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1.1 Chirality

Chirality is one of the most important topics in contemporary organic

chemistry.[1-3] Chirality in molecules is best compared to one’s own hands; they

are exactly the same, but each other’s mirror image and are in no way

superimposable.

The same phenomenon can occur in (organic) molecules. If a molecule

possesses an asymmetric center, for instance a carbon atom with four different

substituents (see Figure 1), its mirror images are not superimposable and the

molecule is called a chiral molecule (from the Greek word χειρ -cheir- which

means hand)

Figure 1: Example of a chiral “molecule” containing an asymmetric carbon atom with
four different substituents, and of two (chiral) hands.

This results in an R (Rex = right) and an S (Sinister = left) form of the molecule.

The R and the S molecules are called each other’s enantiomers. The fact that

molecules can have different spacial arrangements was first recognized by both

LeBel[4] and Van ‘t Hoff[5] independently in 1874; the latter received the first

Nobel prize in chemistry in 1901.

The main difference between two enantiomers is that they rotate the plane of a

polarized light beam in opposite direction of each other. So one enantiomer

rotates the light clockwise (+) whereas the other rotates it counterclockwise (-).

Although the differences between two enantiomers are very limited, they are of

great importance.

Many of nature’s essential building blocks are chiral, enantiopure, molecules

including amino acids, sugars and nucleosides. Because amino acids are chiral,
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this means that also all proteins including enzymes are chiral. The most

important consequence of the fact that enzymes are chiral (and enantiopure) is

that they also can commonly bind to only one of the enantiomers of a substrate

molecule, if this is also a chiral molecule. This property has serious

consequences for the pharmaceutical industry.[6] Since it is often not known what

kind of action the other enantiomer will display in the body, the pharmaceutical

industry has to be very careful when selling a drug as a racemic mixture (i.e.

both enantiomers are present in equal amounts in the mixture).

An example of two enantiomers that have different functions in nature are the

two forms of ketamine (1.1) which are depicted in Figure 2. Where the S form is

an anesthetic which is often used by veterinarians, the R form is a hallucinogenic

compound.[7]

Figure 2: S and R ketamine. Two enantiomers of the same compound with completely
different functions.

Another example of enantiomers that have completely different functions is the

molecule thalidomide, also known as Softenon®.[6] This compound was

distributed as a mixture of enantiomers in the 1950s and provided to pregnant

women to relieve nausea and insomnia complaints. But whereas the (R)

enantiomer of the compound relieved the nausea and insomnia complaints it

turned out that the (S) enantiomer blocked normal growth and development of

their unborn children leading to a significant rise in births of malformed babies

with women who used the drug.
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Figure 3: The two enantiomers of Thalidomide (1.2) and Limonene (1.3).

Not only in physiological processes related to drug action the differences

between enantiomers can be seen but also, for example, the smell of two

enantiomers can be completely different.[8] A nice example in this case is

limonene (1.3, see Figure 3) of which the (R) form has a pine-like smell whereas

the (S) from smells of orange peels.

1.2 Synthesis of chiral molecules

Because the two enantiomers of a chiral compound can have such different

biological functions it is of crucial importance for (organic) chemists to develop

methods for the enantioselective synthesis of chiral molecules.

As displayed in Figure 4 there are, presently, 3 main strategies for the

preparation of an enantiomerically pure compound.[9]
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Figure 4: Synthesis options for chiral, non-racemic, compounds.

 The first is to use one of the compounds from nature’s ‘chiral pool’. This is

a collection of compounds, the members of which are easily isolated from

natural sources as a single enantiomer, such as amino acids, glucose and

lactic acid. A drawback of this method is that mostly only one of the two

enantiomers of the molecule is accessible this way since only one of the

enantiomers is present in this chiral pool.

 The second is the separation of a racemic mixture, which is called

resolution. This can be achieved in two ways; via kinetic resolution

involving a chemical or biochemical chiral reagent or catalyst, in which

one of the enantiomers will react away and the other remains in pure form.

The other way is via selective crystallization using a chiral resolving agent.

The problem with these methods is the fact that the maximum yield is 50%,

since only halve of the mixture is of the correct chirality. This problem can

be overcome by performing a so called dynamic kinetic resolution. In a

dynamic kinetic resolution the non reactive enantiomer is racemized during

the resolution making it possible for the reaction to go to full completion.

Asymmetric Synthesis

Asymmetric catalysis Diastereoselective

Chiral pool Resolution of a racemic mixture

Using an auxilliary

Methodology for enantiomerically pure products

Kinetic resolution Crystallisation

Heterogeneous HomogeneousOrganocatalytic Biocatalytic

BioChemo
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 The third method is asymmetric synthesis in which a prochiral compound

is transformed into an, enantiomerically enriched, chiral one. This can be

done in three different ways.

o The first is based on the use of a chiral auxiliary. This is a chiral group

that can be attached to a molecule thus creating two or more

asymmetric centers. When there is more than one stereogenic center in

a molecule, molecules are no longer enantiomers but they are called

diastereomers. Diastereomers, in contrast to enantiomers, can be

separated based on differences in physical properties. When the desired

diastereomer is in hand, the auxiliary can be cleaved off again and the

enantiomerically pure compound is obtained. A drawback of this

method is the introduction of extra steps in the synthetic route

compromising the overall yield.

o The second way of making an enantiomerically pure compound via

asymmetric synthesis is by using a diastereoselective synthesis. With

this method a previously introduced stereogenic center is used to

selectively create a second stereogenic center by for instance taking

advantage of the difference in steric hindrance of the two

diastereomeric transition states involved.

o The last method for making an enantiomerically pure compound

through synthesis is via asymmetric catalysis, in which a prochiral

compound is transformed into an enantiomerically pure, or at least

enriched, chiral compound with the help of a chiral catalyst. This

catalyst can be a homogeneous, a heterogeneous, an organic or a

biochemical one. In general the chiral catalyst has one or more

interactions with the pro-chiral substrate. As a result of these

interactions an environment is created in which one of the two chiral

products is preferentially accessible. The strong point of this method is

the fact that, usually, only a small amount of the catalyst is needed to

make the reaction work in a selective manner. A drawback of this

method is the fact that most catalysts are highly reaction specific and
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for every reaction type a screening of catalysts and conditions is

needed to find the optimal performing combinations.

Despite its drawbacks asymmetric catalysis is becoming more and more

important in the synthesis of chiral products in both academia as well as in

industry.[9-12]

1.3 Homogeneous Asymmetric Hydrogenation

One of the most elegant and most studied reactions in asymmetric catalysis is

asymmetric hydrogenation. Until the 1960s, attempts to get some

enantioselectivity in a hydrogenation reaction relied on the use of chiral

auxiliaries attached to the substrate or by using a heterogeneous catalyst attached

to a chiral surface.[13] From the 1960s onwards, however, numerous methods for

performing asymmetric hydrogenations on a wide range of substrates have been

developed.[14] In the following a short historical overview is presented on the

developments made in the asymmetric hydrogenation of C=C, C=N and C=O

double bonds.
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1.3.1 Asymmetric C=C hydrogenations

R1

RH2
R

R1

When in the 1960s the use of phosphorus ligands in transition metal catalyzed

reactions was discovered and the Wilkinson-catalyst (Figure 5) was

developed[15;16] it did not take long before the first chiral phosphorus ligands

were employed in a homogeneous hydrogenation reaction. In 1968 it were the

groups of Horner[17] and Knowles and Sabacky[18] who reported the first

asymmetric hydrogenations using a P-chiral monodentate ligand.

The Knowles group was able to reach optical purities up to an excellent 90% in

the rhodium catalyzed asymmetric hydrogenation of several α-acyl amino

acrylic acids using CAMP (see Figure 5). The complex [Rh(COD)((Rp)-

CAMP)2]BF4 was used in the asymmetric synthesis of the anti-Parkinson drug

L-DOPA and was the first candidate for use in an industrial process. However,

with the discovery of DIPAMP, by the group of Knowles, which was able to

induce an ee up to 95%,[19] the CAMP ligand was replaced and the industrial

process for making L-DOPA relied on the use of DIPAMP ever since.[20] In 1975

Kagan and co-workers[21;22] introduced chiral bisphosphorus ligands which no

longer were P-chiral but had a stereogenic center in the backbone connecting the

two phosphine groups.[23-25]

Figure 5: [Rh(I)(PPh3)3]Cl; Wilkinson’s catalyst, the P-chiral phosphine ligand CAMP
as used by Knowles and Sabacky and the DIPAMP ligand as developed by Horner.

Since those first reports, many groups have been involved in the search for new,

faster and more selective catalysts for the hydrogenation of C=C double bonds

and a lot of progress has been made since.[26]
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Many different phosphorus ligands have been developed and used in highly

enantioselective asymmetric C=C bond hydrogenation.[27] Until 2000, all

successfully employed ligands were bidentates, but in that year three groups

independently (re)discovered that also a monodentate ligand can lead to good

conversions and excellent ee’s (vide infra) (re)opening a whole new field in this

type of research.

Figure 6: Monodentate ligands as used in asymmetric hydrogenations by the groups of
Pringle[28], Reetz[29] and ours.[30]

These groups were the group of Pringle and Claver who used monodentate

phosphonites,[28] the group of Reetz who used phosphites[29] and our own group

introducing phosphoramidites.[30] All three groups reported the hydrogenation of

dehydroamino acids in high yields and excellent ee’s, using a rhodium catalyst

which contained two of their monodentate ligands per metal center.

1.3.2 Asymmetric C=N Hydrogenation

N

R

NH

R

H2

*

Besides C=C double bonds, also other types of double bonds can be

hydrogenated in an asymmetric fashion. In 1975 the first homogeneous Ru and

Rh catalysts were discovered for the asymmetric hydrogenation of C=N double

bonds. Botteghi et al.[31] and Kagan et al.[32] both used diop (see Figure 7) as

chiral ligand in the hydrogenation of oximes and imines reaching up to 15 and

22% ee, respectively.
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Figure 7: The first ligands successfully used in the homogeneous asymmetric C=N
hydrogenation.

The first hydrogenation reaching acceptable ee’s (up to 72%) was performed by

Vastag et al.[33] in 1984, using a bdpp-Rh complex in the hydrogenation of

C=N-Alkyl type substrates. In 1989 a Rh catalyst was developed with which, in

1992, the first very high ee (92%) in this type of hydrogenation was obtained

using mono-sulfonated bdpp (bdppsulf).
[34-36] In 1999 Blaser and co-workers

published the use of a ferrocenyl based bidentate ligand (1.4) in the iridium

catalyzed asymmetric hydrogenation towards the product (S)-Metolachlor,

which is used as a herbicide.[37] This process is currently one of the largest

industrial enantiomeric catalytic processes exceeding 104 tons per year.

Figure 8: (S)-Metolachlor and the ferrocenyl type ligand (1.4) used in the iridium
catalyzed asymmetric hydrogenation during its production.

In 2008 Mršić et al. showed for the first time the use of monodentate ligands in

the asymmetric hydrogenation of C=N double bonds applying phosphoramidite

ligands. They were able to reach full conversion and up to 89% ee in the

asymmetric hydrogenation of quinolines.[38] Later our group reported ee’s of up

to 99% in the iridium catalyzed asymmetric hydrogenation of N-aryl imines

using monodentate phosphoramidite ligands.[39]
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1.3.3 Asymmetric C=O hydrogenation

The first asymmetric C=O hydrogenation was reported in 1972 by Bonvicini et

al. who reported the Rh-catalyzed hydrogenation of acetophenone and 2-

butanone. They obtained the resulting alcohols in 8.6% and 1.9% optical yield,

respectively, using (R)-benzylmethylphenyl phosphine (see Figure 9) as their

chiral ligand.[40] Since this first report a lot of work has been done and is still

going on in this field.

Figure 9: The chiral ligand as used by Bonvicini et al. in the first asymmetric
hydrogenation of a ketone.[40]

The first rhodium catalyzed asymmetric hydrogenation which resulted in good

ee’s was reported in 1980 by Törös et al. Using diop as a ligand they were able

to hydrogenate a number of acetophenones with an ee of up to 84%.[41]

Two key developments in this field came from the group of Noyori. In 1987 they

reported the use of binap in the asymmetric hydrogenation of functionalized

ketones using ruthenium complex 1.5. They were able to hydrogenate a few β-

ketoesters with excellent stereoselectivity.[42] This results was further extended a

year later when they published excellent ee’s in the asymmetric hydrogenation

of a large number of functionalized ketones.[43]
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Figure 10: The two binap-based Noyori catalysts for functionalized (1.5) and non-
functionalized ketones (1.6).

The second breakthrough came 8 years later, in 1995, when the same group

reported a system which was able to hydrogenate, the till then very difficult

substrate class of, unfunctionalized acetophenones. To the Ru-complex they

reported in 1987 they added a chiral 1,2-diamine creating the highly active and

selective catalyst 1.6, after activation by a base.[44] A more complete overview of

these important developments, including the mechanisms involved using these

two types of complexes will be given in chapters 2 and 4 of this thesis.

Despite the fact that the initial reports on asymmetric ketone hydrogenation

involved the use of a rhodium based catalyst, nowadays ruthenium is usually the

metal of choice in the asymmetric hydrogenation of ketones. Besides these two

metals, however, also other transition metals are able to function as catalysts in

this type of transformation. In chapter 3 an overview will be given on the use of

iridium in the asymmetric ketone hydrogenation. Here a small inventory is made

on the lesser common metals used in these hydrogenations.

1.3.3.1 Cobalt

In 1985 it were Massonneau et al.[45] who reported the first asymmetric cobalt

catalyzed hydrogenation of ketones. Using several di-cobalt complexes of the

form Co2(CO)6(PR3)2, they were able to reduce acetophenone with a very low

optical yield of 1.6% and 2-methyl cyclohexanone with an optical yield of up to

5%. Since then some cobalt complexes have been used with success in the

transfer hydrogenation or hydrosilylation of ketones (vide infra) but until now

none in the direct asymmetric hydrogenation of ketones.
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1.3.3.2 Iron

Iron, which takes its place in the periodic table just above ruthenium, is of great

interest as a metal in catalysts because of its natural abundance and low price.[46]

It took until 2007 before Casey and Guan reported the first efficient iron catalyst

for the hydrogenation of ketones.[47] They were able to hydrogenate selectively

several acetophenones as well as alkyl ketones and 1,2-diketone in good to

excellent conversions using catalyst 1.7, however since no chiral ligand was

used also no ee’s were found.

The first asymmetric, iron based, hydrogenation catalyst was reported a year

later by the group of Morris.[48] Using a chiral P-N-N-P ligand (see 1.8 in Figure

11) they were able to hydrogenate acetophenone in 40% conversion and up to

27% ee. The enantioselectivity is not yet very impressive but a good starting

point for further optimization.

Figure 11: The first efficient iron catalyst (1.7) as published by Casey et al.[47] and the
first iron catalyst (1.8) used for asymmetric hydrogenation of ketones as published by
Sui-Seng et al.[48]

1.3.3.3 Osmium

Like iron also in the same group as ruthenium but then straight under it is the

element osmium. Being in the same group as the best performing metal for

carbonyl hydrogenations makes osmium a prime candidate for being used in this

type of reactions. It has been stated it would be an even better candidate

compared to iron and ruthenium, because it would bind stronger to the substrate
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making the reaction proceed even faster compared to the other two metals.[49] A

major drawback of using osmium however is the fact that all compounds or

complexes containing it display very high levels of toxicity. Besides being very

toxic it is also very expensive which prevents it from being a serious alternative

for the much less toxic and cheaper ruthenium. Nevertheless it has been used as

the metal in several ketone hydrogenation catalysts.

In 2008 Baratta et al.[50] reported the use of a osmium CNN pincer complex (1.9)

which in combination with Josiphos (See Figure 12) was able to hydrogenate

several acetophenones up to 98% ee with a remarkably low catalyst loading

(0.005 mol% Os).

Figure 12: The osmium pincer Josiphos complex (1.9) and the
[OsX2(diphosphine)(diamine)] complex (1.10) as used by Baratta et al[50;51] in the Os-
catalyzed asymmetric hydrogenation of ketones.

The same group improved on their results two years later when they introduced a

[OsX2(diphosphine)(diamine)] (X = Cl or OCH2CF3) (1.10) instead of the pincer

complex 1.9.[51] By using this complex, which very closely resembles the

original ruthenium complex, they were able to hydrogenate a range of

acetophenones with ee’s varying between 87 and 99%.

1.3.3.4 Palladium

Despite its great performances as a metal in other transition metal catalyzed

asymmetric transformations, such as Heck reactions, Suzuki reactions, allylic

substitutions and olefinic hydrogenations, palladium has not often been used

successfully in ketone hydrogenations.[52] It took until 2005 before the first

report was made of a palladium catalyzed asymmetric hydrogenation of a ketone.

It were Wang et al.[53] who published the use of a Pd/bisphosphine complex in
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the hydrogenation of a few functionalized ketones. When using methyl-DuPhos

as a ligand in 2,2,2-trifluorethanol they were able to reach up to 92% ee in the

hydrogenation of α-phthalimide ketones (1.11 in Figure 13). They recently

improved their initial results by using C10-TunePhos and are now able to obtain

ee’s up to 99%.[54]

N

O

O

R
O

R = Ar, Me, t-Bu
1.11

N

O

O

R
HOPd(CF3CO2)2

L*

H2, CF3CH2OH

P

P

(R,R)-Me-DuPhos
Up to 92 % ee

PPh2

PPh2

O

O

(CH2)10

C10-TunePhos
up to 99 % ee

L* =

1.12

Figure 13: The palladium catalyzed asymmetric hydrogenation of ketones as reported
by Wang et al.[53;54]

The second report using a palladium catalyst in a ketone hydrogenation was

made by the group of Beletskaya in 2009.[55] They discussed the asymmetric

hydrogenation of α-keto phosphonates 1.13 using a similar system as reported

later by Wang et al.[54] They were able to obtain full conversion but only

moderate ee’s up to 55% when using MeO-BIPHEP as a chiral ligand.

Figure 14: The palladium catalyzed asymmetric hydrogenation as reported by the group
of Beletskaya.[55]
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1.3.3.5 Copper

In 2007 the group of Shimizu published the first enantioselective method in

which copper was used in the catalytic complex. When the chiral BDPP ligand

was added to the precursor [Cu(NO3)(P(3,5-xylyl)3)2], in the presence of

NaOtBu and 3-6 equivalents of P(3,5-xylyl)3, they were able to reach full

conversions and up to 91% ee in the hydrogenation of several acetophenones.[56]

PPh2 PPh2

(S,S)-BDPP

O OH

H2
[Cu(NO3)(PAr3)2]
(S,S)-BDPP, PAr3
NaOtBu

Up to 91 % ee

R R

Ar = 3,5-xylyl

Figure 15: The copper catalyzed hydrogenation of acetophenones as published by
Shimizu et al.[56]

1.4 Other ways of reducing ketones asymmetrically

Besides the asymmetric hydrogenation of ketones using dihydrogen, over the

years also other methods have been successfully developed for transforming a

ketone into an alcohol in an asymmetric fashion. Here an overview will be given

on the asymmetric transfer hydrogenation, borohydride reduction,

hydrosilylation and enzymatic reduction.

