgP̃g. (10.27)

Next, we determine the time-derivative of the individual terms of the candidate
Lyapunov function Wε.
(0): First, observe from (10.16) that

V̇ = −ωTAω − 1

σ2
(b− b̄)TQ−1(b− b̄)− ρ

σ2
(Pg − P̄g)T11T (Pg − P̄g).

(1): The time-derivative of the first term of Vε satisfies

d

dt
ϕ̃TD†tMω = ω̃TMD†Tt DT

t ω̃ − ϕ̃TD
†
tDt(∇U(ϕ)−∇U(ϕ̄))

− ϕ̃TD†tAω̃ + ϕ̃TD†t P̃g.

By exploiting D†tDt = I, the second term is rewritten as

−ϕ̃TD†tDt(∇U(ϕ)−∇U(ϕ̄)) = −ϕ̃TU(ϕ)ϕ̃T

where we used that ∇U(ϕ)−∇U(ϕ̄) = U(ϕ)(ϕ− ϕ̄) with

U(ϕ) =

∫ 1

0

∇2U((ϕ− ϕ̄)θ + ϕ̄)dθ. (10.28)

Since U(ϕ) ≥ U(1γ) = D†tDΓ cos(1γ)DTD†Tt (see eq. (10.21)) for all x ∈ Ω, we
obtain

d

dt
ϕ̃TD†tMω ≤ ω̃TMD†Tt DT

t ω̃ − ϕ̃TU(1γ)ϕ̃T − ϕ̃TD†tAω̃ + ϕ̃TD†t P̃g.
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(2): For the second term of Vε the following holds:

d

dt
b̃TKgP̃g = P̃Tg KgbP̃g − P̃Tg KgbQ

−1b̃+ b̃T1λ̃− b̃T b̃− ρb̃T11T P̃g − σ2b̃T ω̃,

where we define Kgb := KgK
−1
b .

(3): Similarly, by defining Kgλ := KgK
−1
λ we obtain

d

dt
λ̃1TKgP̃g = −P̃Tg Kgλ11

T P̃g + nλ̃2 − λ̃1T b̃− ρnλ̃1T P̃g − σ2λ̃1T ω̃.

By combining the above calculations, we can show that the time-derivative of Wε

satisfies

Ẇε = V̇ + V̇ε ≤
1

2
ε0(x− x̄)TPTΞεP(x− x̄).

where Ξε is given by the matrix illustrated below.



ω b/σ Pg/σ λ/σ ϕ

ω 2
ε0
A− ε1M −ε2σI 0 −ε3σ1 ε1AD

†T
t

b
σ

−ε2σI −2ε2I + 2
ε0
Q−1 −ε2(Q−1Kgb + ρ11T ) (ε2 − ε3)1 0

Pg
σ

0 −ε2(KgbQ
−1 + ρ11T ) 2ε2Kgb + 2

ε0
ρ11T − ε3T −ε3nρ1 −ε1σD†Tt

λ
σ

−ε3σ1T (ε2 − ε3)1T −ε3nρ1T 2nε3 0

ϕ ε1D
†
tA 0 −ε1σD†t 0 2ε1U(1γ)


︸ ︷︷ ︸

Ξe

(10.29)

In addition, P takes the form

P =


0 I 0 0 0
0 0 1

σ I 0 0
0 0 0 1

σ I 0
0 0 0 0 1

σ
I 0 0 0 0

 ,

and M := MD†Tt DT
t + DtD

†
tM,T := Kgλ11

T + 11TKgλ. Next, we will show
that there exists ε0, ε1, ε2, ε3 > 0 such that Ξε is positive definite. This can be
done by successive use of the Schur complement. In particular, for A ∈ Rn×n, B ∈
Rn×m, C ∈ Rm×m, β > 0, recall that[

βA B
BT C

]
> 0 ⇐⇒ C > 0 & βA−BC−1BT > 0.

For successively applying this result to Ξε, given by (10.29), let us first fix ε1, ε3 >
0. Then ε2 can be chosen sufficiently large such that lower-right 3 × 3 block
submatrix of Ξε is positive definite. Then we can choose a ε0 > 0 sufficiently small
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such that (10.22) holds and Ξε > 0. Here, note that choosing ε0 smaller does not
affect the positive definiteness of the lower-right 3× 3 block submatrix of Ξε. By
construction of ε0, ε1, ε2, ε3, there exist constants c1, c2 ∈ R>0 such that (10.20a)
holds for all x ∈ Ω, see also Section 10.4.2. In addition, for this choice of ε we have
that Ξε > 0 and, as a result, there exists α̂ := 1

2ε0λmin(PTΞεP) > 0 such that

(∇Wε(x))TF (x) ≤ −α̂‖x− x̄‖2

for all x ∈ Ω. Next, we consider the case when the disturbance is present. Let %
satisfy 0 < % < α̂/(LW ‖B‖). Then, by exploiting the Lipschitz property of ∇Wε,

(∇Wε(x))T (F (x) +Bd) ≤ −α̂‖x− x̄‖2 +∇Wε(x))TBd

≤ −α̂‖x− x̄‖2 + LW ‖B‖‖x− x̄‖‖d‖
≤ −(α̂− LW ‖B‖%)‖x− x̄‖2 = −α‖x− x̄‖2

with α := α̂−LW ‖B‖%) > 0 and thus (10.20b) holds. This concludes the proof of
Theorem 10.4.1.

10.5 Time-triggered implementation: iterative
bid update and market clearing

In realistic implementations, the bidding process between the ISO and the gen-
erators is not performed continuously. Given the availability of digital communi-
cations, it is reasonable to instead model it as an iterative process. Building on
the continuous-time bidding dynamics proposed in Section 10.4, here we develop a
time-triggered hybrid implementation that combines the discrete nature of bidding
with the continuous nature of the frequency evolution in the power network. We
consider two time-scales, one (faster) for the bidding process that incorporates at
each step the frequency measurements, and another one (slower) for the market
clearing and updates of the power generation levels that are sent to the power
network dynamics. We refer to this implementation as time-triggered because we
do not necessarily prescribe the time schedules to be periodic in order to guarantee
that the asymptotic stability properties are retained by the hybrid implementation.

10.5.1 Algorithm description

We start with an informal description of the iterative update scheme between the
ISO and the generators, and the interconnection with the dynamics of the power
network.

[Informal description]: The algorithm has two time indices, k to label
the iterations on the bidding process and l to label the iteration in
the market clearing process that updates the power setpoints. At each
iteration l ∈ Z≥0, ISO and generators are involved in an iterative
process where, at each subiteration k, generators send a bid to the
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ISO. Once the ISO has obtained the bids and the network frequency
measurements at time tlk, it computes the new potential generation
allocations, denoted P k+1

g ∈ Rn, and sends the corresponding one to
each generator. At the (k+1)-th subiteration, each generator adjust its
bid based on their previous bid and the generation allocation received
from the ISO at time tlk+1. Once k = Nl ∈ Z≥1 at time tlNl , the market
is cleared, meaning that the bidding process is reset (i.e., k = 0), the
power generations in the swing equations are updated according to the
current setpoints PNlg , and the index l moves to l + 1.

t01 t02 t0k−1 t0k t0k+1 t11t0N0
= t10 tlNl = tl+1

0tlk

ω(tlk) ω(tlNl)

Pg(t
l
Nl

)

t00 = 0
. . . .

power network dynamics (10.4) t

ISO-generator bidding process (Algorithm 1)

Figure 10.1: Relation between time and iteration numbers in the time-triggered system
(10.31). The lower time-axis corresponds to the continuous-time physical system (10.4)
while the upper one corresponds to the time sequence {{tlk}

Nl
k=0}

∞
l=0 of the ISO-generator

bidding process given in Algorithm 1. The arrows pointing up indicate the frequency
updates in the bidding dynamics while the arrows pointing down correspond to update
of the power generation levels in the physical system. As indicated, for each l ∈ Z≥0 the
lower index k is reset once it reaches k = Nl ∈ Z≥1, i.e., tlNl = tl+1

0 for all l ∈ Z≥0.

Figure 10.1 shows the two iteration layers in the update scheme. The evolution
of the frequency occurs in continuous time according to (10.4). To relate iteration
numbers with time instances on R, we consider time sequences of the form
{{tlk}

Nl
k=0}∞l=0 for Nl ∈ Z≥1 and l ∈ Z≥0}, satisfying

tlk − tlk−1 > 0, tl+1
0 = tlNl (10.30)

for all l ∈ Z≥0 and all k ∈ [Nl]. Here Nl ∈ Z≥1 is the number of bid iterates before
the bidding process of market clearing instance l ∈ Z≥0 stops, see Figure 10.1.
Algorithm 1 formally describes the iterative updates of the bidding process between
the generators and the ISO.

For analysis purposes, we find it convenient to represent the dynamics resulting



200 Chapter 10. Integrating iterative bidding and frequency regulation

Algorithm 1: Iterative Bid Update & Market Clearing Algorithm

Executed by: generators i ∈ In and ISO
Data : time sequence {{tlk}

Nl
k=0}∞l=0; cost function (10.5) for each

generator i; frequency deviation ω(tlk) at each time tlk and load
Pd for ISO

Initialize : each generator i selects arbitrarily b0i ≥ ci, sets k = 0, l = 0, and
jumps to step 6; ISO selects arbitrary P 0

gi > 0, λ0
i > 0, sets

k = 0, l = 0 and waits for step 8

1 while l ≥ 0 do

2 while k ≥ 0, k < Nl do
3 /* For each generator i: */

4 Receive P kgi from ISO at tlk; Set

5 bk+1
i = bki + (tlk+1 − tlk)K−1

bi (P kgi − q
−1
i (bki + ci))

6 Send bk+1
i to the ISO; set k = k + 1

7 /* For ISO: */

8 Receive bki , ωi(t
l
k) from each i ∈ In at tlk

9 Set

P k+1
gi = P kgi+(tlk+1−tlk)K−1

gi (λk−bki −σ2ωi(t
l
k)+ρ

∑
i∈In(Pdi−P kgi))

for all i ∈ In λk+1 = λk +
tlk+1−t

l
k

kλ

∑
i∈In(Pdi − P kgi)

10 Send P k+1
gi to each i ∈ In, set k = k + 1

11 end

12 Set Pgi(t) = PNlgi in (10.4) ∀i ∈ In,∀t ∈ [tlNl , t
l+1
Nl+1

)

13 Set b0i = bNli , P 0
gi = PNlgi , λ

0
i = λNli for each i ∈ In

14 Set l = l + 1, k = 0

15 end

from the combination of Algorithm 1 and the network dynamics (10.4) as the time-
triggered continuous-time system

ϕ̇(t) = DT
t ω(t),

Mω̇(t) = −Dt∇U(ϕ(t))−Aω(t) + Pg(t
l
0)− Pd,

Kbḃ(t) = Pg(t
l
k)−Q−1b(tlk)−Q−1c, (10.31)

KgṖg(t) = 1λ(tlk)− b(tlk)− σ2ω(tlk) + ρ11T (Pd − Pg(tlk)),

kλλ̇(t) = 1T (Pd − Pg(tlk)),

for t ∈ [tlk, t
l
k+1) ⊂ [tl0, t

l+1
0 ), l ∈ Z≥0, k ∈ {0, . . . , Nl − 1}. We write the

system (10.31) compactly in the form

ẋ(t) = f(x(t)) + g(x(tlk)) + h(x(tl0)) (10.32)
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with

f(x) = col(DT
t ω,−M−1(Dt∇U(ϕ) +Aω + Pd), 0, 0, 0)

g(x) = col(0, 0,K−1
b (Pg −Q−1b−Q−1c),

K−1
g (1λ− b− σ2ω + ρ11T (Pd − Pg)), k−1

λ 1T (Pd − Pg))
h(x) = col(0,M−1Pg, 0, 0, 0).

With this notation, note that the continuous-time dynamics (10.15) corresponds
to

ẋ(t) = f(x(t)) + g(x(t)) + h(x(t)). (10.33)

Since supϕ∈Rn−1 ‖∇2U(ϕ)‖ < ∞ and g, h are linear, it follows that f, g, h are
globally Lipschitz (we denote by Lf , Lg, Lh their Lipschitz constants, respectively).
When viewed as a continuous-time system, the dynamics (10.31) has a discontin-
uous right-hand side, and therefore we consider its solutions in the Carathéodory
sense, cf. [29].

10.5.2 Sufficient condition on triggering times for stability

In this section we establish conditions on the time sequence that guarantee that
the solutions of (10.31) are well-defined and retain the convergence properties
of (10.15). Specifically, we determine a sufficient condition on the inter-sampling
times tlk+1 − tlk for bidding and tl+1

k − tlk for market clearing that ensure local
asymptotic convergence of (10.32) to the equilibrium x̄ of the continuous-time
system (10.15).

Our strategy to accomplish this relies on the robustness properties of (10.15)
characterized in Theorem 10.4.1 and the fact that the time-triggered imple-
mentation, represented by (10.32), can be regarded as an approximation of the
continuous-time dynamics, represented by (10.33). We use the Lyapunov function
Wε defined by (10.18) and examine the mismatch between both dynamics to derive
upper bounds on the inter-event times that guarantee that Wε is strictly decreasing
along the time-triggered system (10.31).

Theorem 10.5.1. (Local asymptotic stability of time-triggered implementation):
Consider the time-triggered implementation (10.31) of the interconnection between
the ISO-generator bidding processes and the power network dynamics. With the
notation of Theorem 10.4.1, let

ξ̄ :=
1

Lf + Lg
log
(

1 +
β(Lf + Lg)

L(LWLh + β)

)
, (10.34)

ζ̄ :=
1

Lf
log
(

1 +
Lf (α− β)

Lg(LLW + α) + (α− β)(Lf + Lg)

)
,

where 0 < β < α, L := Lf + Lg + Lh, and LW is the Lipschitz constant of

∇Wε. Assume the time sequence {{tlk}
Nl
k=0}∞l=0 satisfies, for some ζ ∈ (0, ζ) and
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ξ ∈ (0, ξ),

ζ ≤ tl+1
0 − tl0 ≤ ζ and ξ ≤ tlk − tlk−1 ≤ ξ, (10.35)

for all l ∈ Z≥0 and k ∈ INl . Then, x̄ is locally asymptotically stable under (10.31).