1.4.1 Transfer hydrogenations

One of the most important alternatives for direct hydrogenation using hydrogen

gas is transfer hydrogenation.[57-59] In transfer hydrogenations two hydrogen

atoms, from an external hydrogen donor, are transferred onto the substrate. This

process is catalyzed by a (transition) metal catalyst. The two main hydrogen

sources used in transfer hydrogenation (Figure 16) reaction are secondary

alcohols, such as iso-propanol (IPA), and formic acid and its salts. Often a

formic acid / triethylamine mixture (TEAF) is used. IPA has the benefit of being
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environmentally friendly, easy to handle and cheap. However, there are a few

drawbacks to this method. Since the reaction is reversible, the outcome of the

reaction is determined by the oxidation potential of the ketone alcohol couple. A

way to drive the reaction to full conversion is performing it under slightly

reduced pressure in order to evaporate the acetone while it is being formed.

Figure 16: a) IPA; b) TEAF; the two most popular hydrogen donors in transfer
hydrogenation reactions.

The azeotropic mixture of 5 : 2 formic acid and Et3N is most frequently used

when TEAF is the reducing agent in a transfer hydrogenation. It is easily formed

by distilling a HCOOH / Et3N mixture just prior to use. Because during the

transfer hydrogenation reaction CO2 is formed the equilibrium is shifted to the

side of the desired product. A drawback of using TEAF is that some of the

catalysts are not able to cope with the acidic conditions and decompose rapidly

or lose their catalytic activity completely. Secondly it has been shown by the

group of Xiao that the optimum pH for transfer hydrogenations lies above the

obtained pH if the azeotropic TEAF mixture is used.[60] The low pH of the

mixture also makes that the catalysts which have to be activated by base are

usually not applicable when using TEAF.

Transfer hydrogenations proceed in general with a transition metal catalyst

present in the solution. When the reaction is aluminium catalyzed and IPA is

used as the hydrogen donor the reaction is also known as the Meerwein-

Ponndorf-Verley reduction whereas the backward reaction, the oxidation of the

alcohol, is known as the Oppenauer oxidation.

To date the best and most general catalyst for the asymmetric transfer

hydrogenation of ketones is the one developed by the group of Noyori.[61] The

catalytic complex consists of a half-sandwich Ru-arene to which the mono-
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tosylated DPEN is complexed, as can be seen in structure 1.15. Most catalysts

for transfer hydrogenation are based on Rh or Ru but there are some Ir,[62] Sm[63]

and Fe[46] catalysts known that show good performance. However, their

performances cannot compare to those obtained with Rh or Ru based catalysts.

Figure 17: The best performing transfer hydrogenation catalyst 1.15 to date as
developed by the group of Noyori.[61]

The benchmark substrates for asymmetric transfer hydrogenation are the

acetophenone type ketones. A number of ligands have been reported that

perform very well to excellent in the transfer hydrogenation of

acetophenones.[57;64] For the asymmetric transfer hydrogenation, mainly amino

alcohol type ligands are used, but also monotosylated or monomethylated

diamines perform very well is this reaction. Phosphine ligands generally perform

less well as ligands in the asymmetric transfer hydrogenation, but there are a few

that still give good to excellent selectivities.[65]
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Figure 18: Some representative, well performing, ligands in the asymmetric transfer
hydrogenation.

Besides the benchmark substrate acetophenone, other substrate classes have also

been tested; some of them are depicted in Figure 19. Most substitutions in the

phenyl ring or at the α-position of acetophenones can be tolerated in the transfer

hydrogenations leading to excellent ee’s.[66;67]

The only really difficult substrate, the t-butyl phenyl ketone, still is reduced with

a good selectivity resulting in 85% ee. In the case of the methyl alkyl ketones,

which are commonly reduced with low ee’s (36-63%), it is actually the t-butyl

substrate which gives the best result reaching up to 99% ee.

What can also be concluded from the results shown in Figure 19 is the fact that

β-ketoester are reduced less selective and they need a phenyl group in order to

give good to excellent ee’s.[68]

An additional advantage of transfer hydrogenation are the good results obtained

when water is used as a solvent. The groups of Xiao,[64] Guo,[69] Wang[70] and

others[71] dedicated their research successfully to developing this greener way of

reducing ketones. Various, catalysts, mainly based on Rh, Ir and Ru, have been

developed over the years which give excellent results in the asymmetric transfer

hydrogenation of acetophenones.[72]
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Figure 19: Various substrates which were tested in asymmetric transfer hydrogenation.

1.4.2 Borohydride reduction

The classical way of reducing ketones is via a hydride reduction using NaBH4 or

LiAlH4 in which the hydrides attack the carbon of the carbonyl function. The

boron or aluminiumalkoxide complex subsequently hydrolyses upon aqueous or

acidic work up creating the alcohol product. However, simple as this

transformation is, it produces a lot of environmentally unfriendly waste, since

the metalhydrides have to be used stoichiometrically. Moreover, the metal

hydride salts are not always easy to handle and can produce very reactive

reaction mixtures. Despite these drawbacks, a number of groups have

successfully put effort in developing asymmetric boranes to use in an

asymmetric version of the borohydride reductions.[73] Since in these cases still a

stoichiometric amount of the chiral hydride reagent was needed other groups

tried to develop a chiral borane which could be used in a catalytic fashion, thus

circumventing the need for stoichiometric amounts of chiral reagents.[74]
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Figure 20: A few CBS-type boranes (1.16, 1.17, 1.18) that perform excellent in the
boron based catalytic asymmetric reduction of ketones and an example of a cobalt
complex (1.19) used in the borohydride reduction of ketones.

The first to succeed in developing such a system were Corey, Bakshi and

Shibata, after whom the reagent was named (CBS-reagent, (1.16) Figure

20).[75;76]

Figure 21: Mechanism for the boron hydride based catalytic asymmetric reduction of
ketones using the CBS-reagent

The mechanism[77] of the CBS reduction, which is depicted in Figure 21 is well

understood and starts with a molecule of BH3 coordinating to the Lewis-basic

nitrogen of the CBS-reagent (I), after which the ketone can coordinate to the

boron atom of the CBS catalyst (II). A hydride subsequently transfers from the



Chapter 1

22

BH3-group to the ketone (III-IV) after which the product is released from the

reagent as its alkoxyborane and another BH3-molecule complexes again to the

CBS-reagent (I). Upon aqueous or acidic work up the alcohol is formed.

Besides the use of boranes as catalysts, Yamada et al. developed cobalt

complexes which can act as a catalyst in the borohydride reduction of ketones.[78]

Some of these complexes are made using a tetradentate β-ketoiminato ligand

(1.19, Figure 20) synthesized from a 1,3-diketone or a β-ketoester together with

a chiral 1,2-diamine. When a cobalt complex is used as catalyst, regular NaBH4

can be used as a reductant leading to ee’s up to 97% for acetophenone type

substrates.

Another interesting development in this field came recently from the group of

Falck.[79] They combined the enantioselective borane reductions and

enantioselective organocatalysis creating a method in which ketones can be

reduced asymmetrically using a catecholborane in combination with a thiourea

(1.20). With this method ketones could be reduced with selectivities up to 79-

99% ee.

Figure 22: The thiourea, 1.20, used by the group of Falck in the organocatalyzed borane
reduction of acetophenones.[79]

1.4.3 Hydrosilylation

A second, indirect, way of reducing ketones in an asymmetric fashion is by

hydrosilylation. In this process a ketone is reacted first with a silylhydride to

obtain a silylether. This silylether is hydrolyzed upon acidic workup to provide

the enantioenriched alcohol. The major advantage of using hydrosilylation for

the reduction of ketones is the fact that some silanes used for this transformation

are relatively cheap and easy to handle. From an atom economic point of view it
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is, however, not a very good reaction. A lot of waste is produced just like in the

borohydride reductions.

Figure 23: General scheme of asymmetric hydrosilylation.

The first hydrosilylation of a ketone was reported in 1972 by Ojima et al.[80]

Using the classical Wilkinson catalyst they were able to hydrosilylate

cyclohexanone and acetophenone to full conversion. Shortly after that first

report, also the first asymmetric hydrosilylation was reported by Yamamoto et

al.[81] They used a platinum catalyst containing the P-chiral phosphine

benzylmethylphenyl phosphine obtaining up to 18.6% optical yield in the

reduction of t-butylphenyl ketone. Since these first reports many Ir, Rh and Ru

based catalysts have been developed that give high stereoselectivity.[62;82] But

also the, in the classical asymmetric hydrogenation less common, metals like

Cu,[83;84] Co[85] and Fe[85;86] have been successfully used in the asymmetric

hydrosilylation of ketones.

In a recent paper by Inagaki et al.[85] the use of bis(oxazolinylphenyl)amine

(bopa, Figure 24) ligands in the Co and Fe catalyzed hydrosilylation of

acetophenones is described. They were able to reach full conversions and

excellent ee’s of up to 98 and 88% using cobalt and iron, respectively.

Figure 24: The Co- and Fe-Bopa catalysts (1.21) as used by Inagaki et al. in the
hydrosilylation of acetophenones.[85]

Until the beginning of 2010, only one paper had been published in which the use

of monodentate ligands in the hydrosilylation of ketones was reported. In 2001 it
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were Suárez et al.[87] which reported the use of monodentate phosphite ligands

obtaining up to 58% ee and 94% conversion in the rhodium-catalyzed

hydrosilylation of acetophenone. It took till 2010 before Junge et al. improved

this result using the from their group well known monodentate phosphepine

ligands.[88] They obtained good yields and up to 96% ee in the asymmetric

hydrosilylation of a broad range of ketones.[84]

1.4.4 Biocatalytic reductions

Besides chemical ways of reducing ketones also a biochemical pathway is

possible. The enzymes that are capable of reducing ketones into alcohols are

usually called alcohol dehydrogenases (ADH’s) but are also known under the

names ketoreductases and carbonyl reductases. Interesting enzymes have been

identified in a large number of bacteria, yeasts and fungi. Ways of doing

biochemical transformations can be divided into two main strategies:

1) Using whole cells

2) Using isolated enzymes

For both methods applies that the ketone is reduced by an enzyme with the

consumption of a co-factor molecule (usually NADH or NADPH). When using

whole cells, this co-factor is regenerated by other enzymes present in the cells

but when isolated enzymes are used this co-factor has to be added

stoichiometrically, which is very expensive, or a co-factor recycling system has

to be added to the reaction in order to reduce the NAD(P)+ back to NAD(P)H.
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Figure 25: General scheme for biocatalytic reduction of ketones.

Several recycling systems are in use nowadays, like formate dehydrogenase,

which transforms a molecule of formate into CO2 and OH– forming back one

molecule of NAD(P)H from NAD(P)+. In a similar fashion phosphite

dehydrogenase can be used regenerating NAD(P)H while transforming a

phosphite anion into a phosphate. The preferred recycling system however, uses

the enzyme glucose dehydrogenase (GDH) to convert NAD(P)+ back to

NAD(P)H using one molecule of glucose which is converted into gluconic acid.

The reason this system is preferred is the fact it is highly stable, active and it

accepts both cofactors. Drawbacks of this system are firstly that in order to

control the pH of the reaction medium the formed gluconic acid has to be

neutralized by addition of a base during the reaction, secondly GDH is not very

cheap. A cheaper method of reducing NAD(P)+ back to NAD(P)H is by using an

alcohol dehydrogenase (ADH) to oxidize ethanol or IPA to acetaldehyde or

acetone, respectively. Drawback of this method is the low oxidation potential

which makes it only available for the reduction of activated ketones.[89]

Over the years, several ADH’s have been identified and used in carbonyl

reductions reactions resulting in good conversions and excellent ee’s for a

variety of ketones[90;91] like acetophenones,[92-94] alkyl ketones,[93]

benzophenones,[95] and α-ketoesters.[96;97] Despite the good progress that has

been made, the major drawback of biocatalytic reactions still remains. Most of

the enzymes used in carbonyl reduction have a fairly narrow substrate scope that

gives good to excellent ee’s. Even a small difference in substitution pattern (e.g.

going from an H atom to an F atom) can lead to a significant drop in enzyme

activity and ee. Also the fact that usually only one of the two enantiomers of the
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product is accessible when using a particular enzyme can pose a problem and is

something that can easily be overcome in chemical asymmetric catalysis by

simply changing the enantiomer of the ligand used in the catalyst.

1.5 Phosphoramidites

As described above, phosphoramidite ligands were in 2000 one of three classes

of monodentate ligands which induced excellent enantioselectivities in the

rhodium catalyzed asymmetric olefin hydrogenation.[30] Since then, their easy

synthesis and high structural variability have made them interesting ligands for a

large number of asymmetric transformations which were recently extensively

reviewed.[98]

1.5.1 Synthesis of phosphoramidite ligands

One of the major advantages of the use of monodentate phosphoramidites over

the commonly used bidentate phosphorus ligands lies in their synthesis. Where

the synthesis of the bidentate ligands requires multiple steps, including some

very tedious ones,[99] the phosphoramidites can be readily synthesized in two or

three steps. There are different routes towards the various phosphoramidites but

the most common one, as depicted in Figure 25, starts off by a reaction of

inexpensive, enantiopure, bis-β-naphthol in refluxing PCl3 overnight to form the

phosphochloridite. After removal of the excess PCl3, the resulting chloridite is

redissolved in toluene and by adding the appropriate amine in combination with

Et3N, as an HCl scavenger, the phosphoramidite ligand is formed in moderate to

high yields. This simple two step synthesis route also proved to be very well

suited to be automated thus making it very easy to screen a large number of

ligands in a short period of time.[100-102]
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Figure 25: General scheme of the most common way of synthesizing phosphoramidite
ligands. Refluxing the diol overnight in PCl3 to form the phosphoryl chloride to which in
the presence of Et3N the desired amine can be coupled.

It is possible also, to start the synthesis of a phosphoramidite by transforming an

amine into its dichloroaminophosphine and then adding the diol.[103]

A third alternative is to perform a transamination by taking a phosphoramidite,

for instance MonoPhos, treat it with tetrazole and another amine. This results in

an almost quantitative exchange of the amine groups.[104]

Figure 26: Three ways of synthesizing a phosphoramidite ligand. (I) Formation of the
phosphoryl chloride from the diol followed by reaction with the desired amine. (II)
Formation of the “PCl2N” compound which is then reacted with the appropriate diol. (III)
Synthesis of MonoPhos and subsequent transamination in tetrazole to get the desired
ligand.

Of course, phosphoramidite ligands are not restricted to have a bis-naphthol

backbone. Several other diol backbones (see Figure 27) have been used

successfully in phosphoramidite synthesis. Among them substituted bis-

naphthols (1.22), biphenols (1.23), cathechol (1.24) and others.[30;105-108] The

ligands have been used with great success in several asymmetric reactions.
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Figure 27: Examples of (a)chiral backbones, 8H-bis-β-naphthol (1.22), a biphenyl (1.23),
catechol (1.24) and taddol (1.25), which have been used successfully in the synthesis of
phosphoramidites.

1.5.2 Use of phosphoramidites in asymmetric hydrogenations

Since the discovery of the phosphoramidites as excellent ligands in the

asymmetric hydrogenation of dehydroamino acids[30] a range of different

substrates has been successfully hydrogenated using a catalyst based on

phosphoramidites.[38;39;105;107-116] A few examples of successful rhodium

catalyzed asymmetric hydrogenations, in which a phosphoramidite was used as

chiral ligand, are depicted in Figures 29-34

Figure 28: Enamide hydrogenation using MonoPhos as chiral ligand according to Van
den Berg et al..[115]
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Figure 29: α-dehydroamino acid hydrogenation using MonoPhos, PipPhos or MorfPhos
as chiral ligand by Van den Berg et al. and Bernsmann et al..[30;105]

Figure 30: β2-dehydroamino acid hydrogenation using 3-3’-dimethyl PipPhos according
to Hoen et al..[110]

Figure 31: carbamate hydrogenation using PipPhos according to Panella et al..[112]

Figure 32: Itaconic acid methyl ester hydrogenation using MonoPhos according to Van
den Berg et al..[116]

A procedure was reported in which a phosphoramidite ligand was made water-

soluble by attaching polyethyleneglycol units onto the backbone of the ligand. In

this case good results (see Figure 33) were obtained in the asymmetric

hydrogenation of dehydroalanine.[109]
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Figure 33: Asymmetric hydrogenation using a water soluble phosphoramidite ligand by
Hoen et al.[109]

Phosphoramidites have not only been used in the rhodium catalyzed

hydrogenation of olefinic double bonds. As already stated above, also in the

iridium catalyzed asymmetric hydrogenation of the C=N double bonds of

quino(xa)lines[38;111] and N-aryl imines[39] they perform excellent. When PipPhos

was used as a ligand in combination with its hydrochloric salt, full conversions

were reached in all three types of hydrogenations and ee’s up to 99% could be

obtained.

Figure 34: Quino(xa)line hydrogenation by Mršić et al.[38;111]

Figure 35: Imine hydrogenation by Mršić et al.[39]

When the iridium catalyzed hydrogenation of a dehydroamino acid was

performed using a phosphoramidite based on a biphenol backbone, an interesting

observation was made. It was found that when a biphenyl based Monophos type
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phosphoramidite was used with t-butyl side groups on the 3 and 3’ position only

one monodentate ligand was needed per iridium for excellent stereoselectivity

(Figure 36).[108] This was the first report in which only one monodentate ligand

per metal still gives excellent result in asymmetric hydrogenation.

Figure 36: Iridium catalyzed hydrogenation of dehydroamino acids using only one
monodentate ligand.[108]

1.5.3 Mixed ligands

Looking for a way to further improve the results in the asymmetric

hydrogenation using monodentate ligands, some groups decided to see what

would be the result if two different monodentate ligands are added to the catalyst

precursor. In this case several chiral catalytic species can be formed; the two

homo complexes, each containing two of the same ligands and a hetero complex

in which both ligands are present once.[117-122]

Figure 37: The different metal ligand complexes that are formed when using a mixed
ligand approach.