Before we go to proof of Theorem 10.5.1, we note that the uniform lower bounds
ζ and ξ in (10.35) ensure that the solutions of the time-triggered implementation
(10.31) are well-defined, avoiding Zeno behavior. Theorem 10.5.1 implies that
convergence is guaranteed for any constant stepsize implementation, where the
sufficiently small stepsize satisfies (10.35). However, the result of Theorem 10.5.1
is more general and does not require constant stepsizes. Another interesting
observation is that the upper bounds can be calculated without requiring any
information about the equilibrium x̄. This is desirable, as this equilibrium is not
known beforehand and must be determined by the algorithm itself.

Proof of Theorem 10.5.1

Here we establish the proof of Theorem 10.5.1. In doing so, we rely on Gronwall’s
inequality, which in general allows to bound the evolution of continuous-time and
discrete-time signals described by differential and difference equations, respec-
tively. Given the hybrid nature of the time-triggered dynamics (10.31), we rely on
a version of Gronwall’s inequality for hybrid systems developed in [74]. Adapted
for our purposes, it states the following.

Proposition 10.5.2. (Generalized Gronwall’s inequality [74]): Let t 7→ y(t) ∈ R
be a continuous signal, t 7→ p(t) ∈ R be a continuously differentiable signal, r :=
{rj}k−1

j=0 be a nonnegative sequence of real numbers, q ≥ 0 a constant, and E :=

{tj}k+1
j=0 , k ∈ Z≥0 be a sequence of times satisfying tj < tj+1 for all j ∈ {0, . . . , k}.

Suppose that for all t ∈ [t0, tk+1], the elements y, p, and r satisfy

y(t) ≤ p(t) + q

∫ t

t0

y(s)ds+
∑

[]
i(t)−1
j=0 rjy(tj+1) (10.36)

with i(t) := max{i ∈ Z≥0 : ti ≤ t, ti ∈ E} for t < tk+1 and i(tk+1) := k. Then,

y(t) ≤ p(t0)h(t0, t) +

∫ t

t0

h(s, t)ṗ(s)ds (10.37)

for all t ∈ [t0, tk+1] where for all t0 ≤ s ≤ t ≤ tk+1,

h(s, t) := exp
(
q(t− s) +

i(t)−1∑
j=i(s)

log(1 + rj)
)
. (10.38)

We are now ready to prove the main theorem.

Proof of Theorem 10.5.1. Let {{tlk}
Nl
k=0}∞l=0 be a sequence of times satisfying the

hypotheses. Consider a trajectory t 7→ x(t) of (10.31) with x(0) belonging to
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a neighborhood of x̄. The definition of this neighborhood will show up later.
Our proof strategy involves showing the monotonic decrease of the function Wε

(cf. (10.18)) along this arbitrarily chosen trajectory. Consider any t ∈ R≥0 such

that t 6∈ {tlk}
Nl
k=0 for any l ∈ Z≥0 and x(t) ∈ Ω where Ω is defined by (10.19).

With a slight abuse of notation let l and k ∈ {0, . . . , Nl − 1} be fixed such that
t ∈ (tlk, t

l
k+1). Then, using the expression of F (x) = f(x) + g(x) + h(x) given

in (10.33), one can write the evolution of x at t for the considered trajectory as

ẋ(t) = F (x(t)) + g(x(tlk))− g(x(t)) + h(x(tl0))− h(x(t)).

(I) Dissipation inequality: Note that at t the evolution of Wε is equal to the
dot product between the gradient of Wε and right-hand side of the above equation.
Hence, we get

Ẇε(x(t)) = ∇Wε(x(t))>
(
F (x(t)) + g(x(tlk))− g(x(t)) + h(x(tl0))− h(x(t))

)
.

(10.39)

From (10.20b), we have ∇Wε(x(t))>F (x(t)) ≤ −α‖x(t) − x̄‖2. Moreover,
since maps ∇Wε, g, and h are globally Lipschitz and ∇Wε(x̄) = 0, one has
‖∇Wε(x(t))‖ ≤ LW ‖x(t) − x̄‖, ‖g(x(tlk)) − g(x(t))‖ ≤ Lg‖x(tlk) − x(t)‖, and
‖h(x(tl0)) − h(x(t))‖ ≤ Lh‖x(tl0) − x(t)‖. Using these bounds in (10.39), we get
the following.

Ẇε(x(t)) ≤ −α‖x(t)− x̄‖2 + LW ‖x(t)− x̄‖(Lg‖x(t)− x(tlk)‖+ Lh‖x(t)− x(tl0)‖)
(10.40)

Next, we provide bounds on ‖x(t)−x(tlk)‖ and ‖x(t)−x(tl0)‖ in terms of ‖x(t)−x̄‖,
t− tlk, and t− tl0. To reduce the notational burden, we drop the superscript l from

the time instances {tli}
Nl
i=1. In addition, we define

xk := x(tk), ζk(t) := t− tk,
ζkj := ζj(tk) = tk − tj , ξl(t) := ζ0(t) = t− t0.

(II) Bounds on ‖x(t)− x(tlk)‖: Note that x(t) can be written using (10.32) as
the line integral

x(t)−xk =

∫ t

tk

f(x(s))ds+ ζk(t)g(xk) + ζk(t)h(x0)

=

∫ t

tk

(f(x(s))− f(xk))ds+ ζk(t)(f(xk)− f(x̄))

+ ζk(t)(g(xk)− g(x̄) + h(x0)− h(x̄)). (10.41)

Above, we have added and subtracted ζk(t)f(xk) and subtracted f(x̄)+g(x̄)+h(x̄)
as x̄ is an equilibrium. Using Lipschitz bounds and triangle inequality in (10.41)
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we obtain

‖x(t)− xk‖ ≤ Lf
∫ t

tk

‖x(s)− xk‖ds+ ζk(t)(Lf + Lg)‖xk − x̄‖+ ζk(t)Lh‖x0 − x̄‖.

(10.42)

We wish to obtain an upper bound on ‖x(t)−xk‖ that is independent of the state
at times s ∈ (tk, t). To this end, we employ Gronwall’s inequality as stated in its
general form in Proposition 10.5.2. Drawing a parallelism between the notations,
for (10.42), we consider E = ∅, r = 0, y(t) = ‖x(t)−xk‖, q = Lf , p(t) = ζk(t)(Lf +
Lg)‖xk − x̄‖ + ζk(t)Lh‖x0 − x̄‖ and replace t0 by tk. With these choices, the
hypothesis (10.36) is satisfied (as it exactly corresponds to (10.42) above). Then,
with the notation of Proposition 10.5.2, we have

h(s, t) = eLf (t−s),

ṗ(s) = (Lf + Lg)‖xk − x̄‖+ Lh‖x0 − x̄‖, p(tk) = 0,

and (10.37) reads as

‖x(t)− xk‖ ≤
∫ t

tk

eLf (t−s)((Lf+Lg)‖xk − x̄‖+Lh‖x0 − x̄‖
)
ds

=
(
1 +

Lg
Lf

)
‖xk − x̄‖(eLfζk(t) − 1) (10.43)

+ Lh
Lf
‖x0 − x̄‖(eLfζk(t) − 1).

Bounding the above inequality using the triangle inequality ‖xk − x̄‖ ≤ ‖x(t) −
xk‖ + ‖x(t) − x̄‖, collecting coefficients of ‖x(t) − xk‖ on the left-hand side, and
rearranging gives

‖x(t)− xk‖ ≤
Lh(eLfζk(t) − 1)

Lf − (Lf + Lg)(eLfζk(t) − 1)
‖x0 − x̄‖

+
(Lf + Lg)(e

Lfζk(t) − 1)

Lf − (Lf + Lg)(eLfζk(t) − 1)
‖x(t)− x̄‖. (10.44)

(III) Bounds on ‖x(t)− x(tl0)‖: Our next step is to provide an upper bound on
the term ‖x(t) − x0‖. Recall that the considered trajectory satisfies (10.32) and
so, the line integral over the interval [t0, t] gives

x(t)− x0 =

∫ t

t0

f(x(s))ds+

k−1∑
j=0

ζj+1
j g(xj) + ζk(t)g(xk) + ξl(t)h(x0).
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As done before, on the right-hand side, we add and subtract the terms ξl(t)f(x0)
and ξl(t)g(x0) and then subtract f(x̄) + g(x̄) + h(x̄). This gives us

x(t)− x0 =

∫ t

t0

(f(x(s))− f(x0))ds

+

k−1∑
j=0

ζj+1
j (g(xj)− g(x0)) + ζk(t)(g(xk)− g(x0))

+ ξl(t)(f(x0)− f(x̄) + g(x0)− g(x̄) + h(x0)− h(x̄))

By defining L := Lf + Lg + Lh, taking the norms, using the global Lipschitzness,
we obtain from above

‖x(t)− x0‖ ≤ Lf
∫ t

t0

‖x(s)− x0‖ds+ ξl(t)L‖x0 − x̄‖

+ Lg

k−1∑
j=0

ζj+1
j ‖xj − x0‖+ Lgζk(t)‖xk − x0‖.

Consider any t̂ ∈ [t, tk+1] and note that ζk(t) ≤ ζk(t̂). Using this bound and the
fact that the first term in the above summation is zero, we write

‖x(t)− x0‖ ≤ Lf
∫ t

t0

‖x(s)− x0‖ds+ ξl(t)L‖x0 − x̄‖

+ Lg

k−2∑
j=0

ζj+2
j+1‖xj+1 − x0‖+ Lgζk(t̂)‖xk − x0‖.

We now apply Proposition 10.5.2 to give a bound for the left-hand side independent
of x(s), s ∈ (t0, t]. In order to do so, the elements corresponding to those in
the Gronwall’s inequality are: E = {tj}kj=0 ∪ {t̂}, y(t) = ‖x(t) − x0‖, p(t) =

ξl(t)L‖x0 − x̄‖, q = Lf , rj = Lgζ
j+2
j+1 for j = 0, . . . , k − 2, and rk−1 = t̂− tk. From

Proposition 10.5.2, we get

‖x(t)− x0‖ ≤ L‖x0 − x̄‖
∫ t

t0

h(s, t)ds, (10.45)

where h(s, t) = exp
( ∫ t

s
LfdK +

∑k−2
j=i(s) log(1 + ζj+2

j+1Lg) + log(1 + Lgζk(t̂))
)

and

i(s) is as defined in Proposition 10.5.2. Using log(1 + x) ≤ x for x ≥ 0 and the
fact that the exponential is a monotonically increasing function, we get

h(s, t) ≤ exp
(
Lf (t− s) + Lg

k−2∑
j=i(s)

ζj+1
j+1 + Lgζk(t̂)

)
.

By noting that s ≤ i(s) + 1 and t ≤ t̂, we can upper bound the right-hand side as
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h(s, t) ≤ exp
(
Lf (t− s) + Lg(t̂− s)

)
. Since t̂ was chosen arbitrarily in the interval

[t, tk+1], we pick it equal to t. Thus, h(s, t) ≤ exp ((Lg + Lf )(t− s)). Substituting
this inequality in (10.45) yields

‖x(t)− x0‖ ≤ L‖x0 − x̄‖
∫ t

t0

e(Lf+Lg)(t−s)ds = L
Lf+Lg

(e(Lf+Lg)ξl(t) − 1)‖x0 − x̄‖.

(10.46)

This inequality when used in the right-hand side of the triangle inequality ‖x0 −
x̄‖ ≤ ‖x(t)− x0‖+ ‖x(t)− x̄‖ yields after rearrangement the following

‖x0 − x̄‖ ≤
Lf + Lg

Lf + Lg − L(e(Lf+Lg)ξl(t) − 1)
‖x(t)− x̄‖. (10.47)

Subsequently, using the above bound in (10.46) gives

‖x(t)− x0‖ ≤
L(e(Lf+Lg)ξl(t) − 1)

Lf + Lg − L(e(Lf+Lg)ξl(t) − 1)
‖x(t)− x̄‖. (10.48)

Combining inequalities (10.44) and (10.47) we obtain

‖x(t)− xk‖ ≤
Lh(eLfζk(t) − 1)

Lf − (Lf + Lg)(eLfζk(t) − 1)
·

Lf + Lg

Lf + Lg − L(e(Lf+Lg)ξl(t) − 1)
‖x(t)− x̄‖

+
(Lf + Lg)(e

Lfζk(t) − 1)

Lf − (Lf + Lg)(eLfζk(t) − 1)
‖x(t)− x̄‖ (10.49)

(IV) Monotonic decrease of Wε: Note first that following (10.48) and using
the bound ξl(t) ≤ ξ̄ yields

‖x(t)− x0‖ ≤
L(e(Lf+Lg)ξ̄ − 1)

Lf + Lg − L(e(Lf+Lg)ξ̄ − 1)
‖x(t)− x̄‖.

Using the definition of ξ̄, one gets e(Lf+Lg)ξ̄ − 1 =
β(Lf+Lg)
L(LWLh+β) . Substituting this

value in the above inequality and simplifying the expression provides us

‖x(t)− x0‖ ≤ (β/(LWLh))‖x(t)− x̄‖. (10.50)

In a similar way, using the bound on ξl(t) and substituting the value of e(Lf+Lg)ξ̄−1
in (10.49) and simplifying yields

‖x(t)− xk‖ ≤
(eLfζk(t) − 1)(L+ β/LW )

Lf − (Lf + Lg)(eLfζk(t) − 1)
‖x(t)− x̄‖.
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Note that ζk(t) ≤ ζ̄. Using this bound and the definition of ζ̄ in the above
inequality gives

‖x(t)− xk‖ ≤ α−β
LWLg

‖x(t)− x̄‖. (10.51)

Finally, substituting (10.50) and (10.51) in (10.40) and using the fact that β < α,
we obtain Ẇε(x(t)) < 0. Recall that t ∈ R≥0 was chosen arbitrarily satisfying

t 6∈ {tlk}
Nl
k=1 for any l ∈ Z≥0. Therefore, Wε monotonically decreases at all times

along the trajectory except for a countable number of points. Further, the map t 7→
Wε(x(t)) is continuous. Therefore, we conclude that the trajectory initialized in a
compact level set of Wε contained in Ω converges asymptotically to the equilibrium
point x̄. This completes the proof.