Depending on the most active and selective combination being formed by a self-

assembly process in the reaction mixture, the reaction rate and selectivity are

changed. This can lead to a great improvement in ee’s and reaction rate, even

when an achiral phosphine is used as second ligand. Hoen et al. were able to

improve the conversions and ee’s in the asymmetric hydrogenation of α,β-

disubstituted unsaturated acids by adding simple achiral triaryl phosphines to the

reaction mixture. In this way they were able to increase the rate up to tenfold and
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induce a rise in ee from 2% to 85% by simply adding triphenylphosphine to the

mixture. After a screening of different phosphines, it was found that when a

bulky triarylphosphine was added, the ee went even further up to an excellent

99%. The same positive influence of an additional achiral triarylphosphine was

found in the Ir-phosphoramidite catalyzed hydrogenation of quino(xa)lines and

N-aryl imines.[38;39;111] How the mixed ligand approach will affect the outcome of

the reaction is, however, not predictable beforehand and it is definitely not a

guarantee for better results (vide infra).

1.6 Goal of this research

In view of the excellent results obtained with monodentate phosphoramidite

ligands in the asymmetric hydrogenation of olefins, imines and heteroaromatics,

the logical next step was to study the enantioselective hydrogenation of C=O

double bonds using phosphoramidite ligands. Thus, we set out to develop one or

more catalytic systems for the asymmetric, ruthenium or iridium catalyzed,

hydrogenation of acetophenones, α- and β-ketoesters and α-aryl aldehydes.

1.7 Outline of the thesis

In this thesis the use of phosphoramidites as ligands in the hydrogenation of

several carbonyl compounds is described. Chapter two will focus on the

hydrogenation of simple aryl ketones, employing the classical Noyori type

catalyst using a combination of a chiral phosphorus ligand and a chiral

diamine.[44]

In chapter three, a switch is made from ruthenium to iridium as the metal of

choice. Ir/PPA and Ir/SPO catalysts were tested in the asymmetric

hydrogenation of a simple ketone.

In chapter four, the switch is made back again to ruthenium and the research

focuses on the use of the phosphoramidite ligands in the asymmetric

hydrogenation of α- and β-ketoesters.
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The good results that were obtained with the experiments in chapters two and

four are further explored in chapter five. In this chapter the results of the

asymmetric hydrogenation of α-substituted β-ketoesters and α-aryl aldehydes

under DKR conditions are described.

In the last chapter an overview is given of the conclusions drawn from this work

and an outlook for further research in the field of asymmetric hydrogenations

using monodentate (phosphoramidite) ligands in academia and industry.
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Chapter 2

Ruthenium Catalyzed Asymmetric

Hydrogenation of Aryl Alkyl Ketones

using Phosphoramidite Ligands

Abstract

In this chapter the use of a ruthenium complex based on a chiral diamine and a

monodentate phosphoramidite as a catalyst for the asymmetric hydrogenation of aryl

alkyl ketones is described. The best catalyst contains 3,3’-dimethyl PipPhos and 1,2-

diamino-cyclohexane leading to full conversion and over 95% ee for a range of different

substrates. The exact structure of the complex is not yet fully established, although a lot

of evidence points towards a dimeric precatalyst containing just one phosphoramidite

ligand. We were able to prove that two phosphoramidite ligands per ruthenium are

necessary in order to obtain a high ee.

The work described here is covered by patent WO2008-077610 B. Stegink and J.G. de

Vries, “Asymmetric hydrogenation of prochiral compounds.”

Parts of this chapter are published: B. Stegink, L. van Boxtel, L. Lefort, A. J. Minnaard,

B. L. Feringa and J. G. de Vries, Adv.Synth.Catal., 2010, 352 2621-2628.
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2.1 Introduction

Even after the discovery of ruthenium-binap as catalyst for the asymmetric

hydrogenation of functionalized ketones by the group of Noyori,[1;2] the

acetophenone type ketones remained a problematic substrate for many years.

Figure 1: Noyori catalyst with an easy to hydrogenate, anchored, β-ketoester and a
difficult to hydrogenate, non-anchored, acetophenone.

The reason for this was the fact that in order to get good results, when using the

first Noyori type catalyst 2.1, the substrate needed to possess an anchoring group

which would keep the substrate in close proximity of the metal long enough for

the reaction to take place. As is shown in Figure 1, acetophenone, and other non-

functionalized ketones, do not possess such an anchoring group and therefore the

reduction was neither efficient nor selective.

Figure 2: The Noyori catalysts for the asymmetric hydrogenation of functionalized
ketones, without diamine (2.1) and for non-functionalized alkyl aryl ketones, with
diamine. (2.2)

It took until 1995 before Noyori and co-workers were able to hydrogenate these

substrates with high ee’s.[3;4] It was found that adding a chiral 1,2-diamine to the

catalyst improved the outcome of the reaction dramatically.

Besides the effect of the diamine they also found out that upon adding a small

amount of base to the reaction mixture they were able to speed up the reaction
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more than a 6000 fold compared to the original system without diamine and base,

creating one of the most efficient catalysts in homogeneous catalysis.[5]

One of the drawbacks of this type of catalysts is that substrates which do not

tolerate the presence of a base in the reaction can not be hydrogenated since the

base is needed for the activation of the catalyst. This problem was overcome by

treating the catalyst prior to use with 25 equivalents of NaBH4.
[6]

Figure 3: The BH4-type Noyori catalyst which can be used under base-free conditions.

This led to a catalyst in which the two chlorides were replaced by a hydride and

a η1-HBH3 group. This catalyst proved to be active in the hydrogenation of non-

functionalized alkyl aryl ketones without adding a base to the mixture.

Since these discoveries numerous groups have developed their own catalysts for

the hydrogenation of acetophenones.[7;8] The differences between these systems

most often are found in the variation of the P-ligands. A few commonly used P-

ligands are depicted in Figure 4.

Figure 4: Representative examples of bidentate phosphine ligands that have been used
successfully in the asymmetric hydrogenation of alkyl aryl ketones.[8]

Surprisingly, only a few chiral diamines have ever been used as ligands. Almost

all groups use one of the three chiral 1,2-diamines depicted in Figure 5, 1,2-
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diphenyl ethylenediamine (DPEN), 1,2-diamino cyclohexane (DACH) or 1,1-

dianisole-2-isopropyl ethylenediamine (DAIPEN).

Figure 5: The three diamines most commonly used in the hydrogenation of
acetophenones.

There is however one diamine variation which increased the versatility of the

Noyori catalyst even further. The group of Noyori introduced the, non-chiral, α-

picolylamine (2.4) as an amine which made it possible to hydrogenate even the,

until then, very difficult substrate pinacolone (2.6).[9] They showed that by using

this amine instead of the classically used diamines these tert-butyl type

substrates could be hydrogenated in good yield and excellent enantioselectivities.

Figure 6: Picolylamine as used by Noyori to facilitate the hydrogenation of tert-butyl
ketones like pinacolone.

2.2 The mechanism

The hydrogenation of acetophenone using a Noyori-type catalyst proceeds via a

non-classical mechanism. In Figure 7 it can be seen that no direct interaction

between the substrate and the metal center of the catalyst takes place. Instead the

substrate binds in an outer sphere mode to the ligands of the catalyst before

being reduced.[10-14] The ruthenium dichloride catalyst precursor (I) is activated
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by the first equivalents of hydrogen under the influence of the base present

turning it into the dihydride species (II). To this complex, the substrate binds in

an outer sphere fashion in which one of the hydrides on the ruthenium center

coordinates to the more electrophilic carbon of the carbonyl and a proton of the

diamine coordinates to the more electronegative oxygen atom. In this way an,

energetically favored, six-membered transition state is formed (TS1).
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Figure 7: Mechanism of hydrogenation of alkyl aryl ketones catalyzed by a Noyori type
catalyst.

The hydride and the proton are transferred to the substrate and the reduced

product is released. To the resulting complex (III) a hydrogen molecule binds

resulting in complex (IV) which then splits in one of two possible ways. Either it

heterolytically splits and regenerates the active catalyst via a four-membered

ring transition state (TS2), or the hydrogen splits heterolytically donating its

hydride to the ruthenium and its proton gets transferred to a solvent molecule
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which then donates its proton to the amine group regenerating the active

complex via a six-membered transition state (TS3). Whether the regeneration

goes via TS2 or TS3 depends on the nature of the solvent. In aprotic solvents the

route via TS2 will be followed whereas in protic solvents preferentially the TS3

route will be followed.

2.3 Monodentate ligands in acetophenone-type asymmetric ketone

hydrogenation

Until now only three reports are known in which a monodentate P-ligand is used

for the asymmetric hydrogenation of alkyl aryl ketones, all in combination with

a diamine co-ligand. The first report was from the group of Wills in 2004[15-17]

who described full conversions and excellent ee’s for a range of acetophenones

when using phosphonite (2.7) type ligands.

The second report came from the group of Ding[18] who was able to achieve

good chiral induction as well. Interestingly they used a non-chiral monodentate

phosphine and only a chiral diamine. They were able to reach up to 95% ee in

the hydrogenation of acetophenone using the bulky tris-(3,5-di(3,5-xylyl)-

phenyl)phosphine (2.8).

The third and final example came from the group of Lemaire[19] who used a P-

chiral monodentate phosphine ligand 2.9 with which they were able to get full

conversion and up to 61% ee in the hydrogenation of acetophenone, but only

when they use 1,4-butanediamine as co-ligand.

Figure 8: The monodentate P-ligands as used by the groups of Wills (2.7), Ding (2.8)
and Lemaire (2.9) in the hydrogenation of acetophenones.
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2.4 Goal of the research

Our group already has a lot of experience in using monodentate ligands in

asymmetric hydrogenation reactions.[20] As highlighted in chapter 1,

phosphoramidite ligands are an interesting class of ligands to use because of

their structural versatility, easy synthesis which is highly suited for high

throughput screening and relatively cheap starting materials. We set out to

further optimize the preliminary results obtained in DSM and create a

ruthenium-based catalyst containing monodentate phosphoramidite ligands

which would be able to hydrogenate acetophenone-type ketones in good yields

and high ee’s. The results obtained in this search for a good catalyst will be

discussed in this chapter.

2.5 Results

Early 2005 some promising results were obtained at DSM in the first attempts of

the asymmetric hydrogenation of acetophenone using a ruthenium catalyst

containing phosphoramidite ligands. When using a ruthenium catalyst containing

two phosphoramidites and a (chiral) diamine they were able to get up to 61% ee

in the hydrogenation of acetophenone, at 50 bar and 50 oC.[21] To further

optimize the results previously obtained in DSM we started with a

phosphoramidite ligand screening.

As a starting point for the preparation of the pre-catalyst we used the catalyst

preparation first described by Noyori[3] which has since then been used by most

groups working in this field.
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Figure 9: Preparation of the precatalyst for the hydrogenation of ketones.

As can be seen in Figure 9 the pre-catalyst was made by adding 4 equivalents of

a monodentate phosphoramidite to the dimeric ruthenium precursor

[RuCl2(cymene)]2. This mixture was heated in DMF for 3 h at 90 oC. After

cooling the mixture down to room temperature, two equivalents of the desired

1,2-diamine were added and after overnight stirring the precatalyst was obtained

by evaporating the DMF, stripping the residue twice with toluene and washing it

twice with hexane, which should wash away any free ligand still present. The

obtained powder was used directly in the hydrogenations. The precatalyst would

be activated by the first equivalents of hydrogen gas after addition of base to the

reaction mixture as has been previously shown in the mechanistic studies of

similar catalysts (see also Figure 7 for the reaction mechanism).[12]

2.5.1 Screening of ligands

The search for a fast and enantioselective ketone hydrogenation catalyst started

with a screening of phosphoramidite ligands. They were tested as P-ligands in

the hydrogenation of acetophenone. As standard conditions 0.1 mol% ruthenium

catalyst was used in the presence of 1 mol% of KOtBu. The reaction mixtures

were kept stirring in the Endeavor, a unit containing eight small stirred

autoclaves, for 16 h under a hydrogen pressure of 25 bar. The results of this

initial screening are depicted in Table 1. In all cases the catalysts displayed

perfect chemoselectivity towards the carbonyl group, (partial) reduction of the

aryl groups was never observed. The first try, using normal PipPhos (L1)

immediately gave full conversion and an ee of 52%. In an attempt to improve
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this ee a few other ligands were tested. The first thing we tried was to investigate

whether a bidentate phosphoramidite ligand would give better selectivities. We

tested three bidentate ligands (L3, L4 and L8) with no success. In all three cases

the ee turned out to be lower compared to the result with PipPhos as ligand. This,

in combination with the fact that none of the reactions went to completion within

the 16 h reaction time, made us decide to shift our focus back to the

monodentate ligands.

The “Leggy”-ligand L2 with a more bulky amine did also not give an

improvement in terms of ee. Going to a smaller backbone by using a catechol

based ligand L5, which gave good results in the olefin hydrogenations,[22] proved

to be the worst choice of all, giving only 40% conversion and a racemic product.

When, however, the backbone of the ligand was made bulkier, instead of smaller,

by adding two methyl groups on the 3 and 3’ position of the naphthyl unit the ee

went up significantly. When 3,3’-dimethyl MonoPhos (L6) was used, the ee

already increased to 90%, even exceeding the result obtained with Binap (entry 1)

as a ligand. With DiMePip (L7) the ee went up even further to reach an excellent

97%.

Switching from the diamine DPEN to DACH proved not to be of influence on

the outcome of the reaction (entry 8 vs. entry 11). The use of the non-chiral

diamine 1,2-ethylenediamine (entry 13), however, made the importance of the

chirality of the diamine co-ligand in the catalyst very clear, as this change

resulted in a drop in ee to just 34%. Switching the stereochemistry of the

diamine resulted in a drop in ee from 97% to 52% (entries 11 and 12). These

results made it clear that there is a matched combination, with both the

phosphoramidite and the diamine of the same absolute configuration, and a

mismatched combination, with the phosphoramidite and the diamine both of

opposite absolute configurations, of phosphoramidite and diamine and the best

selectivities are achieved only when the phosphoramidites and diamine present

are of the same absolute configuration.

To make sure the reaction is only operating through molecular hydrogen and no

other background reactions with the substrate, such as transfer hydrogenation,

take place, we also tried the reduction of acetophenone in the absence of

hydrogen pressure. As can be seen in entry 14 no reaction takes place at all,

establishing it is really a reduction by molecular hydrogen we are looking at.
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Table 1: Ligand screening in the acetophenone hydrogenation.

Ligand Diamine Conversiona (%) Eea (%)

1 (S)-Binap (S,S)-DPEN 100 87 (R)

2 (S)-L1 (S,S)-DPEN 100 52 (R)

3 (S,RR)-L2 (S,S)-DPEN 100 41 (R)

4 (S)-L3 (S,S)-DPEN 50 12 (R)

5 (S)-L4 (S,S)-DPEN 20 10 (R)

6 (R,R)-L5 (R,R)-DPEN 40 rac.

7 (R)-L6 (R,R)-DPEN 100 90 (S)

8 (R)-L7 (R,R)-DPEN 100 97 (S)

9 (S)-L8 (S,S)-DPEN 13 41 (R)

10 (S)-L1 (S,S)-DACH 100 55 (R)

11 (R)-L7 (R,R)-DACH 100 97 (S)

12 (R)-L7 (S,S)-DACH 100 52 (S)

13 (R)-L1 Ethylenediamine 100 34 (S)

14b (R)-L7 (R,R)-DACH 0 Nd

All reactions were carried out in the Endeavor parallel autoclave on 2 mmol of 2.10a in a
total volume of 4 ml iPrOH with 0.1 mol% catalyst in the presence of 1 mol% KOtBu.
Hydrogen pressure was applied (25 bar) for 16 h while the reaction was stirred at room
temperature. a) Conversion and ee were determined using 1H-NMR and chiral GC,
respectively. b) No hydrogen pressure applied.
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2.5.2 Substrate scope

Having established the best phosphoramidite-diamine combination, DiMePip

and DACH, the scope of the reaction was screened. As can be seen in Table 2

the system works very well for a large range of aromatic ketones. With most

substrates it is possible to reach full conversion within 16 h. Only a few

substrates are not hydrogenated to completion. o-Hydroxy acetophenone (2.10c)

did not react at all which is probably due to the acidity of the substrate. The base

that is added to the reaction mixture will immediately react with the phenol

group of the substrate which prevents the catalyst from being activated. If the

protected substrate, o-methoxy acetophenone (2.10d), is used the activity is

restored again. Other problematic substrates are the sterically demanding 2-

methyl-propiophenone (2.10m, entry 14) and the two substrates bearing

strongly electron withdrawing substituents (2.10o-p entries 16 and 17). The

selectivity of the hydrogenations is mostly excellent (ee >90%) except for the

meta-substituted substrates where the enantiomeric excess drops.
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Table 2: Substrate scope of the aromatic ketone hydrogenation.

Substrate R1 R2 Conversiona (%) Eea (%)

1 2.10a H Me 100 97 (S)

2 2.10b o-Me Me 100 97 (S)

3 2.10c o-OH Me 0 Nd

4 2.10d o-OMe Me 100 96 (S)

5 2.10e p-OMe Me 100 97 (S)

6 2.10f p-Cl Me 100 95 (S)

7 2.10g m-Br Me 100 65 (S)

8 2.10h m-Cl Me 100 83 (S)

9 2.10i m-OMe Me <10 Nd

10 2.10j 3,5-CF3 Me 100 95 (S)

11 2.12

1-acetonaphthone

100 93 (S)

12 2.13

2-acetonaphthone

100 94 (S)

13 2.10k H Et 100 91 (S)

14 2.10m H i-Pr <10 Nd

15 2.10n H n-Pr 100 93 (S)

16 2.10o H CH2Cl <10 Nd

17 2.10p H CF3 <10 Nd

18 2.10q o-Me Ph 100 15 (R)

All reactions were carried out in the Endeavor parallel autoclave on 2 mmol substrate in
a total volume of 4 ml iPrOH with 0.1 mol% catalyst, containing DiMePip and DACH as
ligands, in the presence of 1 mol% KOtBu. Hydrogen pressure was applied (25 bar) for
16 h while the reaction was stirring at room temperature. a) Conversion and ee were
determined using 1H-NMR and chiral GC respectively.
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After testing a range of aromatic ketones we decided to investigate if the catalyst

would also be able to hydrogenate alkyl ketones. As can be seen in Table 3

varying results were obtained.

Table 3: Results in the hydrogenation of aliphatic ketones.

Entry Substrate R1 R2 Conversiona (%) eea (%)

1 2.6 Me t-Bu 50 41 (S)

2 2.16 Me Bu 100 <5

3 2.17 2-cyclohexenone 85 <5

All reactions were carried out in the Endeavor parallel autoclave on 2 mmol substrate in
a total volume of 4 ml iPrOH with 0.1 mol% catalyst, containing DiMePip and DACH as
ligands, in the presence of 1 mol% KOtBu. Hydrogen pressure was applied (25 bar) for
16 h while the reaction was stirring at room temperature. a) Conversion and ee were
determined using chiral GC.

In the case of the, known to be difficult[9], substrate pinacolone (2.6, entry 1) the

reaction did not proceed for more than 50%. There was some selectivity towards

one of the two enantiomers but with an ee of 41% this is not very impressive.