Remark 10.5.3. (General cost functions, generator box constraints, and elastic
demand): We briefly discuss here the feasibility and challenges involved in
extending the present treatment along different directions.

General cost functions: The results presented above also hold for general
convex (instead of quadratic) cost functions. Specifically, if there exist c1, c2 ∈ R>0

such that 0 ≺ c1I � ∇2C(Pg) � c2I for all Pg ∈ Rn, then one can establish
LISS of the closed-loop system and compute bounds on the inter-event times to
guarantee local asymptotic stability. However, this setting requires a significant
more technical derivation and therefore it is omitted in the present work.

Generator box constraints: An interesting extension would be the inclusion
in (10.7) of box constraints on power generation. Such extension would require the
re-examination of the existence and uniqueness of Nash equilibria, as generators
may take advantage of them to arbitrarily increase their individual profit, and
the modification of the proposed algorithm to accommodate these constraints,
e.g., by using projections in the dynamics. The latter makes it difficult to asses
LISS as the characterization of the input-to-state stability properties of projected
dynamics systems is still open.

Elastic demand: Our treatment here has considered inelastic loads. If
instead loads are flexible, i.e., the demand is elastic, then consumers would
also react to prices, possibly in a price-taking manner as in a Cournot-type of
competitive market. This implies that the game-theoretic model has to be revised
to accommodate loads that change with generator bids/prices. The investigation
of how to carry this out is an interesting topic for future research. •

10.6 Simulations

In this section we illustrate the convergence properties of the interconnected time-
triggered system (10.31). We consider the IEEE 14-bus power network depicted
in Figure 10.2, where each node has one generator and one load according to
model (10.2). We assume that the costs at each node i ∈ {1, . . . , 14} are of the
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form

Ci(Pgi) =
1

2
qiP

2
gi + ciPgi

with qi > 0 and ci ≥ 0. In the original IEEE 14-bus benchmark model, nodes
1, 2, 3, 6, 8 have synchronous generators while the other nodes are load nodes and
have no power generation. We replicate this by suitably choosing the cost at the
load nodes such that the optimizer of the economic dispatch problem (10.7) is zero
at them. In addition, we choose Mi ∈ [4, 5.5] for generator nodes i ∈ {1, 2, 3, 6, 8}
and Mi � 1 for the load nodes. We set Ai ∈ [1.5, 2.5], Vi ∈ [1, 1.06],Kbi ∈
[0.0005, 0.001],Kgi = 13.5 for all i ∈ I14 and ρ = 900. The other parameter values
for the ISO dynamics (10.12b) are kλ = 0.0004, ρ = 3, σ = 17.

1 2 3

45

6 7

8

91011

12 13 14

Figure 10.2: Schematic of the modified IEEE 14-bus benchmark. Each edge represents a
transmission line. Red nodes represent loads. All the other nodes represent synchronous
generators, with different colors that match the ones used in Figures 10.3 and 10.5. The
physical dynamics are modeled by (10.2).

At time t = 0 s, the inelastic load (in MW’s) is given by

Pd = (0, 20, 86, 43, 7, 10, 0, 0, 27, 8, 3, 6, 12, 14).

Initially, we set (q1, q2, q3, q6, q8) = (22, 128, 45, 60, 30), ci = 7.5 for i ∈ {1, 2, 3, 6, 8}
and qi = 1500, ci = 26 for the remaining nodes. The time-triggered system (10.31)
is initialized at steady state at the optimal generation level

(Pg1, Pg2, Pg3, Pg6, Pg8) = (85, 15, 42, 31, 63)

and with Pgi = 0 for all other nodes. Figures 10.3-10.5 on pages 212-214 depict the
simulation of the time-triggered system for different triggering times. At t = 1 s all
the loads are increased by 10% and we set ci = 28 for the load nodes. As observed
in all figures, the trajectories converge to a new efficient equilibrium with optimal
power generation level

(Pg1, Pg2, Pg3, Pg6, Pg8) = (94, 16, 46, 34, 69)

and Pgi = 0 for all other nodes. Furthermore, at steady state the generators all
bid equal to the Lagrange multiplier which, by Proposition 10.3.1, corresponds to
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an efficient Nash equilibrium.
At t = 15 s the cost functions of the generators are changed to

(q1, q2, q3, q6, q8) = (23, 116, 48, 63, 38), (c1, c2, c3, c6, c8) = (7.5, 6, 13.5, 15, 10.5)
and qi = 1500, ci = 33 for the remaining nodes. As a result, the optimal dispatch of
power changes. Due to the changes of the power generation, a temporary frequency
imbalance occurs. As illustrated in Figures 10.3-10.5, the power generations
converge to the new optimal steady state given by

(Pg1, Pg2, Pg3, Pg6, Pg8) = (108, 23, 40, 28, 60).

In addition, we observe that after each change of either the load or the cost
function, the frequency is stabilized and the bids converge to a new efficient Nash
equilibrium. The fact that the frequency transients are better in Figures 10.3-10.4
(with inter-event times of maximal 2 ms for bidding and on average respectively
50 ms, 62.5 ms for market clearing) than in Figure 10.5 (with inter-event times of
2 ms for bidding and 160 ms for market clearing) is to be expected given the longer
inter-event times in the second case. A slight increase in the inter-event times for
Figure 10.5 in either bid updating or market clearing time result in an unstable
system. Figure 10.6 illustrates the evolution of the interconnected system with the
primary/secondary and tertiary control layers separated and its loss of efficiency
compared to the proposed integrated design.

10.7 Conclusions

This chapter has studied the joint operation of the economic dispatch and fre-
quency regulation layers, which are traditionally separated in the control of power
networks. The starting point of our design was a continuous-time bid update
scheme coupled with the frequency dynamics whose equilibrium corresponds to
an efficient Nash equilibrium and zero frequency deviation. Building on the
identification of a novel LISS-Lyapunov function for this dynamics, we have
characterized its robustness properties against additive disturbances. We have
exploited the LISS-property to propose a provably correct multi-rate hybrid
implementation that combines the iterative nature of the fast bid updates and the
slower power setpoint updates with the continuous frequency network dynamics.
Our results show that real-time iterative bidding can successfully be interconnected
with frequency control to increase efficiency while retaining stability of the power
system.

Future work will incorporate elastic demand, generator bounds, and power
flow constraints in the formulation. We also wish to explore more general
bids including piecewise constant and linear supply functions. Finally, we aim
to develop distributed and opportunistic self-triggered implementations of the
proposed dynamics, and characterize the convergence properties of data-driven
optimization algorithms.
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(a) Evolution of the frequency deviations.
After each sudden supply-demand imbal-
ance, frequency is restored to its nominal
value.

Time (s)
0 10 20 30

0

20

40

60

80

100

120

Power generation (MW)

(b) Evolution of the nodal power gener-
ations. After each change in the net-
work, the power generation quantities
converge to the optimal values determined
by (10.7).
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(c) Evolution of the bids and the Lagrange
multiplier (dashed black line). As shown,
the bids converge to the unique efficient
Nash equilibrium.

Figure 10.3: Simulations of the interconnection between the iterative bidding mechanism
and the power network dynamics modeled by the time-triggered system (10.31). The
colors in the graph corresponds to the nodes as depicted in Figure 10.2. We choose
identical inter-event times given by tlk − tlk−1 = 2 ms, tl0 − tl−1

0 = 50 ms for all l ∈
Z≥1, k ∈ {1, . . . , 25}. As expected, the time-triggered system is asymptotically stable for
sufficiently fast updates.
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(a) Evolution of the frequency deviations.
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(b) Evolution of each power generation.
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(c) Evolution of the bids and the Lagrange
multiplier.

Figure 10.4: Simulations of the time-triggered system (10.31) under time-varying step
sizes. We choose the time between two consecutive bid iterations randomly between
0.5 ms ≤ tlk − tlk−1 ≤ 2 ms, for all l ∈ Z≥1, k ∈ [Nl], and we choose the number of bid
iterations Nl ∈ Z before market clearing occurs randomly in the interval [20, 80]. Since
the step sizes are sufficiently small, and therefore the mismatch of the time-triggered
system with its continuous-time variant, the performance is similar compared to Figure
10.3.
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(a) Compared to Figure 10.3a, there are
more oscillations and a larger overshoot of
the frequency deviations.
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(b) Evolution of the power generations at
each node.
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(c) Evolution of the bids and the Lagrange
multiplier. Compared to Figure 10.3c,
more oscillations in the bids occur.

Figure 10.5: Simulations of the time-triggered system (10.31). Here we consider the case
tlk − tlk−1 = 2 ms, tl0 − tl−1

0 = 160 ms for all l ∈ Z≥1, k ∈ {1, . . . , 80}. The scenario is the
same as in Figure 10.3. In this case however, the interconnected time-triggered system
is only marginally stable; a small increase in either of the inter-event times results in an
unstable system.
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(a) Evolution of the frequency deviations.
Compared to Figures 10.3a-10.4a, there
are more oscillations in the frequency de-
viations.

Time (s)
0 10 20 30

0

20

40

60

80

100

120

Power generation (MW)

(b) Evolution of each power generation.
After primary and secondary controllers
are activated at t = 1 s, optimal power
sharing is lost.
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(c) Evolution of the total generation costs
(in black) compared to the optimal val-
ues calculated by (10.7). Activation of
primary/secondary control, and changes
in the cost function result in a loss of
efficiency.

Figure 10.6: Simulations of swing equations with the primary/secondary and tertiary
control layers separated. At time t = 1 s, the load is increased as in Figure 10.3 and
decentralized primary/secondary controllers are activated to regulate the frequency but,
as a result, optimal power sharing is lost. At t = 14 s the tertiary control layer is activated
by resetting the setpoints optimally. After the change of the cost functions at t = 15 s,
economic optimality is temporary lost again until the next time the tertiary control layer
is activated (typically in the order of minutes).
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Chapter 11

Conclusions

In this research, we developed a unifying energy-based approach to the modeling,
analysis and control of smart grids. We have seen how the port-Hamiltonian
framework lends itself not only to model and analyze the physical power network
but also the real-time dynamic pricing schemes. Regarding the physical system, we
have seen how power grids can be modeled as networks of synchronous machines
with various accuracy and complexity. In particular, each of these systems admit
a port-Hamiltonian representation which for the high-dimensional models are far
from trivial. It also clearly reveals the interconnection and damping structure
of such multi-machine systems. We also have shown that each of the models
varying from the sixth order model till the second order swing equations are
shifted passive with respect to their steady states. This property is crucial in
the interconnection with passive control algorithms, including consensus-based
controllers and dynamic pricing schemes introduced in part II of this thesis. There
we showed that such real-time dynamic pricing algorithms can be obtained from
the primal-dual gradient dynamics corresponding to a social welfare optimization
problem. We have seen that the primal-dual dynamics associated to a general
optimization problem can be represented as an incrementally port-Hamiltonian
system, thus admitting passivity with respect shifted input/output pairs using
a shifted storage function. This allows the interconnection with the physical
system yielding a closed-loop (incrementally) port-Hamiltonian system. By using
a shifted energy function (shifted Hamiltonian) of the interconnected system and
by invoking a suitable invariance principle we have proven convergence to an
optimal equilibrium. Here ‘optimal’ means that it corresponds to the allocation of
power generation and consumption and power flow throughout the network that
maximizes the social welfare, possibly also considering the generator limits and
line congestion in the network.

The last part of this thesis also dealt with the game-theoretic aspects of
electricity markets. We have shown how price-setting market players can reach a
Nash equilibrium corresponding to cost efficiency, while also taking the network
frequency into account. First, these frequency-aware market mechanisms have
been realized as continuous-time systems and established their (input-to-state)
stability properties. Thereafter, we considered a more realistic setting where
the generators iteratively negotiate electricity prices while at the same time the
physical system evolves in continuous-time, and established sufficient conditions
on the time steps that guarantee stability of the hybrid system.
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11.1 Discussion

In this section we briefly relate our findings with other references and discuss the
meaning of our results. We also explain some unexpected results we have come
across in this research. Finally, a few limitations of our approach are stated as
well.

Emphasis on passivity

Compared with the existing literature, we emphasize the passivity properties of
both the physical models as well as the controller/dynamic pricing dynamics. This
allowed us to consider the physical dynamics and the dynamic pricing scheme
on an equal footing. We believe that this passivity-based approach forms the
fundamental starting point for generalizations. For example, this allowed us
to exploit the modular property of these systems: e.g. we can add or remove
constraints from the social welfare optimization problem while still retaining
similar stability properties of the interconnected system. In addition, we have
seen that many different types of physical models can be considered as long as
they admit the appropriate shifted passivity properties. We believe that this
idea could even be pursued further by considering a general convex optimization
problem and a shifted passive (networked) physical system for which we aim to
operate at an optimal (steady-)state characterized by the optimization problem.
As an example, one application could be to use in machine learning techniques as
in [60] and use it for control of relevant physical systems.

Market/physical demand response

Reflecting grid congestion or for example an excess supply of renewables like wind
power onto the price can provoke stabilizing customer behavior. However, this
does not mean that monetary incentives like real-time pricing could solve all
existing problems of the energy grid. This is because limited customer elasticity
and physical situations that are not mapped onto prices lead to the fact that
real load shedding for grid relief cannot be done via prices alone [78]. This also
requires physical demand response which sends out binding requests for demand
management if the grid or parts of its infrastructure (e.g. power lines) are in a
reduced performance due to maintenance or failure, for example by the use of
frequency-aware cooperative loads [54, 78]. A good mixture of both market and
physical demand response is usually necessary to run a grid optimally. In the
approach adopted in this thesis we do not necessarily have to make a distinction
between the physical demand response or the market demand response: both
the market-based interpretation [2, 3, 112] as well as the (physical) control
interpretation [69, 135, 136] (or a combination) can be adopted in our framework.

Myopic behavior of market players

In this thesis we assume some rationality of the market players and in particular
that they show some myopic behavior by trying to maximize their profit in the
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next step. However, it is typically difficult to characterize and prove some kind of
robustness against irrational behavior although an attempt is made in for example
[24].