The hydrogenation of 2-hexanone (2.16, entry 2) did go to full completion.

However, since no significant ee was found, the small difference between the

methyl and butyl groups of the molecule apparently made it almost impossible

for the catalyst to create any selection towards one of the two enantiomers. In the

case of 2-cyclohexenone (2.17, entry 4) the conversion, although not complete,

was good, also the hydrogenation went with complete selectivity for the

carbonyl group. Products with a saturated cyclohexane ring were not detected.

Sadly, no significant ee was detected in this case after 16 h of reaction.
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2.5.3 Mixed ligands

As already mentioned in chapter 1, it is known from earlier work by the groups

of Reetz[23;24] and our own[25;26] that mixing of monodentate chiral ligands with

monodentate (a)chiral ligands can have a dramatic influence on the rate and

enantioselectivity in the asymmetric hydrogenation of olefins. By mixing

different monodentate ligands together in the reaction mixture, different metal

ligand combinations can be formed (see Figure 10). In some cases the hetero

combinations formed can outperform the homo combinations giving rise to

faster and more selective reactions.

Figure 10: Schematic representation of the metal ligand combinations formed when
using a mixed ligand approach.

We decided to examine if the same observations could be made in the

hydrogenation of aryl ketones. To see if the mixed ligand approach would have

the same positive outcome as in the olefin hydrogenations we preformed a

dimeric precatalyst (vide infra) containing one ligand (R)-L7 and one (R,R)-

DACH molecule per ruthenium center. This dimeric complex was used in the

hydrogenation of acetophenone with extra ligand added to it.

Table 4: Results of adding an achiral phosphine ligand.

Added

PPh3
a

Added

DiMePipa Conversionb Eec (%)

1 0 1 full (16 h) 97

2 1 0 full (13 h) 52

3 2 0 full (8 h) 28

Substrate 2.10a was hydrogenated in iPrOH under 25 bar H2 pressure, using 1 mol% of
KOtBu and 0.05 mol% “[RuCl2(L7)(DACH)]2 ” to which the given amount of PPh3

and/or DiMePip were added prior to pressurizing the autoclave. a) Given number is
number of equivalents wrt the amount of ruthenium. b) Conversions were monitored
using the Endeavor parallel autoclave gas uptake graph c) ee was determined via chiral
GC.



Ruthenium Catalyzed Asymmetric Hydrogenation of

Aryl Alkyl Ketones using Phosphoramidite Ligands

59

As can be seen in Table 4 the results were not the same as for the olefin

hydrogenation. The dimeric complex performed equally well, compared to the

previous results, if an extra equivalent of L7 was added to the reaction mixture.

Upon adding triphenylphosphine to the reaction mixture the reaction rate was

enhanced. Two equivalents of PPh3 added to the reaction mixture made the

reaction time drop by 8 h. The product, however, had a much lower ee compared

to the product of the reaction without added triphenylphosphine. It looks like the

complex with the highest catalytic activity bears achiral triphenylphosphine

ligands, which lead to a higher reaction rate but also less selectivity.

2.6 Characterization of the complex

When analyzing the complex we used for the hydrogenation experiments

containing two phosphoramidites and a diamine ligand per ruthenium center, the

first observations we made were the two absorptions in the 31P-NMR spectrum

(Figure 11). The chemical shift of the two absorptions corresponded nicely to

that of free ligand (147 ppm) and to that of a phosphoramidite coordinated to

ruthenium (173 ppm).[27;28] This observation was somewhat puzzling since we

expected only one absorption, namely that of bound phosphoramidite ligand.

Figure 11: 31P-NMR (CDCl3) of the complex made with two PPA's per Ru center.

The mass spectrum that was recorded from the complex did not show the

expected mass of 1104 [M-Cl]+ corresponding to the ruthenium complex

containing two phosphoramidite ligands, a diamine and one chloro atom. Instead

a peak was found at a much higher m/z ratio of 1389. The isotope pattern of the
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spectrum suggested the presence of a dimeric ruthenium complex (2.21)

containing only one phosphoramidite ligand per ruthenium center in

combination with one diamine and two chloride ions.

Figure 12: Dimeric complex based upon the mass spectrum results.
With L = monodentate phosphoramidite ligand.

When we tried to preprepare the complex with only one ligand per ruthenium

center instead of two, a complex was obtained which was still an active catalyst

(see Table 5, entry 1). As can be seen in Figure 13 the 31P-NMR of this complex

still showed the presence of some free phosphoramidite ligand in solution,

indicating an indeed very weak coordination of the phosphoramidite to the

ruthenium. It was previously found in DSM, that after an overnight washing step

with hexane after the complex preparation, no phosphoramidite was found to be

present in the complex.[29] This also indicates weak ligand coordination to the

ruthenium center.

Figure 13: 31P-NMR (CDCl3) of complex made with one equivalent PPA per Ru center.

The complex obtained with the adjusted preparation method of adding only one

phosphoramidite per ruthenium proved to be able to get the hydrogenation

reaction to completion, although with lower selectivity as can be seen from the

result in entry 1 in Table 5.
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Table 5: Adding extra ligand to the preformed catalyst.

“catalyst”a Extra ligandb Conversionc (%) Eed (%)

1 RuCl2(L)(DACH) 0 100 (18h) 75

2 RuCl2(L)(DACH) 0.5 (DiMePip) 100 (17h) 90

3 RuCl2(L)(DACH) 1.0 (DiMePip) 100 (16h) 97

4 RuCl2(L)(DACH) 1.5 (DiMePip) 100 (14h) 89

5 RuCl2(L)(DACH) 0.5 (PPh3) 50 (24h) 31

6 RuCl2(L)(DACH) 1.0 (PPh3) 50 (24h) 38

Substrate 2.10a was hydrogenated in iPrOH under 25 bar H2 pressure, using 1 mol% of
base and 0.1 mol% “Ru” to which the given amount of extra ligand was added prior to
pressurizing the autoclave. a) The catalyst was added as 0.05 mol% dimer; L = (R)-
DiMePip; DACH = (R,R)-DACH. b) given number is number of equivalents wrt the
amount of ruthenium. c) Conversions were monitored using the Endeavor parallel
autoclave gas uptake graph. d) ee was determined via chiral GC.

Adding one equivalent of ligand to the reaction mixture just before placing it in

the Endeavor proved to work in restoring the selectivity to the original. Adding

more than one extra equivalent led to an, although faster, less selective reaction

again. Surprisingly adding PPh3 in this case did not speed up the reaction, as was

the case when the catalyst was preprepared with two ligands per metal center,

but slowed it down significantly.

Since the mass spectrum did not give a conclusive results about the nature of the

complex we decided to try to grow crystals for X-ray analysis to get a better

insight into how the different ligands are arranged around the metal center. This

proved to be a difficult task. In the end we were able to grow some crystals

which were suitable for X-Ray analysis. To our surprise however, the X-Ray

structure showed no phosphoramidites were present at all bound to the metal

center but only the diamine was present together with one of the cymene
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molecules. Not finding any phosphoramidite in the crystal structure was very

surprising to us but does relate to the previously described findings done at DSM

where no phosphoramidite was found in the complex after a prolonged washing

step. Since the growing of the crystals took several days this could also been

seen as such a washing.

Experimental results, however, still show that the presence of the

phosphoramidites play a crucial role in the selectivity of the reaction. As is

clearly shown in Table 5, adding extra ligand to the reaction mixture is

necessary in order to reach the optimal selectivity. This suggests that during the

catalytic cycle the ligands definitely play a role in the reaction and the selectivity

of the reaction is not only determined by the diamine. This is also suggested by

the different results obtained when different phosphoramidites are being used

(see Table 1). Despite the fact that the different analyses done on the complex,

NMR, mass and X-Ray, do not clearly show the presence of phosphoramidite

ligands around the metal, we think it is safe to say they are present around the

ruthenium center during the hydrogenation reaction.

2.7 Conclusions

It was found that phosphoramidite ligands can be used as ligands in the

asymmetric hydrogenation of aromatic ketones. When 3,3’-dimethyl PipPhos is

used in combination with DACH or DPEN, the ruthenium catalyzed

hydrogenations go to full conversion and provide the product with over 95% ee

for a range of acetophenone derivatives. The exact structure of the catalyst

turned out to be harder to prove than expected but all the results of the

hydrogenation experiments point towards a catalyst which carries two

phosphoramidite ligands per ruthenium in the catalytic cycle.
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2.8 Experimental

General remarks.

Starting materials were purchased from Aldrich, Alfa Aesar or Acros and used as

received unless stated otherwise. [RuCl2(cymene)]2 was bought from Strem and used as

received. (R)-3,3’-dimethyl bis-β-naphthol was kindly provided by DSM. All solvents

were reagent grade and, if necessary, dried and distilled prior to use. Column

chromatography was performed on silica gel (Aldrich 60, 230-400 mesh). TLC was

performed on silica gel 60/Kieselguhr F254.
1H and 13C NMR spectra were recorded on a

Varian AMX400 (399.93 MHz for 1H, 100.59 MHz for 13C and 161.9 MHz (1H-

decoupled) for 31P) spectrometer or a Mercury-200 (199.99 MHz for 1H and 50.3 MHz

for 13C). Mass spectra (HRMS) were performed on a Jeol JMS-600H.

Synthesis of (L7) (R)-1-(2,6-dimethyl-3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-

a']dinaphthalen-4-yl)piperidine; ((R)-DiMePipPhos)

(R)-3,3’-Dimethyl-bis-β-naphthol, (2 g. 6.4 mmol), was

dissolved in 10 ml of PCl3. After heating overnight at reflux

the excess of PCl3 was distilled of in vacuo. The residual solid

was subjected to azeotropic distillation with toluene (2 x 10

ml), affording the crude chlorophosphite.

The chlorophosphite was redissolved in toluene (10 ml). To the solution 2 ml Et3N (14.1

mmol, 2.2 equiv) was added, followed by 0.7 ml piperidine (7 mmol, 1.1 equiv) in small

portions. After two hours of stirring 10 ml MTBE was added. The resulting suspension

was filtered over Celite and concentrated. The residue was purified over SiO2 using

pentane : ethyl acetate (9:1) as eluent, affording 1.9 g (4.4 mmol, 68%) of the pure solid

white product.
1H (400 MHz, CDCl3) δ (ppm) 7.79-7.71 (m, 4H), 7.34-7.11 (m, 6H), 2.94-2.85 (m, 4H),

2.53 (d, J = 29 Hz, 6H), 1.51-1.47 (m, 2H), 1.39-1.28 (m, 4H); 31P (161 MHz, CDCl3) δ

(ppm) 143.0.

A typical precatalyst synthesis: Synthesis of [RuCl2((R)-3-3’-DiMe-PipPhos)2((R,R)-

DACH)]

A Schlenk flask was flame-dried and 62 mg [RuCl2(cymene)]2 (0.1 mmol) and 171 mg

(R)-3-3’-Dimethyl-PipPhos (0.4 mmol, 4 equiv.) were added. The Schlenk flask was

degassed by three cycles of vacuum/N2 and then put under N2 and the solids were

dissolved in 5 ml DMF. This mixture was heated for 3 h at 90 oC and subsequently the

mixture was cooled to room temperature and 23 mg (R,R)-DACH (0.2 mmol, 2 equiv.)
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was added. The solution was stirred overnight after which the DMF was evaporated

under reduced pressure. The resulting solid mass was subjected to azeotropic distillation

with toluene (2 x 5 ml) and washed twice with 5 ml hexane. The obtained solid was used

in hydrogenation reactions without further purification.
1H-NMR (400 MHz, CDCl3) δ (ppm): 8.05 (d, 1H, J = 36 Hz), 7.90-7.70 (m, 6H), 7.39-

7.11 (m, 13H), 5.87 (dd, 2H, J = 22 Hz, J = 120 Hz), 5.85 (d, 2H, J = 22 Hz), 2.95-2.51

(m, 15H), 2.37-2.36 (m, 6H) 1.99-0.79 (m, 50H). 31P-NMR (161 MHz, CDCl3): δ (ppm):

173, 147.

A typical precatalyst synthesis: Synthesis of [RuCl2(DiMePip)(DACH)]2

A Schlenk flask was flame-dried and 62 mg [RuCl2(cymene)]2 (0.1 mmol) and 85 mg

(R)-3,3‘-dimethyl PipPhos (0.2 mmol, 2 equiv.) were added. The Schlenk flask was

degassed by three cycles of vacuum/N2 and then put under N2. The solids were dissolved

in 5 ml DMF. This mixture was heated for 3 h at 90 oC. Subsequently the mixture was

cooled down to room temperature and 23 mg (R,R)-DACH (0.2 mmol, 2 equiv.) was

added. The solution was stirred overnight after which the DMF was evaporated under

reduced pressure. The resulting solid mass was subjected to azeotropic distillation with

toluene (2 x 5 ml) and washed twice with 5 ml hexane. The obtained solid was used in

hydrogenation reactions without further purification up on adding an extra equivalent of

ligand per ruthenium center.
1H-NMR (400 MHz, CDCl3) δ (ppm): 8.05 (d, 1H, J = 36 Hz), 7.90-7.70 (m, 6H), 7.39-

7.11 (m, 13H), 5.87 (dd, 2H, J = 22 Hz, J = 120 Hz), 5.85 (d, 2H, J = 22 Hz), 2.95-2.51

(m, 15H), 2.37-2.36 (m, 6H) 1.99-0.79 (m, 50H). 31P-NMR (161 MHz, CDCl3): δ (ppm):

173 (major), 147 (minor).

A typical procedure for the hydrogenation of acetophenones using [RuCl2(L)2(diamine)]

To a glass liner for the Endeavor, 2 mmol of substrate and 2 μmol of preformed catalyst

(0.1 mol%) were added. The compounds were dissolved in 4 ml i-PrOH. To the resulting

solution, 10 μl of a 1 M solution of KOtBu in i-PrOH was added just prior to inserting

the liner into the Endeavor parallel autoclave. After the Endeavour was tightly closed,

the system was purged 3 times with 5 bar N2 and 3 times with 5 bar H2, while stirring at

400 rpm. After the six purging cycles the stirring speed was increased to 750 rpm and a

pressure of 25 bar H2 was applied. This situation was kept for 24 h, subsequently the

Endeavor was carefully vented and opened and the glass liner was taken out. From the

reaction mixture a sample was taken and run over a silica plug to prepare a GC sample.
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A typical procedure for the hydrogenation of acetophenones using [RuCl2(L)(diamine)]2

To a glass liner for the Endeavor, 2 mmol of substrate was added. To the substrate 1

μmol of preformed complex (0.05 mol%) and 2 μmol ligand (0.1 mol%) were added.

Everything was dissolved in 4 ml i-PrOH. Just prior to inserting the liner into the

Endeavor 10 μl of a 1 M solution of KOtBu in i-PrOH was added to the mixture. After

the Endeavour was tightly closed the system was purged 3 times with 5 bar N2 and 3

times with 5 bar H2, while stirring at 400 rpm. After the six purging cycles the stirring

speed was increased to 750 rpm and a pressure of 25 bar H2 was introduced. This

situation was kept for 24 h, subsequently the Endeavor was carefully vented and the

glass liner taken out. From the reaction mixture a sample was taken and run over a silica

plug to prepare a GC sample.

All alcohols described below were obtained after a hydrogenation using a

[RuCl2(L)(diamine)]2 type catalyst in which L = (R)-3-3’dimethyl PipPhos and the

diamine (R,R)-DACH. To the reaction mixture one equivalent of (R)-3-3’-dimethyl

PipPhos per ruthenium center was added.

(S)-1-phenyl ethanol (2.11a)[16] was obtained as a colorless oil (full conversion, 92%

isolated yield, 97% ee), 1H-NMR (200 MHz, CDCl3) δ (ppm): 7.37-7.26 (m, 5H), 4.85

(q, J = 6.4 Hz, 1H), 2.49 (s, 1H), 1.48 (d, J = 6.4 Hz, 3H). 13C-NMR (50 MHz, CDCl3) δ

(ppm): 144, 127, 126, 124, 68, 23. [α]D = −48.9 (c 1.0, CHCl3). Ee was determined using

a Chiralsil DEX-CB column (25m x 250 μm x 0.25 μm) Tinlet = Tdet = 250 oC; Tstart = 110
oC (isotherm); TS = 7.5 min, TR = 7.2 min.

(S)-1-(2-methyl phenyl) ethanol (2.11b)[16] was obtained as a light yellow oil (full

conversion, 96% isolated yield, 97% ee), 1H-NMR (200 MHz, CDCl3) δ (ppm): 7.52 (d,

J = 7.9 Hz, 1H), 7.27-7.02 (m, 3H), 5.17 (q, J = 6.4 Hz, 1H), 2.35 (s, 3H), 1.76 (bs, 1H),

1.47 (d, J = 6.4, 3H Hz). 13C-NMR (50 MHz, CDCl3) δ (ppm): 144, 134, 130, 127, 126,

124, 67, 24, 19. [α]D = −62.8 (c 1.09, CHCl3). Ee was determined using a Chiralsil DEX-

CB column (25m x 250 μm x 0.25 μm) Tinlet = Tdet = 250 oC; Tstart = 110 oC (25 min) –

(10 oC / min) 180 oC. TS = 13.6 min; TR = 12.0 min.

(S)-1-(2-methoxyphenyl) ethanol (2.11d)[30] was obtained as a yellow oil (full

conversion, 96% ee), 1H-NMR (200 MHz, CDCl3) δ (ppm): 7.39-7.19 (m, 2H), 7.00-

6.83 (m, 2H), 5.09 (quin, J = 6.4 Hz, 1H), 3.87 (s, 3H), 2.59 (bs, 1H), 1.51 (d, J = 6.4 Hz,

3H). 13C-NMR (50 MHz, CDCl3) δ (ppm): 156, 134, 128, 126, 121, 110, 67, 55, 23. [α]D

= −18.9 (c 0.98, CHCl3). Ee was determined using a Chiralsil DEX-CB column (25m x
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250 μm x 0.25 μm) Tinlet = Tdet = 250 oC; Tstart = 110 oC (isotherm); TS = 20.1 min, TR =

19.2 min.

(S)-1-(4-methoxyphenyl) ethanol (2.11e)[31] was obtained as a brown oil (full

conversion, 97% ee), 1H-NMR (200 MHz, CDCl3) δ (ppm): 7.32-7.26 (m, 2H), 6.92-

6.86 (m, 2H), 4.85 (q, J = 6.5 Hz, 1H), 3.80 (s, 3H), 1.79 (bs, 1H), 1.48 (d, J = 6.5 Hz,

3H). 13C-NMR (50 MHz, CDCl3) δ (ppm): 158, 138, 127, 114, 70, 55, 25. [α]D = −52.1

(c 1.08, CHCl3). Ee was determined using a Chiralsil DEX-CB column (25m x 250 μm x

0.25 μm) Tinlet = Tdet = 250 oC; Tstart = 110 oC (isotherm); TS = 11.9 min, TR = 11.5 min.