Line resistances

In this thesis we have not considered line resistances which is a reasonable
assumption for transmission networks. However, in microgrids/distribution grids
this assumption is not valid anymore. One of the counter-intuitive observations in
power networks is that line resistances are not easily incorporated in the energy-
based analysis adopted in this thesis. This is because, for reduced-order models
of the power networks the resistive elements of the lines do not enter the port-
Hamiltonian representation of the AC power network as additional damping (or
dissipation structure).

Nonlinear power flow equations

As Chapter 5 reveals, dealing with both line congestion and nonlinear power
networks that contain cycles in the interconnection topology is particularly chal-
lenging from an analytical point of view. In fact, this forms the important domain
of solving the nonlinear power flow equations. Such a problem is proven to be
nonconvex and difficult to solve. Throughout the literature there is quite some
work on finding suitable convexifications of the problem, including [63, 129] and
the references therein.

11.2 Outlook

Power systems are amazingly complex systems and in this thesis we could only
grasp a specific part of it. There are many developments going on in this field but,
since we cannot discuss all of these topics in detail, we now first restrict ourselves
to alternative research directions closely related to this thesis.

11.2.1 More realistic physical models

Although we considered complex models for power network dynamics, there are
many extensions possible. We list just a few of them.

Turbine-governor dynamics

Another extension of the synchronous machine models is to include turbine-
governor models [30, 53, 115]. We believe that this is possible for first-order
turbine-governor models as appearing in [115] as they admit suitable passivity
properties. However, for second-order turbine governor dynamics this does not
hold and instead need to be ‘passified’ by some control law [114], or requires
different control techniques such a sliding mode control [30].
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Voltage regulation

Although we consider power network dynamics with voltage dynamics and have
shown voltages stability, we did not consider regulating the voltage to a desired
level. This appears to be a challenging task from a port-Hamiltonian point of view
but a starting point could be to model Automatic Voltage Regulators (AVR’s) from
an energy-based perspective.

11.2.2 Including inflexible loads and generation

In a large part of this research we assumed that both generation and loads are
controllable. However, a more realistic scenario would be that part of both
generation (like solar panels) and the load is inflexible. We believe that, under
the assumption that these generation and load quantities are known, this can be
included in the social welfare problem and similar controllers as introduced in this
thesis can be designed for that case. In addition, we assumed that the demand
can be adjusted as desired and in a continuous fashion, however, an interesting
extension would be to consider the discrete on-off nature of loads such as done in
for example [54].

11.2.3 Robustness

In this thesis we only touched upon the topic of robustness in the last part of this
thesis. A relevant direction for future research is to consider robustness analyses of
the interconnected systems presented in the other parts of this thesis as well. This
could be guided by the results of [27] for primal-dual general gradient dynamics
and for distributed averaging integral based control of power networks by [123].
One of the challenges to the former case will be to extend the robustness results
to projected dynamical systems. To the author’s best knowledge there have been
no results of input-to-state stability of such systems. Another research question
could be what communication delays in the control schemes would be tolerated
without compromising the stability of the network, see e.g. [57].

11.2.4 Region of attraction

In this thesis we were concerned with establishing asymptotic stability. When for
example considering transient stability analysis, estimating the region of attraction
is also important. There are various approaches for estimating the region of
attraction that have been adopted in the literature, including sum of squares
iterations that is for example used in [111].

11.2.5 The broader perspective

On a broader level there also many other developments in the field of power
networks which where also pointed out in the last Power System Computation
Conference in Dublin, 2018. One of these challenges is dealing with the low
inertia in the network [72]. In particular, when the total inertia is decreased by an



11.2. Outlook 219

increased share of renewables, there is less kinetic energy stored in the system that
can be used for compensate for a power imbalance. This makes that alternative
energy storage capabilities such as batteries, super-capacitors and flywheels will
play a bigger role in the future, especially for frequency regulation. Not only
that, also more automation is envisioned, in particular at the lower voltage levels,
that demand for appropriate control strategies [124] since at this moment only
at the transmission level most of the operation is automated. In particular, the
operation of the inverters and interfacing them with the grid (in a grid-feeding or
grid-following mode) has to be investigated further [72]. Also, with the increased
communication, cyber-security plays an more critical role in power networks. This
raises the need for appropriate strategies to maintain stable operation even in the
presence of an attack on a certain part of the network.
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Control. Communications and control engineering. W.H. Freeman., 1997.

[92] Y. Seungil and C. Lijun. “Reverse and forward engineering of frequency
control in power networks”. In: Proc. of IEEE Conference on Decision and
Control, Los Angeles, CA, USA. 2014.
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Summary

Maintaining a stable an reliable electricity grid has become increasingly challenging
due to several reasons, including the shift from conventional generation towards
the integration of renewable energy resources such as wind and solar energy. The
main challenge is to deal with their intermittency which causes unexpected power
imbalances in the network. In addition, with the ever increasing demand of
electricity the power network is operating closer to its capacity limits. As a result,
the (frequency) stability of the system is compromised and therefore not only the
flexibility of conventional generation but also flexibility of the demand is required.
This raises the need for sophisticated control strategies to deal with such potential
instabilities and to appropriately (and efficiently) allocate power generation and
demand throughout the network.

One possible approach to alleviate some of these challenges is by the use of
real-time dynamic pricing as a control method. This allows to make incentives to
change consumer behavior when the generator limits are reached or line congestion
occurs. Moreover, it allows to incorporate economical considerations that enable
producers and consumers to fairly share cost and utilities associated with the
generation and consumption of energy. However, little is known about the
integration of dynamic pricing algorithms and the control of the physical dynamics
of the network.

The aim of this thesis is to provide a unifying framework that allows us to
model and analyze both the physical power network as well as the market-based
control algorithms from the same perspective. The framework behind this is based
on mathematical theory of port-Hamiltonian systems. This approach builds on
modeling the energy flows (through ’ports’) and dissipation in the system, and
the stability analysis is conducted using energy functions (Hamiltonians). The
first part of this thesis focuses on the modeling of power system dynamics and
in particular networks of synchronous machines. We show that several multi-
machine models with varying accuracy and complexity can be represented as port-
Hamiltonian systems. In particular, we show that these models admit a shifted
passivity property which allows them to be interconnected with (market-based)
controllers.

In part II, we design such dynamic pricing mechanisms such that the coupled
physical-economical system remains stable and approaches a state of maximal
social welfare (characterized by a mathematical optimization problem). At the
same time, we can incorporate physical constraints such as the line capacities
and generator limits. For the physical dynamics, we considered several different
network-reduced models, including the conventional so-called swing equations and
the third-order model which describes both frequency and voltage dynamics, and
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structure-preserving models where a distinction between generator and load nodes
is made. On the economical side, we provide a general approach to the design of
dynamic pricing algorithms. This is based on constructing the primal-dual dynam-
ics of an optimization problem aiming at maximizing the social welfare. Here the
primal variables correspond to the power generation, demand and transmission,
and dual variables are interpreted as prices that are sent to the power producers
and consumers. Moreover, the dynamic pricing scheme can be designed to be
fully distributed, requiring only local exchange of information along a connected
communication graph for its implementation. For the interconnected system we
conduct a suitable energy-based (Lyapunov) stability analysis where we exploit
both the shifted passivity properties of the physical system as well as for the primal-
dual dynamics (of the social welfare problem). We also compare the resulting
dynamic pricing algorithms with an alternative consensus-based controller design.
The latter control method is applied to a sixth order multi-machine model and
frequency regulation together with cost minimization is realized. Finally, we
establish the convergence of general projected primal-dual dynamics under mild
convexity assumptions of the underlying optimization problem.