(S)-1-(4-chlorophenyl) ethanol (2.11f)[16] was obtained as a yellow oil (full conversion,

95% ee), 1H-NMR (200 MHz, CDCl3) δ (ppm): 7.31-7.26 (m, 4H), 4.88 (q, J = 6.8 Hz,

1H), 1.86 (bs, 1H), 1.47 (d, J = 6.5 Hz, 3H). 13C-NMR (50 MHz, CDCl3) δ (ppm): 144,

133, 129, 127, 70, 25. [α]D = −47.9 (c 0.98, CHCl3). Ee was determined using a Chiralsil

DEX-CB column (25m x 250 μm x 0.25 μm) Tinlet = Tdet = 250 oC; Tstart = 110 oC

(isotherm); TS = 15.8 min, TR = 15.3 min.

(S)-1-(3-bromophenyl) ethanol (2.11g)[32] was obtained as a brown oil (full conversion,

65% ee), 1H-NMR (200 MHz, CDCl3) δ (ppm): 7.58 (s, 1H), 7.42-7.37 (m, 1H), 7.32-

7.21 (m, 2H), 4.83 (q, J = 6.5 Hz, 1H), 1.86 (bs, 1H), 1.49 (d, J = 6.5 Hz, 3H). 13C-NMR

(50 MHz, CDCl3) δ (ppm): 148, 131, 130, 129, 124, 123, 70, 25. [α]D = −20.8 (c = 1.03,

CHCl3). Ee was determined using a Chiralsil DEX-CB column (25m x 250 μm x 0.25

μm) Tinlet = Tdet = 250 oC; Tstart = 110 oC (isotherm); TS = 28.3 min, TR = 17.2 min.

(S)-1-(3-chlorophenyl) ethanol (2.11h)[16] was obtained as a brown oil (full conversion,

83% ee), 1H-NMR (200 MHz, CDCl3) δ (ppm): 7.39 (s, 1H), 7.23-7.19 (m, 3H), 4.86 (q,

J = 6.5 Hz, 1H), 1.83 (bs, 1H), 1.49 (d, J = 6.5 Hz, 3H). 13C-NMR (50 MHz, CDCl3) δ

(ppm): 148, 130, 128, 126, 124, 70, 25. [α]D = −36.2 (c 1.01, CHCl3). Ee was determined

using a Chiralsil DEX-CB column (25m x 250 μm x 0.25 μm) Tinlet = Tdet = 250 oC; Tstart

= 110 oC (isotherm); TS = 16.4 min, TR = 14.9 min.

(S)-1-(3,5-di(trisfluoromethyl)phenyl) ethanol (2.11j)[33] was obtained as a colorless

oil (full conversion, 95% ee), 1H-NMR (200 MHz, CDCl3) δ (ppm): 7.85 (s, 2H), 7.79 (s,

1H), 5.05 (q, J = 6.6 Hz, 1H), 2.03 (bs, 1H), 1.55 (d, J = 6.6 Hz, 3H). Ee was determined

using a Chiralsil DEX-CB column (25m x 250 μm x 0.25 μm) Tinlet = Tdet = 250 oC; Tstart

= 110 oC (isotherm); TS = 5.8 min, TR = 6.5 min.
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(S)-1-phenyl propanol (2.11k)[16] was obtained as a dark yellow oil (full conversion,

91% ee), 1H-NMR (200 MHz, CDCl3) δ (ppm): 7.37-7.20 (m, 5H), 4.59 (t, J = 7.4 Hz,

1H), 1.86-1.68 (m, 3H), 0.92 (t, J = 7.4 Hz, 3H). 13C-NMR (50 MHz, CDCl3) δ (ppm):

144, 128, 127, 126, 76, 32, 10. [α]D = −42.4 (c 0.93, CHCl3). Ee was determined using a

Chiralsil DEX-CB column (25m x 250 μm x 0.25 μm) Tinlet = Tdet = 250 oC; Tstart = 110
oC (isotherm); TS = 12.1 min, TR = 11.5 min.

(S)-1-phenyl butanol (2.11n)[34] was obtained as a white solid (full conversion, 96%

isolated yield, 93% ee), mp = 45.9 - 46.1 oC. 1H-NMR (200 MHz, CDCl3) δ (ppm): 7.41-

7.19 (m, 5H), 4.68 (t, J = 5.9 Hz, 1H), 1.87-1.21 (m, 5H), 0.93 (t, J = 7.4 Hz, 3H). 13C-

NMR (50 MHz, CDCl3) δ (ppm): 128, 127, 126, 54, 41, 19, 14. [α]D = −44.2 (c 0.99,

CHCl3). Ee was determined using a Chiralsil DEX-CB column (25m x 250 μm x 0.25

μm) Tinlet = Tdet = 250 oC; Tstart = 120 oC (2 min) - (1 oC / min) - 180 oC; TS = 12.5 min,

TR = 11.5 min.

(R)-Phenyl-o-tolylcarbinol (2.11q) Conversion (100%) and ee (15%) were determined

using a Chiralsil DEX-CB column (25m x 250 μm x 0.25 μm) Tinlet = Tdet = 250 oC; Tstart

= 160 oC (60 min) - (1 oC / min) 170 oC. TS = 61.1 min; TR = 63.5 min.

(S)-1-naphthyl ethanol (2.14)[16] was obtained as a green oil (full conversion, 93% ee),
1H-NMR (200 MHz, CDCl3) δ (ppm): 8.19-8.11 (m, 1H), 7.91-7.83 (m, 1H), 7.79 (d, J =

7.0 Hz, 1H), 7.68 (d, J = 7.6 Hz, 1H), 7.59-7.42 (m, 3H), 5.78-5.59 (m, 1H), 1.99 (bs,

1H), 1.69 (d, J = 6.5 Hz, 3H). 13C-NMR (50 MHz, CDCl3) δ (ppm): 142, 134, 130, 129,

128, 126, 125, 123, 122, 67, 24. [α]D = 71.6 (c 0.96, CHCl3). Ee was determined using a

Chiralsil DEX-CB column (25m x 250 μm x 0.25 μm) Tinlet = Tdet = 250 oC; Tstart = 140
oC (isotherm); TS = 62.2 min, TR = 59.9 min.

(S)-2-naphthyl ethanol (2.15)[31] was obtained as a white solid (full conversion, 94%

ee), mp = 70.1 - 70.9 oC. 1H-NMR (200 MHz, CDCl3) δ (ppm): 7.82-7.79 (m, 3H), 7.52-

7.41 (m, 3H), 7.26 (s, 1H), 5.07 (q, J = 6.5 Hz, 1H), 1.92 (bs, 1H), 1.59 (d, J = 6.5 Hz,

3H). 13C-NMR (50 MHz, CDCl3) δ (ppm): 143, 129, 128, 128, 127, 126, 124, 70, 25.

[α]D = −47.8 (c 1.12, CHCl3). Ee was determined using a Chiralsil DEX-CB column

(25m x 250 μm x 0.25 μm) Tinlet = Tdet = 250 oC; Tstart = 120 oC (2 min) - (1 oC / min) –

180 oC; TS = 31.1 min, TR = 30.5 min.
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(S)-3,3-dimethyl butan-2-ol (2.18) Conversion (50%) and ee (41%) were determined

using a GTA column (25m x 250 μm x 0.25 μm) Tinlet = Tdet = 250 oC; Tstart = 70 oC (35

min) – (10 oC / min) 170 oC. TS = 16.5 min; TR = 16.9 min.

2-hexanol (2.19) Conversion (100%) and ee (<5%) were determined using a Chiralsil

DEX-CB column (25m x 250 μm x 0.25 μm) Tinlet = Tdet = 250 oC; Tstart = 80 oC (12 min)

– (10 oC / min) 170 oC. TS = 5.3 min; TR = 7.5 min.

Cyclohexenol (2.20)[35] Conversion (85%) and ee (<5%) were determined using a

Chiralsil DEX-CB column (25m x 250 μm x 0.25 μm) Tinlet = Tdet = 250 oC; Tstart = 110
oC (12 min) – (1 oC / min) 170 oC. TS = 28.6 min; TR = 29.1 min.
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Chapter 3

The use of SPO Ligands in the

Ruthenium and Iridium Catalyzed

Asymmetric Hydrogenation of

Ketones

Abstract

In this chapter the use of an SPO ligand in the ruthenium and iridium catalyzed

asymmetric hydrogenation of 2-methyl acetophenone is described. The best results were

obtained when iridium was used as the metal in the presence of KOtBu, pyridine and the

diamine DPEN. Under those conditions 91% conversion and 30 % ee were obtained. In

the iridium/phosphoramidite based asymmetric hydrogenation of 2-methyl acetophenone

85 % conversion and 68 % ee were obtained when the hydrogenation was carried out in

the presence of 1 phosphoramidite and 0.5 DPEN per metal center in the absence of

KOtBu.
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3.1.1 Secondary Phosphine Oxides

Secondary phosphine oxides (SPO’s) are an interesting new class of ligands.[1-4]

They are easily synthesized in racemic form by adding a Grignard reagent to a

RPCl2 substrate followed by acidic aqueous work-up.[5] The obtained substances

are air and moisture stable for long periods of time.

Figure 1: Racemic SPO’s can be synthesized via a simple Grignard addition followed
by aqueous acidic work-up.

The free SPO’s exits in an equilibrium in which the phosphorus atom can easily

switch between a pentavalent configuration (L1{V)) and a trivalent one (L1(III)) as

depicted in Figure 2. Under ambient conditions this equilibrium lies far on the

side of the pentavalent configuration. For catalysis, the trivalent configuration is

however the most interesting one. When the SPO is in its trivalent configuration

it has a free electron pair which can coordinate to a transition metal via σ-

donation. This makes them an interesting class of ligand for transition metal

catalysis.

Figure 2: The two existing forms of SPO ligands (P(V) & P(III)) and its transition metal
binding mode.

A major drawback of using SPO’s in asymmetric catalysis, however, is the fact

that there are no general methods available for synthesizing them in an

asymmetric fashion. The main method for obtaining SPO’s in enantiomerically

pure form is by performing preparative chiral HPLC separations of a racemic

mixture. This is, of course, not ideal since only small amounts of product can be
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obtained that way. Also, the SPO ligands are not very soluble so only very dilute

mixtures can be used in the resolution.

Another way of separating the two enantiomers is by selective crystallization. In

this technique a resolving agent is added to a racemic mixture of the desired

product. The resolving agent is chosen in such a way that only one of the two

enantiomers of the product interacts with the resolving agent and forms a

complex which crystallizes from the solution. Mostly the interactions between

the resolving agents and the desired product are based on salt formation or

hydrogen bonding. In 1999 Drabowicz et al.[6] found that they could separate a

racemic mixture of t-butylphenylphosphine oxide via a resolution using (R)-bis-

β-naphthol (3.1) or (S)-mandelic acid (3.2) as complexing agents. They were

able to get a single enantiomer in excellent optical purity, however, the overall

yield of these resolutions was low (28-52 %). Despite the low yield it seemed to

be a good alternative for an earlier method[7;8] which involved conversion of the

SPO into the corresponding thiophosphoric acid, followed by resolution with -

methylbenzylamine and finally desulfurization which is a lengthy and time

consuming method. The method turned out, however, to be irreproducible.

Figure 3: Resolving agents (R)-bis-β-naphthol, (S)-mandelic acid and (S,S)-DBTA used
for the separation SPO enantiomers.[6;9]

In 2009 Holt et al.[9] found a method to separate the two enantiomers of tert-

butylphenylphosphine oxide by selective crystallization using the resolving

agent DBTA (Dibenzoyl tartaric acid, 3.3). They were able to obtain high yields

and crystallize large batches of racemic ligand into single enantiomers with over

99% ee. This easy way of separating the two enantiomers makes them even

more interesting as ligands in transition metal catalysis.
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3.1.2 Previous use of SPO ligands in asymmetric catalysis

SPO ligands have been used successfully in several transition metal catalyzed

reactions like hydroformylations,[10] the Pd catalyzed Stille coupling,[11] the

Suzuki coupling,[12] the Ni catalyzed Grignard addition,[13] the Ru catalyzed

arylation[14] and others[4].

Of course, SPO ligands have not only been used in non-asymmetric

transformations. Various iridium and rhodium complexes of SPO ligands have

been prepared and applied in several asymmetric hydrogenation reactions. In the

iridium-catalyzed hydrogenation of imines[5] it was shown that the SPO ligand

L1 in combination with one equivalent of pyridine leads to full conversions and

ee’s up to 83% (Figure 4).

N
[Ir(COD)Cl]2/ SPO/ Pyridine

H2, 25 bar, toluene

R1

R2

HN

R1

R2
*

ee up to 83%

Figure 4: Iridium catalyzed asymmetric hydrogenation of imines using an SPO ligand.[5]

In the rhodium-catalyzed hydrogenation of several β-dehydroamino acids,

itaconates, and carbamates the SPO ligands also proved to be suitable as chiral

P-ligands.[15;16] Besides being used in asymmetric hydrogenations, Dai et al.

have shown that SPO ligands can be used in palladium catalyzed allylic

substitution reactions.[17] They were able to reach up to 80% ee in the allylic

alkylation of 1,3-diphenyl prop-2-enyl acetate and dimethyl malonate as shown

in Figure 5.

Figure 5: Pd-catalyzed allylic alkylation reaction using an SPO as chiral ligand as
performed by Dai et al..[17]
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3.1.3 Previously obtained results obtained in Ir catalyzed

hydrogenations of ketones

In the field of asymmetric hydrogenation, iridium is one of the preferred

transition metals.[18] In particular, it is the metal of choice for imine

hydrogenation.[19] In the field of ketone hydrogenation, however, iridium plays a

less important role. Nevertheless, a few examples are known in which the

iridium-catalyzed hydrogenation of ketones gives good results.

Le Roux et al.[20] obtained very good results when using a ferrocenyl based P,S-

ligand. They were able to hydrogenate para-substituted acetophenones with

selectivities up to 99 %.

Figure 6: Iridium catalyzed asymmetric hydrogenation of acetophenones as described
by Le Roux et al.[20].

Using Binap as a ligand in combination with bis(o-

dimethylaminophenyl)phenylphosphine (3.4) Zhang et al.[21] were able to reach

up to 84% ee in the asymmetric hydrogenation of acetophenones.

Figure 7: Bis(o-dimethylaminophenyl) phenylphosphine (3.4) as used by Zhang et al.[21]

and the best performing diamine ligand 3.5 as used by the group of Wills[22] in the Ir(III)
catalyzed asymmetric hydrogenation of acetophenones.

In 2009 the group of Wills reported the iridium(III) catalyzed asymmetric

hydrogenation of acetophenones using chiral diamines as a ligand.[22] They were

able to hydrogenate several acetophenones; reaching full conversion and
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moderate ee’s up to 85%. This was an improvement of the results of Ferrand et

al. who, in 2002, did not surpass 68% ee in the hydrogenation of acetophenones

using a similar diamine-Ir(I) catalyst.[23]

3.2 Goal

Monodentate phosphoramidites work very well in the asymmetric hydrogenation

of acetophenones, as has been shown in chapter 2 of this thesis. We decided to

investigate whether the use of an SPO ligand would also result in an active

catalyst as has been the case in other hydrogenations.[5;15;16] As a starting point

we took the ruthenium based catalyst as described in chapter two and simply

replaced the phosphoramidite ligands with the SPO ligand. Since it is known that

SPO ligands can perform very well as ligands for iridium we also investigated

the performance of such a catalyst in the asymmetric hydrogenation of

acetophenone.
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3.3 Results

Tert-butyl(phenyl)phosphane oxide (L1) was synthesized in our labs and

separated in its enantiomers by J. Holt via selective crystallization using (-)-3.3.[9]

The ligand was liberated from its complexing salt by washing with an aqueous

solution of 5% NaHCO3 and extracting it with Et2O resulting in the free ligand

as a white powder. The free ligand was used in the hydrogenations described in

this chapter.

3.3.1 SPO ligands in a ruthenium catalyst

To test the versatility of the SPO ligand L1 in the aryl ketone hydrogenation we

decided to replace the phosphoramidite ligands in the catalyst used in chapter 2

by SPO ligands. The catalysts used in the reactions were all formed in situ, in

accordance with the methods described in Jiang et al.[5]

The results of these ruthenium/L1 catalyzed hydrogenations are depicted in

Table 1.

From the experiments it became clear that addition of a base is necessary to

activate the complex. Without a base (entries 1, 4 and 8) present in the reaction

mixture no reaction takes place. Also it is obvious that the presence of the

diamine is crucial in order to get any enantioselectivity. Without diamine present

(entries 1, 8 and 9) only racemic product was found, if any. The best results were

obtained when both a base and diamine were used. Using only L1 as phosphorus

ligand in the reaction (entries 1-4) did not lead to very good results. After 24

hours only 20% conversion was observed and the product had a negligible ee

(entry 2). Pre-forming the catalyst, as was done for the hydrogenations described

in chapter 2, did give some improvement (entry 3). The conversion after 24
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hours went up to 52% although unfortunately the ee was still very poor reaching

a value of only 14%.

Table 1: Results obtained in the ruthenium-catalyzed asymmetric hydrogenation of 3.6
using SPO ligand L1.

Unless stated otherwise reactions were carried out in the Endeavor with (S)-L1,
[RuCl2(cymene)]2 and (S,S)-DPEN. 2 mmol 3.6 (4/1/2/800) in 4 mL iPrOH. 25 bar H2 at
30 oC for 24 h. a) catalyst was pre-prepared via the M:L = 1:2 method as described in
chapter 2. b) L1/”extra ligand/DPEN/”Ru” = 2/2/2/1 c) L1/”extra ligand”/DPEN/”Ru” =
4/4/0/1. d) Conversions and ee’s were determined via chiral GC using a Chiralsil Dex-
CB column (110 oC isotherm)

Added

P-Ligand
(S,S)-DPEN Additive

Conversiond

(%)

eed

(%)

1 - no no 0 nd

2 - yes KOtBu 20 6

3a - yes KOtBu 52 14

4a - yes no 0 nd

5 L2b yes KOtBu 60 rac (0)

6 L2b yes KOtBu 65 7

7 L2b yes KOtBu 56 9

8 (S)-L3c no no 0 nd

9 (S)- L3c no KOtBu 14 rac (1)

10 (S)- L3b yes KOtBu 76 17
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As described in previous chapters of this thesis (see chapters 1 and 2),

employing a mixed ligand approach can sometimes lead to a great enhancement

of the activity and selectivity of the used catalyst. Adding other ligands, like

PPh3 (L2) or PipPhos (L3) (entries 6 & 10) to the reaction mixture in this case

gave some improvement. When L2 was added (entry 6) the conversion went up

to 65% but the ee went down again to a mere 7%. When the chiral

phosphoramidite ligand L3 was added (entry 10) the conversion increased to

76% and an ee of 17% was found. Although this is an improvement compared to

the cases in which only SPO ligands are used, the enantioselectivity of the

hydrogenation is still very poor.