In the last part of this thesis, we study the game-theoretic aspect of electricity
markets. In particular, we show how real-time price-bidding mechanisms can lead
to cost efficiency and while at the same time corresponds to a market (Nash)
equilibrium of the underlying price competition game. Moreover, in the design,
also frequency measurements are taken into account and stability of the physical
power network is established. In our approach we first consider a continuous-
time bidding mechanism coupled with the physical swing dynamics and establish
asymptotic convergence. Thereafter, we consider a discretized bidding mechanism
and provide bounds on the step-sizes for guaranteeing convergence of the resulting
hybrid implementation. This is achieved by exploiting the robustness property
called input-to-state stability of (the continuous-time version of) the closed-loop
system.
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Samenvatting

Het behouden van een stabiel en betrouwbaar elektriciteitsnet is, om verschillende
redenen, een steeds grotere uitdaging geworden. Een van die redenen is de
verschuiving van conventionele generatie naar vernieuwde energiebronnen zoals
zonne- en windenergie. De voornaamste uitdaging is om goed om te gaan met
de intermitterende energieproductie van deze vernieuwde energiebronnen. Dit
veroorzaakt vaak onverwachte energie onbalansen in het netwerk. Daarnaast, met
de steeds toenemende vraag naar elektriciteit, functioneert het stroomnetwerk
dichterbij zijn capaciteitslimieten. Als gevolg is de (frequentie)stabiliteit van
het systeem in het geding gekomen en daarom is niet alleen de flexibiliteit van
conventionele generators nodig maar ook de flexibiliteit aan de vraagzijde. Dit
verhoogt de noodzaak naar geavanceerde regeltechnische strategieën om beter
om te gaan met dit soort potentiële instabiliteiten en om op de juiste (en meest
efficiënte) wijze stroomgeneratie en stroomverbruik toe te wijzen door het netwerk
heen.

Een mogelijke benadering om een aantal van deze uitdagingen aan te pakken,
is door het gebruik van dynamische elektriciteitsprijzen als regelmethode. Op
deze manier is het mogelijk om consumenten aan te sporen om hun verbruik te
veranderen als de generatoren hun limieten hebben bereikt of er sprake is van
lijncongestie. Bovendien staat dit toe om economische overwegingen mee te nemen
en maakt dit het mogelijk om een eerlijke verdeling te creëren van kosten en
utiliteiten geassocieerd met de generatie en consumptie van energie. Echter is
er maar weinig bekend over de integratie van dynamische prijsalgoritmes en het
regelen van de fysische dynamica van het netwerk.

Het doel van deze thesis is om een geünificeerd framework tot stand te brengen
dat het mogelijk maakt om het fysische stroomnetwerk en de marktgebaseerde
regelalgoritmes te benaderen vanuit hetzelfde perspectief. Het achterliggende
kader is gebaseerd op de wiskundige theorie van poort-Hamiltonse systemen. Deze
benadering bouwt op het modelleren van de energiestromen (door ’poorten’) en
de dissipatie in het systeem, en de stabiliteitsanalyse wordt door middel van
energiefuncties (Hamiltonians) uitgevoerd.

Het eerste deel van deze thesis focust op het modelleren van de dynamica
van stroomnetwerken en met name netwerken met synchrone machines. We laten
zien dat verscheidende multi-machine modellen met variërende nauwkeurigheid en
complexiteit gerepresenteerd kunnen worden als poort-Hamiltonse systemen. In
het bijzonder, laten we zien dat deze modellen een verschoven passiviteitseigen-
schap hebben wat het mogelijk maakt om ze te koppelen met (marktgebaseerde)
regelaars.
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In deel II ontwerpen we zulke dynamische prijsmechanismen zodat het gekop-
pelde fysisch-economische systeem stabiel blijft en een toestand van maximale soci-
ale welvaart (gekarakteriseerd door een wiskundig optimalisatieprobleem) bereikt.
Tegelijkertijd, kunnen we fysische restricties incorporeren zoals lijncapaciteiten
en generatielimieten. Voor de fysische dynamica beschouwen we verscheidene
netwerkgereduceerde modellen waaronder de conventionele zogenoemde schom-
melvergelijkingen en het derde-orde model dat frequentie én voltage dynamica
beschrijft, en structuurbehoudende modellen. Aan de economische kant, verstrek-
ken we een algemene benadering voor het ontwerp van dynamische prijsalgoritmes.
Dit is gebaseerd op het construeren van de zogenaamde primal-dual dynamica van
een optimizatieprobleem gericht op het maximaliseren van de sociale welvaart.
Hierbij corresponderen de primal variabelen met de stroomgeneratie, -verbruik
en -transmissie, en de dual variabelen worden gëınterpreteerd als prijzen voor
de producenten en consumenten van energie. Bovendien kunnen de dynamische
prijsalgoritmes ontworpen worden op een volledig gedistribueerde manier, waar-
bij alleen lokale informatie-uitwisseling in een verbonden communicatienetwerk
vereist is voor de implementatie. Voor het gekoppelde systeem voeren we een
energiegebaseerde (Lyapunov) stabiliteitsanalyse uit waarbij we gebruik maken
van de verschoven passiviteitseigenschappen van het fysische systeem maar ook
van de primal-dual dynamica (van het welvaart maximalisatieprobleem). Ook
vergelijken we de resulterende dynamische prijsalgoritmes met een alternatief
regelaarontwerp gebaseerd op consensus dynamica. Deze laatste regelmethode
wordt toegepast op een zesde orde multi-machine model waarbij frequentieregulatie
en kostenminimalisatie wordt gerealiseerd. Tenslotte, bewijzen we convergentie
voor een algemene geprojecteerde primal-dual dynamica onder milde aannames
op het onderliggende optimalisatieprobleem.

In het laatste deel van deze thesis, beschouwen we de speltheoretische
aspecten van elektriciteitsmarkten. In het bijzonder laten we zien hoe real-time
prijsbiedmechanismen leiden tot kostenefficiëntie en tegelijkertijd tot een (Nash)
marktevenwicht van het onderliggende prijs-competitie spel. Bovendien worden in
het ontwerp ook frequentiemetingen meegenomen en wordt de stabiliteit van het
fysische netwerk tot stand gebracht. In onze benadering beschouwen we eerst een
continue-tijd biedmechanisme gekoppeld met de fysische schommelvergelijkingen
en bewijzen we asymptotische convergentie. Daarna discretiseren we het biedme-
chanisme en geven we limieten voor de stapgroottes waarvoor convergentie voor
het resulterende hybride systeem gegarandeerd is. Dit wordt tot stand gebracht
door gebruik te maken van de robuuste eigenschap genaamd input-naar-toestand
stabiliteit van (de continue-tijd versie van) het gëınterconnecteerde systeem.
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