3.3.2 SPO ligands in an iridium catalyst

The results of the ruthenium catalyzed hydrogenation of 3.6 using ligand L1 did

not give satisfactory results. From the work of X.-B. Jiang it is known that L1

bound to iridium(I) can act as a hydrogenation catalyst for several olefins and

imines.[5;15;16]

We decided to see if a change of metal from ruthenium to iridium would lead to

a better acetophenone hydrogenation catalyst. The results of this screening can

be found in Table 2.

As can be seen in Table 2 the results of the Ir/SPO catalyzed hydrogenation are

slightly better than those for the Ru/SPO catalyzed hydrogenations. The best

results were obtained when the reaction was performed in iPrOH or toluene in

the presence of diamine and base (entries 4 and 6). In these cases over 90%

conversion and up to 30% ee was obtained.
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Table 2: Iridium/SPO catalyzed hydrogenation of 3.6.

Added

Ligand

DPEN

(S,S)
Additive Solvent

Conversionc

(%)

Eec

(%)

1 L2a yes KOtBu iPrOH 68 15

2 L2b no KOtBu iPrOH 15 11

3 - yes KOtBu iPrOH 26 22

4 - yes
KOtBu/

Pyridine
iPrOH 91 30

5 - yes
KOtBu/

Pyridine
DCM 17 9

6 - yes
KOtBu/

Pyridine
Toluene 90 29

7d L2 yes KOtBu iPrOH 100 8

8 (S)-L3b no KOtBu iPrOH 7 -2

9 (S)-L3b no - iPrOH 30 7

10 (S)-L3a yes KOtBu iPrOH 100 7

Unless stated otherwise all reactions were carried out in the Endeavor with 2 mmol 3.6,
[Ir(COD)Cl]2, (S)-L1, (S,S)-DPEN, KOtBu and pyridine (800/1/4/2/8/2) in 4 mL total
reaction volume, 25 bar H2 at 30 oC for 24 h. a) Ir/L1/”extra ligand”/DPEN becomes
1/2/2/2; b) Ir/L1/”extra ligand”/DPEN becomes 1/4/4/0 c) ee’s and conversions were
determined via chiral GC using a Chiralsil Dex-CB column (110 oC isotherm); d) No
SPO ligand was added so Ir/L1/”extra ligand”/DPEN (1/0/4/2).

All attempts to improve this result unfortunately failed. When L3 was used as an

additional ligand (entry 10), full conversion was reached but almost all

enantioselectivity was lost in that case. Adding an achiral phosphine L2 (entries

1 and 2) affected both conversion and ee in a negative way. One interesting

observation that was made was a huge improvement in conversion when an

equivalent of pyridine was added to the reaction, however, the selectivity, again,

was not affected by this additive.
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So despite the fact that the Ir/SPO based catalyst gives better results compared to

the Ru/SPO based catalyst, the results are still nowhere near the results that were

obtained when the phosphoramidite ligands were used.

3.3.3 Phosphoramidite ligands in an iridium catalyst

Since use of the SPO ligand L1 did not lead to good results in the hydrogenation

of acetophenones we decided to try the combination of phosphoramidites with

iridium.

Previously it was found that in the iridium catalyzed asymmetric hydrogenation

of enamides, it was possible to obtain good conversions and, more important,

very good selectivities when only one phosphoramidite ligand per metal center

was used.[24]

The use of phosphoramidite ligands in the iridium catalyzed hydrogenation of

3.6 gave better results compared to the catalyst in which SPO ligands were used

but did not give the improvement we hoped for. We did, however, observe some

striking differences in comparison to the iridium catalyzed hydrogenations in

which the SPO ligand was used. What was not different was the need for the

presence of a chiral diamine in order to obtain good ee’s (entries 3, 4), also here

it was observed that the use of a diamine in the reaction is necessary to obtain

reasonable ee’s (>15 %).
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Table 3: Results obtained in the iridium/Phosphoramidite catalyzed asymmetric
hydrogenation of 3.6.

Entry
Phosphor

amidite
Diamine

Amidite/

metal

Diamine/

metal

Conv.c

(%)

Eec

(%)

1 L4 DPEN 2 1 28 68

2 L4 DPEN 1 0.5 85 68

3 L4 - 1 0 41 15

4 L4 - 2 0 12 9

5 L4 DPEN 1.5 0.5 18 34

6 - DPEN 0 0.5 100 25

7 - DPEN 0 1 95 31

8 - DPEN 0 2 65 21

9 L4 DPEN 2 2 40 31

10a L4 DPEN 1 0.5 33 20

11 L4 DACH 1 0.5 25 25

12a L4 DACH 1 0.5 53 18

13 L5 - 1 0 0 Nd

14 L6 - 1 0 100 5

15 L5 - 1 0b 0 Nd

16 L6 - 1 0b 100 1

Reactions were carried out in the Endeavor with 2 mmol 3.6 and 0.125 mol% Ir with
various amounts of phosphoramidite and diamine in 4 mL iPrOH. 25 bar H2 at 30 oC for
24 h. In all cases the diamine had the same absolute configuration as the
phosphoramidite ligand. The predominant configuration in the product was the opposite
from the ligand and diamine i.e. R-ligand and R,R-diamine gave S-product. a) KOtBu
was added to the reaction mixture b) 1 equivalent of pyridine was added per metal
centre. c) conversions and ee’s were determined via chiral GC using a Chiralsil Dex-CB
column (110 oC isotherm).
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O

O
P N

O

O
P N

L5 L6

O

O
P N

L4

H2N

H2N

DACH

One of the most striking differences was the fact that no base was needed to get

the reaction to proceed. On the contrary even, when base was added to the

reaction mixture, the catalyst performed actually worse, compared to the base

free one (entries 2, 11 and 10, 12). When DPEN was used as the diamine (entries

2 and 10) both conversion and ee dropped dramatically when base was added.

When DACH was used as diamine, addition of base raised the conversion but

the ee went down to a mere 18 %.

Another difference between the SPO and phosphoramidite catalysts is the fact

that phosphoramidite ligands give the best results when only one

phosphoramidite ligand per metal center is used. Also the number of diamine

molecules per metal center has a lower optimum, at one diamine per two iridium

centers. Noteworthy was the fact that the phosphoramidite ligands that

previously were used successfully in an iridium catalyzed asymmetric

hydrogenation with only one ligand per metal center (L5 & L6) did not lead to

any enantioselectivity.[24] Use of L5 did not lead to any conversion whereas use

of L6 did result in full conversion but no selectivity whatsoever was observed.

When L4 was used in combination with 0.5 equivalents of DPEN per iridium

dimer the best results were obtained leading to 85% conversion with an ee of

68%. This is a reasonably result for an iridium catalyzed hydrogenation of

ketones,[20-23] but for the hydrogenation of ketones with phosphoramidite ligands

the use of ruthenium is preferred. However, being able to perform the reaction

without a base present, might make the catalyst interesting for ketones which

cannot withstand basic conditions as they are being used in the typical ruthenium

catalyzed hydrogenation reaction.[25-27]
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3.4 Conclusions

The results discussed in this chapter show that, despite success in other types of

hydrogenations, SPO ligand L1 is not suitable for the use in the ruthenium or

iridium catalyzed asymmetric hydrogenations of ketones. Although we were

able to reach full conversion in the case where PipPhos was used as an

additional ligand in the reaction, in none of the reactions ee’s were obtained over

30%. Perhaps a screening of other SPO ligands might come up with a better

suited ligand for this type of hydrogenation.

When, instead of an SPO ligand, a phosphoramidite ligand was used in the

iridium catalyzed hydrogenation of 3.6, somewhat better results were obtained.

A conversion of 85% and an ee of 68% was a promising result but these results

compare very poorly with the ones obtained with the Ru/phosphoramidite

catalyst described in chapter 2. Noteworthy is the fact that in the

Ir/phosphoramidite catalyst the use of only one bulky phosphoramidite ligand

per metal center in the end gave the best result. Also no base was needed in this

case in order to activate the catalyst. This in contrast to the catalysts used in

Chapter 2 where a second phosphoramidite is needed and also the reaction does

not proceed without the presence of a base, making the two procedures

somewhat complementary.

3.5 Experimental

General experimental

For general experimental remarks see Chapter 2. The SPO ligand L1 was synthesized by

E.P. Schudde in our labs and separated by J. Holt into the L1-(-)-3.3 complex with an

ee >98%. L2 was purchased from Aldrich, L3 and L4 were prepared as described in

Chapter 2, L5 and L6 were kindly provided by N. Mršić. [IrCl(COD)]2 was purchased

from Strem, used as received and stored in the glove box.

Liberation of tert-butyl(phenyl)phosphine oxide (L1) from its resolving agent.[15]

L1-(-)-3.3 complex, 595 mg (1.1 mmol), was washed with 5% NaHCO3 for 15 minutes,

after which the free (S)-L1 ligand was extracted from the aqueous solution using diethyl
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ether. After extraction the organic layer was dried over NaSO4 and the solvent was

removed in vacuo resulting in 145 mg (0.80 mmol, 73%) of free ligand as a white

powder. Mp: 74-76 °C. 1H NMR (400 MHz, CDCl3) δ (ppm) 7.38-7.67 (m, 5H), 6.98 (d,

1H, 1JH-P = 454.6 Hz), 1.08 (d, 9H, 3JH-P = 16.6 Hz). 31P NMR (161 MHz, CDCl3) δ

(ppm) 47.3 (s). [] = –32.5 (0.91)

General procedure for the ruthenium catalyzed asymmetric hydrogenation of o-

methyl acetophenone

0.31 mg (0.5 μmol) [RuCl2(cymene)]2, 0.36 mg (2.0 μmol) (S)-L1 and 0.21 mg (1 μmol)

(S,S)-DPEN are weighted and together with 0.26 mL (2 mmol) 3.6 dissolved in 3.7 mL

iPrOH till a final volume of 4 mL. As last component the base (KOtBu) is added as a 1

M solution in iPrOH. The solution is put in the Endeavor where hydrogenation takes

place at 30o C, 25 bar H2 and stirring at 750 rpm for 24 hours. After 24 hours the

pressure was released and from the reaction mixture a small sample was run over a short

silica plug and made into a sample for the GC. Conversion and ee were determined using

a Chiralsil DEX-CB column (25m x 250 μm x 0.25 μm) with an isothermal program at

110 oC. TS = 13.6 min TR = 12.0 min

General procedure for the iridium catalyzed asymmetric hydrogenation of o-

methyl acetophenone

0.34 mg (0.5 μmol) [Ir(COD)Cl]2, 0.36 mg (2.0 μmol) (S)-L1 and 0.21 mg (1 μmol)

(S,S)-DPEN were weighed and together with 0.26 mL (2 mmol) 3.6 dissolved in 3.7 mL

iPrOH till a final volume of 4 mL. As last component the base (KOtBu) was added as a

1M solution in iPrOH. The solution was placed in the Endeavor where hydrogenation

took place at 30o C, 25 bar H2 and stirring at 750 rpm for 24 hours. After 24 h the

pressure was released and from the reaction mixture a small sample was run over a short

silica plug and made into a sample for the GC. Conversion and ee were determined using

a Chiralsil DEX-CB column (25m x 250 μm x 0.25 μm) with an isothermal program at

110 oC. TS = 13.6 min TR = 12.0
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Chapter 4

Enantioselective Hydrogenation of α-

and β-Ketoesters using

Monodentate Phosphoramidite

Ligands

Abstract
In this chapter the ruthenium catalyzed enantioselective hydrogenation of α- and β-
ketoesters using phosphoramidite ligands is discussed. It was shown that the
hydrogenation of α-ketoesters proceeds to furnish essentially racemic product with such
a catalytic system. However, the hydrogenation of several β-ketoesters was achieved
reaching full conversions and up to 99% ee for a range of substrates when using the 8H-
DiMePip (L9) ligand.
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4.1 Introduction

The asymmetric hydrogenation of ketoesters has been a topic of interest for

many years. Since the discovery of the Ru-Binap catalyst by the group of

Noyori[1;2], for the reduction of β-ketoesters in an enantioselective manner by

means of hydrogenation, a lot of work has been done in this field. The groups of

Genêt,[3] Weissensteiner,[4] Imamoto,[5] Knochel,[6] Zhang,[7] Reetz[8] and many

others[9;10] successfully developed new ligands for this reaction. All these groups,

however, designed synthetically laborious chiral bidentate phosphorus ligands,

as shown in Figure 1, to be used in this transformation.

Figure 1: A selection of bidentate phosphorus ligands which have been used
successfully in the asymmetric hydrogenation of β-ketoesters.

All previously mentioned ligands are able to induce excellent ee’s and

conversions in the asymmetric hydrogenations of several β-ketoesters. Despite

numerous examples of the use of monodentate ligands in other types of

asymmetric hydrogenations, such as the reduction of various olefins[11-14],

imines[15;16] and acetophenone type ketones[17;18] up to date only one study has

been reported on the asymmetric hydrogenations of β-ketoesters. The group of
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Beller tested several phosphepine ligands (Figure 2), with different alkyl and

aryl substituents on the phosphorus atom. They were able to reach full

conversion and up to 95% ee for several β-ketoesters when the p-anisyl

substituent was used.[19;20]

Figure 2: Monodentate phosphepine ligands as used by the group of Beller in the
asymmetric hydrogenation of β-ketoesters

4.1.1 Use of β-ketoester hydrogenation in synthesis

The hydroxy-ester products of the asymmetric hydrogenation of β-ketoesters can

be used in the synthesis of a wide variety of natural and biologically active

compounds. A few examples of compounds that were synthesized, involving an

asymmetric hydrogenation of a β-ketoester as a key step are given in Figure 3.

Figure 3: 4.1) Simvastatin; 4.2) Carbapenem; 4.3) Fluoxetin; 4.4) Duloxetin; 4.5)
Corynomycolic acid.
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A class of compounds that is very well accessible through β-ketoester

hydrogenation is the class of statins.[21-23] But also biologically active and widely

used compounds like the class of anti-biotics Carbapenem,[24] Fluoxetin (4.3),

the active ingredient of Prozac® and Duloxetin (4.4), another anti-depressive,

can have their stereogenic center introduced by means of hydrogenation of a β-

ketoester.[3] The final example of a natural product given in Figure 3 which is

accessible through the hydrogenation of a β-ketoester is corynomycolic acid (4.5)

which is a fatty acid from the cell walls of Corynebacterium sp. and shows

significant biological activity.[3]

Figure 4: Nonactin, with in the encircled the the part of the molecule where the chiral
center is introduced via an asymmetric hydrogenation of ethyl acetoacetate.[25]

Even in the synthesis of the complex macrocycle nonactin (Figure 4) the starting

point was the hydrogenation of a β-ketoester as was shown by Coutable et al..[25]

4.1.2 Mechanism of the hydrogenation of β-ketoesters

The catalytic cycle of the hydrogenation of β-ketoesters[26;27] (Figure 5) starts off

from the ruthenium mono hydride complex (I), which is formed with the

dichloride precursor by heterolytic splitting of a hydrogen molecule. The

substrate is bound to the ruthenium in a bidentate fashion via both carbonyls (II),

replacing one or more solvent molecules. The binding of the ester carbonyl

group is vital for the reaction to proceed.

To make sure the substrate stays in close proximity of the Ru-center long enough

for the reaction to take place it needs an anchoring group in addition to the

carbonyl that is to be reduced. The carbonyl group of the ester acts as such an

anchoring group ensuring the reaction is able to proceed.
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Figure 5: Mechanism of the β-ketoester hydrogenation.

After the hydride transfer from the Ru-center to the keto carbonyl, protonation

with a proton from the solution completes the reduction (III) and the product is

released from the metal where one or more solvent molecules take its place (IV).

Another heterolytic splitting of a hydrogen molecule completes the cycle by

forming again the ruthenium mono hydride complex (I).[28]

4.1.3 Introduction into α-ketoester hydrogenation

In comparison with the β-ketoesters a lot less examples are known, in which

asymmetric hydrogenation is used for the reduction of α-ketoesters, with good

results.[29] There are a few examples by Boaz et al.[30] who used the ferrocenyl

ligand 4.9 in the rhodium catalyzed hydrogenation of pyruvate and obtained up

to 88% ee and up to 97% ee when 4.8 was used as substrate. Mortreux et al. used

the phosphinite 4.6[31] and the chromium complexed aminophosphine 4.7[32;33] in
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the rhodium catalyzed asymmetric hydrogenation of pyruvate in 86% and 89%

respectively. When 4.7 was used in the rhodium catalyzed hydrogenation of 4.8

ee’s up to 99% were obtained. Mashima et al.[34] used a cationic ruthenium-

binap catalyst and were able to reach up to 93% ee in the α-ketoester

hydrogenation.

Figure 6: Ligands used in the alpha-ketoester hydrogenation.

But for the best results in this type of transformation mostly a biochemical route

is followed using whole cells[35;36] or isolated enzymes.[37;38]

In 2005, Sun et al. described the positive influence of the addition of

CeCl3
.7H2O on the outcome of the hydrogenation of α-ketoesters. A significant

increase in ee was observed (in some cases of even 36 percent points going from

40 to 76% ee) when using this salt as an additive in the reaction. They contribute

this to a coordination of the ester to the cerium as shown in Figure 7. This

coordination makes that the ester has a more constrained conformation leading

to the increase in ee.[39;40]

Figure 7: Complexes formed during hydrogenation of α-ketoesters in the presence of a
cerium salt (X = Cl, H2O or solvent).

Also the hydrogenation of α-ketoesters has been used in the synthesis of natural

compounds. In 2009 Tone et al.[41] reported the first synthesis of

Gymnangiamide. This total synthesis starts with the asymmetric hydrogenation

of an α-ketoester. By synthesizing the molecule, the authors en passant
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disproved the absolute stereochemistry that was proposed earlier for the C-34

center of the serine residue by Gustafson et al..[42] Gustafson proposed that this

C-34 residue came from a L-serine giving the 34S stereoisomer. Tone, however,

showed that the molecule as the 34R stereoisomer, coming from D-serine,

displayed a biological activity closer to the natural product than when the 34S

isomer was tested.

Figure 8: Structure of Gymnangiamide with the C-34R stereogenic center obtained by
asymmetric hydrogenation of an α-ketoester.

In the synthesis of Amphidinolide Y, which is an interesting cytotoxic

compound isolated from the marine species Amphidinium sp., the ruthenium-

binap catalyzed asymmetric hydrogenation of an α-ketoester is used as one of

the key steps in the synthesis.[43]

Figure 9: Amphidinolide X and Y; utilizing an asymmetric hydrogenation of an α-
ketoester as one of the key steps for introducing chirality.
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4.2 Goal

With the good results obtained in the asymmetric hydrogenation of aromatic

ketones using phosphoramidite ligands in hand, we decided to focus our

attention on a different type of ketones. In DSM some attempts had been made

in the asymmetric hydrogenation of α- and β-ketoesters using phosphoramidite

ligands. The results there obtained were not very good. In no case a significant

ee was found and conversions were mostly poor. But with the experience of the

acetophenone type ketones in hand we decided to have another look at these

substrate classes. Using the ruthenium type catalyst as described by Noyori[1]

replacing the bidentate binap ligand by two monodentate phosphoramidites.

In this chapter the development of an effective ruthenium catalyst containing

monodentate phosphoramidite ligands for the asymmetric hydrogenation of α-

and β-ketoester will be discussed.

4.3 Results

4.3.1 β -Ketoester results

At DSM the best result in the asymmetric hydrogenation of β-ketoesters was

obtained with a Rh-based catalyst in combination with a phosphoramidite ligand

(up to a maximum of 41% ee). The reactions with the ruthenium type catalysts

were reported to have a lot of side products, nevertheless we decided, based on

the good results reported in the literature, to start with a ruthenium based catalyst.

4.3.1.1 The complex

The catalysts for all the reactions as described in this chapter were synthesized

starting from the ruthenium precursor [RuCl2(cymene)]2. To this precursor four

equivalents of the appropriate monodentate, or two equivalents of a bidentate

ligand were added in DMF. This mixture was heated at 90 oC in a Schlenk tube

under nitrogen for two hours. In order to obtain the catalyst the DMF was
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evaporated in vacuo, the residue was immediately used, without purification, in

a hydrogenation reaction.

Figure 10: Schematic representation of complex formation when using monodentate
phosphoramidite ligands.

The 31P-NMR of the complex obtained with L9 showed only one very broad

peak between 160-150 ppm. Since we knew from the attempts to isolate and

indentify the complex that was formed for the acetophenone hydrogenation (see

chapter 2), that the phosphoramidite ligands can be easily removed from the

ruthenium when in solution, we did not pursue the purification any further.

To investigate the influence of more or less ligand present in the reaction

mixture we decided to vary the amount of ligand in the reaction.

Table 1: Ligand : Metal ratio screening.

L:M Conversiona (%) eea (%)

1:1 100 65

2:1 100 99

3:1 85 85

4:1 55 86

All reactions were done in MeOH on a 2 mmol scale in a total volume of 4 mL at 70 oC
and 70 bar H2 for 24h. Substrate/Ru/L9: 400/1/2. The catalysts were prepared in the same
way described in 4.3.1.1. a) Conversions and ee’s were determined via chiral GC.

As can be seen in Table 1, the best results are obtained when using a 2:1 ligand

to metal ratio. Going below that ratio the reaction still went to full conversion

but with a much lower ee. Adding more ligands per metal center resulted in a

slower reaction and also in a somewhat decreased ee. This indicates that two
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ligands per metal center are needed for a good enantiomeric excess; increasing

this ratio however leads to overcrowding at the metal which leads to a much

slower and less selective reaction.

4.3.1.2 Screening of reaction conditions

For the screenings towards the most optimal reaction conditions we used 0.25

mol% of the complexes described above in reactions on 2 mmol scale. The

screenings started with a small solvent screening in the hydrogenation of methyl

acetoacetate (4.10a) (Table 2) that showed that the use of an alcohol was needed

to reach good conversions and ee’s. DCM as a solvent also gave a good result in

terms of ee, but the reaction did not go to completion in the 24 hours it was

allowed to run. For this reason, and the fact that an alcohol would give us a

broader temperature range to work at because of their higher boiling points, we

decided to use an alcoholic solvent in all further experiments. Further screening

showed that the optimal pressure and temperature for this reaction was 70 bars

of hydrogen pressure at a temperature of 70 oC. Using DiMePip (L4, see ligands

under Table 3) under these conditions we were able to reach full conversion and

95% ee in the hydrogenation of methyl acetoacetate towards the corresponding

β-hydroxy ester within 24 hours. Changing the solvent from MeOH to toluene or

DCM did not result in a further improvement of the results. In toluene no

reaction took place at all whereas in DCM the reaction resulted in more or less

the same ee as when the reaction was done in MeOH but the conversion was not

complete after 24 hours.
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Table 2: Condition screening.

Reactions were done on a 2 mmol scale in a total reaction volume of 4 mL in a small vial,
containing a stir bar, which was placed inside an autoclave, for 24 h.. Substrate/Ru/L4:
400/1/2. The catalysts were prepared in the same way described in 4.3.1.1. a) Ee’s where
determined via chiral-GC on a GTA-column.

4.3.1.3 Ligand screening

After determining the optimal reaction conditions we set out to find the best

performing phosphoramidite ligand for this reaction. This screening of ligands

(Table 3) showed that the presence of a group on the 3 and 3’ position of the

binol backbone had a positive influence on the ee of the product (L4, L5, L6 and

L9 vs. L2 and L8). Since it doesn’t seem to matter what kind of substituent is

present at this position it suggests to us that the increase in ee can purely be

attributed to the increase in bulkiness of the ligand. Also switching from normal

PipPhos (L2) to the partially saturated, and sterically bulkier, 8H-PipPhos (L8)

gave a drastic increase in ee going from 51% to 74%.

Since introduction of methyl groups at the 3,3’ positions of the binol-backbone

also led to a much higher ee we decided to combine the two backbone variations

and examine 8H-DiMePip (L9) as a ligand. This proved to be the key to success

in this case, as the catalyst based on this ligand led to full conversion in 24 hours

and 99% ee in the hydrogenation of 4.10a.

Solvent P (bar) T (oC) Conversion (%) Eea (%)

1 MeOH 60 50 90 95

2 MeOH 70 70 100 95

3 MeOH 80 70 100 95

4 Toluene 70 70 0 -

5 DCM 70 70 65 94



Chapter 4

102

Table 3: Ligand screening in the asymmetric hydrogenation of β-ketoesters.

All reactions were done in MeOH on a 2 mmol scale in a total volume of 4 mL at 70 oC
and 70 bar H2 for 24h. Substrate/Ru/L: 400/1/2. The catalysts were prepared in the same
way described in 4.3.1.1 a) ee’s were determined via chiral GC b) Substrate/Ru/L:
400/1/1.

Ligand Conversion (%) Eea (%)

1 (S)-L1 98 45 (R)

2 (S)-L2 94 51 (R)

3 (S)-L3 92 73 (R)

4 (R)-L4 100 95 (S)

5 (S)-L5 95 97 (R)

6 (S)-L6 92 97 (R)

7 (S)-L7b 98 74 (R)

8 (S)-L8 86 74 (R)

9 (R)-L9 100 99 (S)
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From these screening reactions it became clear that the best results in the

hydrogenations of methyl acetoacetate (4.10a) are obtained when ligand L9 is

used as a ligand to a ruthenium based catalyst. When the reaction was run for 24

hours at 70 bar of hydrogen pressure and at 70 oC we were able to obtain the

product, methyl 3-hydroxybutanoate (4.11a), in full conversion and up to 99%

ee.

4.3.1.4 Substrate scope

Having found the optimal conditions and ligand (L9) for this hydrogenation we

started the investigation towards the substrate scope for the reaction (Table 4).

The performance of the catalyst showed good tolerance towards varying the

alkyl groups in both the ester part of the substrate (4.10a, 4.10b) as well as in

the 4-position (4.10a, 4.10c-e). Although switching to a more bulky substrate

like 4.10d gave somewhat lower conversion and ee (89 and 91%, respectively)

still the results were good. Also a few aryl β-ketoesters were tested (4.10g-k)

showing excellent conversions and high ee’s. Only the 3-(4-pyridyl) (4.10i) and

the 3-chloro (4.10f) substituted substrates showed no or significantly lower

conversions and ee. The lack of conversion that was seen with the pyridyl

substrate was attributed to a co-coordination of the pyridine ring to the catalyst.

This extra coordination to the catalyst could have made it impossible for the

substrate to be hydrogenated or for the product to be easily released from the

complex, blocking access to the complex for further substrate molecules.
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Table 4: Substrate scope of the β-ketoester hydrogenation.

Substrate R1 R2 Conversion (%) Eea (%)

1 4.10a Me Me 100 99 (S)

2 4.10b Me Et 100 98 (S)

3 4.10c n-Pr Et 100 97 (S)

4 4.10d i-Pr Et 89 91 (S)

5 4.10e Et Me 100 98 (S)

6 4.10f CH2Cl Me 90 44 (R)b

7 4.10g Ph Et 100 96 (R)b

8 4.10h m-Cl-Ph Me 95 94 (R)b

9 4.10i 4-Pyridyl Me 0 Nd

10 4.10k 2-furyl Et 100 85 (R)b

All reactions were done in R2OH on a 2 mmol scale in a total volume of 4 mL at 70 oC
and 70 bar H2 for 24h. Substrate/Ru/L9: 400/1/2. The catalyst was prepared in the same
way described in 4.3.1.1 a) ee’s were determined via chiral GC. b) Change of
configuration due to change in priority of the side groups.

Since compounds containing heterocycles are often of great interest for

pharmacological research[44;45] getting the hydrogenation of compound 4.10i

working may serve as a starting point in the development of new active

compounds.

In an attempt to get the hydrogenation of substrate 4.10i working, the reaction

was repeated using several additives (Table 5). The idea, to prevent coordination

of the pyridyl group to the metal center by protonating the substrate by adding 1

equivalent of sulphuric or acetic acid, proved not to work. Also performing the

reaction in neat acetic acid gave no conversion of the substrate.

Adding coordinating salts like lithium chloride or titanium isopropoxide in

various equivalents also proved not sufficient to get the reaction going.
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Table 5: Additive screening for the hydrogenation of 4.10i.

Additives (wrt 4.6i) conversion

1 - none

2 1.0 equiv. HOAc none

3 HOAc as solvent none

4 1.0 equiv H2SO4 none

5 1.0 equiv LiCl <10%

6 1.5 equiv LiCl <10%

7 2.0 equiv LiCl none

8 0.5 equiv Ti(OiPr)4 none

9 1.0 equiv Ti(OiPr)4 none

10 1.5 equiv Ti(OiPr)4 none

All reactions were performed in MeOH on a 1 mmol scale in a total volume of 2 mL at
70 oC and 70 bar H2 for 24h. Substrate/Ru/L9: 400/1/2. The catalysts were prepared as
described in 4.3.1.1. Conversions were determined via GC.

To get more insight in the reaction we tried to hydrogenate methyl acetoacetate

(4.10a) in the presence of different amounts of 4.10i. As can be seen in Table 6,

adding more of 4.10i with respect to methyl acetoacetate resulted in a lower

conversion of the substrate into the β-hydroxyester all the way to complete

blocking of the conversion when a one to one mixture was used. In none of the

cases the product of the hydrogenation of 4.10i was found.



Chapter 4

106

Table 6: Inhibition experiment with substrate 4.10i.

Amount of 6i (% wrt 6a) Conversion of 6a (%)

0 100

0.25 99

2.5 83

10 74

50 35

100 0

All reactions were done in MeOH on a 1 mmol scale in a total volume of 2 mL at 70 oC
and 70 bar H2 for 24h. Substrate/Ru/L9: 400/1/2. 4.10i was added to the reaction vials in
indicated amounts. Conversions were determined via GC.

A structurally equivalent compound (acetyl pyridine 4.12) proved to be an even

more efficient inhibitor of the hydrogenation of methyl acetoacetate as can be

seen in Table 7.

Table 7: Inhibition of the hydrogenation of 4.10a by 4.12.

Amount of 4.8 (% wrt 4.6a) Conversion of 4.6a (%)

0 100

2.5 <5

12.5 <5

25 <5

All reactions were done in MeOH on a 1 mmol scale in a total volume of 2 mL at 70 oC
and 70 bar H2 for 24h. Substrate/Ru/L9: 400/1/2. 4.12 was added to the reaction vials in
indicated amounts. Conversions were determined via GC.

These results suggest that the pyridyl ring in some way inactivates the catalyst in

this reaction completely. These observations would also explain the lack of
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literature data on the reduction of these pyridyl substrates to their β-

hydroxyesters. To the best of our knowledge only one patent describes the

reduction of this type of substrates by means of asymmetric transfer

hydrogenation[46] and one by means of biochemical reduction.[47]

4.3.1.5 Conclusion on the hydrogenation of β-ketoesters

From the results described above it can be concluded that we have developed a

ruthenium based catalyst, containing monodentate phosphoramidite ligands,

which is able to hydrogenate a range of beta-ketoesters in good yields and with

excellent enantioselectivities. The best performing ligand proved to be the partly

saturated and methyl substituted phosphoramidite L9. When used in a 2 :1

ligand to metal ratio the complex can be used with a 0.25 mol% loading at 70 oC

and at 70 bars of hydrogen pressure the reactions are usually complete within 24

hours.

4.3.2 Results of the α –ketoester hydrogenation

In an attempt to find a good system for the asymmetric hydrogenation of α-

ketoesters we tested a few ligands in the hydrogenation of methyl pyruvate

(4.13). The reactions were performed in MeOH while applying 50 bar of

hydrogen pressure at 70 oC for 24 hours. 0.25 mol% Of a ruthenium catalyst was

used in combination with the different ligands. In first instance all reactions were

done without the presence of CeCl3
.7H2O.
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Table 8: α-ketoester hydrogenation results.

Without CeCl3
.7H2O With CeCl3

.7H2O

Ligand Conversiona

(%)

eea (%) Conversiona

(%)

eea (%)

L1 60 <5 60 <5

L2 75 <5 55 <5

L4 80 <5 60 <5

L10 60 <5 50 <5

All reactions were done in MeOH on a 2 mmol scale in a total volume of 4 mL at room
temperature and 70 bar H2 for 24h. Substrate/Ru/L/CeCl3

.H2O: 400/1/2/0 or 5. Ru-
catalyst was prepared as described in 4.3.1.1. a) Conversions and ee’s were determined
via chiral GC.

As in none of the reactions full conversion was reached or any significant ee was

obtained, we decided to add 1.25 mol% cerium salt to the reaction as was

described by Sun et al..[40] Sadly also this proved not to lead to any ee or full

conversions in the reaction.
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4.4 Conclusions

In this chapter it is shown that it is possible to use monodentate

phosphoramidites as ligands in the hydrogenation of β-ketoesters. The

performance of the ligands in this reaction seems to be determined more by the

structure of the backbone than of the amine part of the ligand. Making the

backbone more sterically demanding by placing side groups on the 3 and 3’

position in combination with the saturation of the outer rings of the naphthyl

group, results in ee’s up to 99% with full conversion. These are the best results

obtained in the asymmetric hydrogenation of β-ketoesters when using

monodentate ligands in the catalyst. We showed that this ruthenium catalyst

containing the sterically large phosphoramidite ligand is able to hydrogenate a

range of β-ketoesters and performs best when two phosphoramidite ligands per

ruthenium center are present in the reaction mixture.

The hydrogenation of α-ketoesters with the same type of catalyst led to

incomplete conversions and racemic products. Also the addition of an additive

(CeCl3
.7H2O), known to work very well in another case, gave no improvement

of the results.

4.5 Experimental

Starting materials were purchased from Aldrich, Alfa Aesar or Acros and used as

received unless stated otherwise. [RuCl2(cymene)]2 was bought from Strem and used as

received. Substrates 4.10h, 4.10i and (R)-3,3’-dimethyl bis-β-naphthol were kindly

provided by DSM. All solvents were reagent grade and, if necessary, dried and distilled

prior to use. Column chromatography was performed on silica gel (Aldrich 60, 230-400

mesh). TLC was performed on silica gel 60/Kieselguhr F254.
1H and 13C NMR spectra

were recorded on a Varian AMX400 (399.93 MHz for 1H, 100.59 MHz for 13C and

161.9 MHz (1H-decoupled) for 31P). Mass spectra (HRMS) were performed on a Jeol

JMS-600H. HPLC analysis was performed on a Shimadzu HPLC system equipped with

two LC-10AD solvent delivery systems, a DGU-14A degasser, a SIL-10AD vp auto

injector, an SPD-M10A vp diode array detector, a CTO-10A vp column oven, and an

SCL-10A vp system controller using the columns indicated for each compound
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separately. Optical rotations were measured on a Schmidt+ Haensch polarimeter

(Polartronic MH8) with a 10 cm cell (c given in g/100 mL).

Ligands L1,[48] L2-3,[11] L5-6, L7,[49] L8 and L10 were described in literature before and

used from the general phosphoramidite library present in our labs. The preparation of L4

is described in Chapter 2.

(R)-1-(2,6-dimethyl-8,9,10,11,12,13,14,15-octahydrodinaphtho[2,1-d:1',2'-

f][1,3,2]dioxaphosphepin-4-yl)piperidine; 8H-DiMe-PipPhos (L9)

(R)-3,3’-dimethyl-5,6,7,8,5’,6’,7’,8’-octahydro-[1,1’]-binaphthal-

enyl-2,2’-diol (8H-bis-β-naphtol) (1.6 g, 5 mmol) was dissolved

in PCl3 (5 mL) under nitrogen atmosphere. The mixture was

heated under reflux for 16 h, keeping the system under anhydrous

conditions using a CaCl2 tube. Excess of PCl3 was removed by

distillation and the residual solid was subjected to azeotropic

distillation with toluene (3 × 5 mL). The resulting yellow foam was dissolved in toluene

(10 mL). The resulting solution was cooled to 0 oC and Et3N (2 equiv, 10 mmol, 1.4 mL)

was added. This was let to stir for 10 minutes, then piperidine (1.1 equiv, 5.5 mmol, 550

L) in toluene (5 mL) was added dropwise. After stirring overnight, (allowing the

temperature to rise to room temperature) the reaction mixture was diluted with Et2O and

the salts were filtered off. The mixture was concentrated under reduced pressure and the

residue purified by flash chromatography (pentane:Et2O 8:1) to give the pure

phosphoramidite as a white solid still contaminated with some toluene. Stripping with

acetone furnished 1.2 g (2.8 mmol, 56%) of the phosphoramidite as foamy solid. Mp

97.9 - 98.2 °C. 1H-NMR (400 MHz, CDCl3)  (ppm) 6.93 (s, 1H), 6.87 (s, 1H), 2.68-

2.96 (m, 8H), 2.50-2.66 (m, 2H), 2.12-2.38 (m, 8H), 1.63-1.81 (m, 6H), 1.48-1.62 (m,

4H), 1.30-1.46 (m, 4H). 13C-NMR (100 MHz, CDCl3)  (ppm) 147, 147, 135, 135, 133,

132, 130, 130, 129, 128, 127, 126, 44.8, 44.6, 29.1, 29.0, 27.6, 27.4, 27.1, 27.0, 25.0,

23.0, 22.9, 22.7, 22.5, 16.4, 16.2. 31P-NMR (162 MHz, CDCl3)  (ppm) 137.0. HRMS

calcd for C27H34NO2P (M+): 435.2327; found: 435.2295.

General procedure for hydrogenation of β-ketoesters

2.5 μmol of [RuCl2(cymene)]2 and 10 μmol (4 equivalents) phosphoramidite were

dissolved in 1.5 ml DMF. This mixture was stirred while heated for two hours at 90 oC.

After two hours the mixture was let to cool down to room temperature after which the

DMF was removed in vacuo. The residue was dissolved in 4 ml of MeOH in case of a

methylester and EtOH in case of an ethylester. This solution was added to 2 mmol of

O

O
P N

L9



Enantioselective Hydrogenation of α- and β-Ketoesters

using Monodentate Phosphoramidites Ligands

111

substrate in an 8 ml glass vial. The vial was capped with a septum which was pierced by

a hyperdermic needle and put into an autoclave. The autoclave was closed, purged three

times with 5 bar of N2 and three times with 8 bar of H2 before brought up to the working

pressure of 70 bar H2. The autoclave was heated till 70 oC and kept stirring for 24 hours.

After the reaction time the autoclave was allowed to cool down to room temperature

before the hydrogen pressure was carefully released. The solvent was evaporated and of

the remains a small volume was run over a short silica plug in order to make a GC

sample for the determination of conversion and ee.

(S)-Methyl 3-hydroxybutyrate[2] (4.11a) Was obtained as a yellow oil (full conversion,

99% ee), 1H-NMR (200 MHz, CDCl3)  (ppm) 4.28-4.13 (m, 1H), 3.47 (bs, 1H), 3.23 (s,

3H), 2.57-2.36 (m, 2H), 1.23 (d, 3H, J = 6.3 Hz). 13C-NMR (50 MHz, CDCl3)  (ppm)

170.1, 64.2, 42.5, 51.7, 22.4. [α]D = 23.9 (c 0.99, CHCl3). Ee determination was

performed on a GTA-column. Tinlet = Tdet = 250 oC; Tisotherm = 110 oC (15 min) TR = 10.9

min. TS = 11.2 min.

(S)-Ethyl 3-hydroxybutyrate[50] (4.11b) was obtained as a light brown oil (full

conversion, 98% ee). 1H-NMR (200 MHz, CDCl3)  (ppm) 4.28-4.12 (m, 3H), 2.56-2.34

(m, 2H), 1.29-1.13 (m, 6H). 13C-NMR (50 MHz, CDCl3)  (ppm) 172.9, 64.2, 60.6, 42.7,

22.4, 14.2. [α]D = 40.3 (c 0.92, CHCl3). Ee determination was performed on a Chiralsil

DEX CB column Tinlet = Tdet = 250 oC; Tstart = 50 oC (5 min) – (1 oC / min) 170 oC TR

= 23.1 min. TS = 23.5 min.

(S)-Ethyl 3-hydroxyhexanoate[51] (4.11c) was obtained as a yellow oil (full conversion,

97% ee). 1H-NMR (200 MHz, CDCl3)  (ppm) 4.21 (q, 2H, J = 7.1 Hz), 4.08-3.96 (m,

1H), 3.43 (s, 1H), 2.56-2.37 (m, 2H), 1.75-1.36 (m, 4H), 1.28 (t, 3H, J = 7.2 Hz), 0.93 (t,

3H, J = 7.4 Hz). 13C-NMR (50 MHz, CDCl3)  (ppm) 173.1, 67.7, 60.6, 41.3, 38.6, 18.6,

14.2, 13.9. [α]D = 15.3 (c 1.02, CHCl3). Ee determination was performed on a Chiralsil

DEX CB column Tinlet = Tdet = 250 oC; Tstart = 50 oC (5 min) – (1 oC / min) 170 oC TR

= 38.1 min. TS = 40.0 min.

(S)-Ethyl 3-hydroxy 4-methylpentanoate[6] (4.11d) was obtained as a yellow oil (89%

conversion, 91% ee). 1H-NMR (200 MHz, CDCl3)  (ppm) 4.22 (q, 2H, J = 7.0 Hz),

3.98-3.93 (m, 1H), 2.59-2.37 (m, 2H), 1.99-1.86 (m, 1H), 1.28 (t, 3H, J = 7.1 Hz), 0.89

(d, 6H, J = 6.8 Hz). 13C-NMR (50 MHz, CDCl3)  (ppm) 173.6, 73.9, 61.2, 37.9, 35.6,

17.5, 14.1. [α]D = 19.3 (c 0.89, CHCl3). Ee determination was performed on a Chiralsil
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DEX CB column Tinlet = Tdet = 250 oC; Tstart = 50 oC (5 min) – (1 oC / min) 170 oC TR

= 31.2 min. TS = 31.9 min.

(S)-Methyl 3-hydroxypentanoate[52] (4.11e) was obtained as a colorless oil (full

conversion, 98% ee). 1H-NMR (200 MHz, CDCl3)  (ppm) 4.00-3.88 (m, 1H), 3.72 (s,

3H), 3.69, (bs, 1H), 2.55-2.19 (m, 2H), 1.61-1.45 (m, 2H), 0.97 (t, 3H, J = 7.2 Hz). 13C-

NMR (50 MHz, CDCl3)  (ppm) 167.7 69.3, 51.7, 40.6, 29.4, 9.8. [α]D = 35.1 (c 0.92,

CHCl3). Ee determination was performed on a Chiralsil DEX CB column Tinlet = Tdet =

250 oC; Tstart = 50 oC (5 min) – (1 oC / min) 170 oC TR = 17.4 min. TS = 17.9 min.

(R)-Methyl 3-hydroxy 4-chlorobutyrate[53] (4.11f) was obtained as a yellow oil (full

conversion, 44% ee). 1H-NMR (200 MHz, CDCl3)  (ppm) 4.32-4.21 (m, 1H), 3.79-3.60

(m, 6H), 2.72-2.63 (m, 2H). 13C-NMR (50 MHz, CDCl3)  (ppm) 172.1, 67.9, 52.0, 51.8,

38.2. [α]D = 9.6 (c 0.87, CHCl3). Ee determination was performed on a Chiralsil DEX

CB column Tinlet = Tdet = 250 oC; Tstart = 50 oC (5 min) – (1 oC / min) 170 oC TS = 18.6

min. TR = 18.9 min.

(R)-Ethyl 3-hydroxy 3-phenylpropionate[3] (4.11g) was obtained as a yellow oil (full

conversion, 96% ee). 1H-NMR (200 MHz, CDCl3)  (ppm) 7.97-7.35 (m, 5H), 5.14 (dd,

1H, J = 5.0 Hz, J = 7.9 Hz), 4.27 (q, 2H, J = 7.0 Hz), 2.84-2.61 (m, 2H), 1.26 (t, 3H, J =

7.1 Hz). 13C-NMR (50 MHz, CDCl3)  (ppm) 172.4, 142.5, 128.7, 128.5, 128.5, 70.3,

61.5, 43.3, 14.1. [α]D = –50.3 (c 1.08, CHCl3). Ee determination was performed on a

Chiralsil DEX CB column Tinlet = Tdet = 250 oC; Tstart = 50 oC (5 min) – (1 oC / min) 

170 oC TS = 90.1 min. TR = 90.8 min.

(R)-Methyl 3-hydroxy 3-(3-chlorophenyl)-propionate (4.11h) was obtained as a pale

yellow oil (95% conversion, 94% ee). 1H-NMR (200 MHz, CDCl3)  (ppm) 7.83-7.31

(m, 4H), 5.11 (t, 1H, J = 6.3 Hz), 3.76 (s, 3H), 3.73 (s, 1H), 2.74-2.70 (m, 2H). 13C-

NMR (50 MHz, CDCl3)  (ppm) 169.5, 137.4, 135.2, 131.2, 127.9, 126.3, 125.9, 69.6,

52.6, 42.9. [α]D = –49.2 (c 0.79, CHCl3). Ee determination was performed on a Chiralsil

DEX CB column Tinlet = Tdet = 250 oC; Tstart = 50 oC (5 min) – (1 oC / min) 170 oC TS

= 92.5 min. TR = 92.8 min.

(R)-Ethyl 3-hydroxy 3-(2-furyl)-propionate[54] (4.11k) was obtained as a brown oil

(full conversion, 85% ee). 1H-NMR (200 MHz, CDCl3)  (ppm) 7.62 (d, 1H, J = 1.5 Hz),

7.28 (d, 1H, J = 3.1 Hz), 6.57 (dd, 1H, J = 1.7 Hz, J = 3.6 Hz) 4.21 (q, 2H, J = 7.1 Hz),

2.72-2.55 (m, 2H), 1.26 (t, 3H, J = 7.1 Hz) 13C-NMR (50 MHz, CDCl3)  (ppm) 171.9,
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152.0, 142.1, 110.9, 105.9, 65.0, 61.5, 41.5, 14.1. [α]D = 16.3 (c 1.09, CHCl3). Ee

determination was performed on a Chiralsil DEX CB column Tinlet = Tdet = 250 oC; Tstart

= 50 oC (5 min) – (1 oC / min) 170 oC TS = 65.1 min. TR = 65.3 min.

Procedure for hydrogenation of methyl pyruvate (4.13) in the prescense of

CeCl3
.7H2O.

2.5 μmol of [RuCl2(cymene)]2 and 10 μmol (4 eq.) phosphoramidite were dissolved in

1.5 ml DMF. This mixture was stirred while heated for two hours at 90 oC. After two

hours the mixture was let to cool down to room temperature after which the DMF was

removed in vacuo. The residue was dissolved in 4 ml of methanol. This solution was

added to 204 mg methyl pyruvate (2 mmol) in an 8 ml glass vial. To this 9.3 mg

CeCl3
.7H2O (25 μmol) was added. The vial was capped with a septum which was

pierced by a hypodermic needle and put into an autoclave. The autoclave was closed,

purged three times with 5 bar of N2 and three times with 8 bar of H2 before it was

brought up to the working pressure of 50 bar H2. The autoclave was heated till 70 oC and

kept stirring for 24 hours. After the reaction time the autoclave was allowed to cool

down to room temperature before the hydrogen pressure was carefully released. The

solvent was evaporated and of the remains a small volume was run over a short silica

plug in order to make a GC sample. Conversion and ee of the product were determined

via chiral GC. GTA column, Tinlet = Tdet = 250 oC; Tisotherm = 80 oC (50 min) T1 = 15.2

min. T2 = 16.4 min.
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Chapter 5

Asymmetric Hydrogenation under

DKR Conditions.

Abstract
In this chapter the attempts to perform an asymmetric hydrogenation on α-substituted β-
ketoesters and α-aryl aldehydes are described. In the hydrogenation of the α-substituted
β-ketoesters no syn/anti selectivity was obtained when using a ruthenium based catalyst
containing phosphoramidite ligands. For the α-aryl aldehydes full conversions and
selectivities of up to 83% ee were obtained when using a ruthenium phosphoramidite
catalyst.
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5.1 Introduction

As discussed in Chapter 1, kinetic resolution is one of the methods to obtain an

enantiopure compound. In a kinetic resolution, a reaction is performed in which

one of the two enantiomers of the substrate reacts (much) faster than the other.

In this way one of the enantiomers is reacted away and the other enantiomer is

left in enantioenriched form. The major drawback of this method for making an

enantiopure compound is the fact that the maximum yield for these reactions is

only 50%, since only half of the substrate will react.

Figure 1: Kinetic resolution vs. dynamic kinetic resolution

If it would be possible to transform the other, non reacting, enantiomer into the

reacting enantiomer while the resolution is taking place, it would be possible to

obtain a yield higher than 50% and even go to full conversion. This process, in

which the non-reactive enantiomer is transformed via, for instance, a

racemization reaction into the reactive enantiomer during the resolution, is called

a dynamic kinetic resolution (DKR).[1]
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5.1.1 Dynamic kinetic resolution of α-substituted β-ketoesters

A class of substrates on which a DKR can readily be performed comprizes the α-

substituted β-ketoesters because of their rapid racemization which occurs even at

room temperature. The hydrogenation of these compounds has been an area of

interest for quite some years. Since, if done correctly, one is able to control the

formation of two stereogenic centers in one reaction step. A lot of work has been

carried out on this subject by the group of Noyori after their discovery of the

ruthenium-binap system.[2] They have proven to be able to hydrogenate methyl

2-(benzamidomethyl)-3-oxobutanoate (5.1) with excellent de and ee.[3]

Figure 2: Industrial synthesis of a carbapenem intermediate via an enantioselective
hydrogenation under DKR conditions.

This selective hydrogenation led to the development of an industrial scale

process for the synthesis of an intermediate in the production of carbapenems

(see Figure 2); an important class of antibiotics.
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Figure 3: The structure of the natural product borrelidin (5.3) with, indicated by the
ellipse, the part of the molecule which could be constructed using a DKR hydrogenation
on a β-ketoester

Being able to control two stereocenters in one reaction step makes the synthesis

of molecules containing multiple stereocenters a lot easier since it reduces the

number of chirality introducing steps. In our group the natural antibiotic

borrelidin (5.3)[4] (Figure 3) is being synthesized. This molecule contains a part

which has been synthesized via asymmetric hydrogenation and DKR.

5.1.2 Enantioselective hydrogenation of aldehydes

Figure 4: Hydrogenation of α-aryl aldehydes under DKR conditions.

Another class of substrates that can be interesting for hydrogenation under DKR

conditions consists of α-aryl aldehydes. The stereogenic center of this type of

aldehydes is known to racemize easily under basic conditions, due to the keto-

enol tautomerism the aldehydes are, continuously, undergoing. By choosing the

reaction conditions correctly it has been shown that it is possible to hydrogenate

these aldehydes into enantiomerically enriched primary β-aryl alcohols.

So far, two examples are known of the enantioselective hydrogenation of aryl

aldehydes. One by the group of List[5], who used a ruthenium catalyst containing
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binap and DPEN as ligands, and the other one, reported by Zhou[6], who used a

catalyst containing their SDP ligand (5.4a-e, Figure 5) in combination with a

1,2-diamine. Both systems have shown to be able to hydrogenate the aldehyde

substrates in excellent yields and up to 99% ee.

Figure 5: The different SDP ligands (5.4a-e) as used by the group of Zhou in the
asymmetric hydrogenation of aldehydes.[6;7]

The products of these hydrogenations can be used in the synthesis of several

biologically interesting compounds. As shown by the group of List it is possible

to synthesize Ibuprofen® in two steps from the 2-(4-(sec-butyl)phenyl)-

propionaldehyde. After the hydrogenation, KMnO4 is used for the oxidation of

the alcohol to the desired acid, keeping the stereogenic center in tact (still 92%

ee after oxidation).[8]

Figure 6: Synthesis of Ibuprofen as proposed by Li and List.[5]

In the synthesis of the pesticide Fenvalerate and the lipoxygenase inhibitor BAY

x 1005[9] the hydrogenation of an α-aryl aldehyde can also be used as key step

for the introduction of chirality.
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Figure 7: Structures of Fenvalerate and BAY X 1005 made by hydrogenation of an α-
aryl aldehyde.[6]

Besides the α-aryl aldehydes, the group of Zhou also reported the asymmetric

hydrogenation of α-aryloxy aldehydes[7] (Figure 8) under the same conditions.

Figure 8: The α-aryloxy aldehydes which can also undergo asymmetric hydrogenation
under DKR conditions.

They were able to reach excellent yields, up to 98%, and moderate to good ee’s,

up to 81% using a ruthenium catalyst containing their DMM-SDP (5.4e) ligand

(see Figure 5) in combination with the diamine DACH.

In this chapter the results will be discussed of the hydrogenation of ethyl 2-

methylacetoacetate (5.5) using a ruthenium catalyst based on phosphoramidite

ligands. In the second part of the chapter, the synthesis of several α-

arylaldehydes will be described. Also the search for a good, ruthenium based,

hydrogenation catalyst for these aldehydes, using phosphoramidite ligands, will

be discussed.
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5.2 Results

The good results we obtained in the asymmetric hydrogenation of acetophenones

and β-ketoesters as described in chapters 2 and 4, respectively, prompted us to

also try the phosphoramidite ligands in hydrogenations under DKR conditions.

5.2.1 Hydrogenation results of α-substituted β-ketoesters

The asymmetric hydrogenation of ethyl 2-methyl-acetoacetate (5.5) was tested

with the same catalyst that was used for the hydrogenation of β-ketoesters as

described in chapter 4, thus a ruthenium catalyst in combination with two

monodentate phosphoramidite ligands.

Table 1: Ligand screening in the hydrogenation of 5.5 under DKR conditions.

Ligand Conversion (%) syn:anti ee syn (%) ee anti (%)

(S)-L1 35 7:9 71 33

(S)-L1a 76 5:9 71 33

(S)-L1b 48 1:1 0 0

(S)-L1c 49 2:3 71 29

(S)-L2 15 8:9 31 19

(S)-L3 21 1:1 32 11

(R)-L4 18 1:1 28 15

(S)-L5 20 1:1 25 8

(R)-L6 10 1:1 -19 -9

Unless stated otherwise, reactions were carried out on 2 mmol of 5.5 catalyzed by 0.25
mol% ruthenium-phosphoramidite catalyst in 4 mL MeOH, 70 bar H2 at 70 oC for 24 h.
Catalysts where made as described in chapter 4. Substrate/Ru/L 400/1/4. a) Reaction
time: 48 h. b) 5% KOtBu added to the reaction mixture c) 0.5 mol% catalyst used.
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Conversion, syn:anti-ratio and ee’s were determined via chiral GC using a Chiralsil Dex-
CB column isothermal (110 oC) conditions.

As can be seen in Table 1, the hydrogenation of 5.5 is much slower compared to

β-ketoesters that do not have a substitution on the α-position. It was not possible

to get the reaction to go to full completion within 24 hours. Also we were not

able to achieve good selectivity for the syn or the anti product. The best

selectivity we were able to get was a 3:2 ratio in favor of the anti product when

we used 0.5 mol% of the catalyst which has the L1 ligand. Disappointing also

was the fact that of the two products it was the syn that displayed the higher ee;

71% in comparison to 29% for the more abundant anti product!

Another substrate tested in the asymmetric hydrogenation under DKR conditions

was methyl 2-oxocyclopentanecarboxylate (5.7). The product of this

hydrogenation is of great interest for our research group since it could be used as

one of the precursors in the synthesis of borrelidin. The selective hydrogenation

of this substrate can be achieved using a Ru binap type catalyst.[3] The interest

within our group for the product of this hydrogenation prompted us to attempt it

using a Ru-phosphoramidite catalyst.

Figure 9: Asymmetric hydrogenation of methyl 2-oxocyclopentane carboxylate (5.7) in
which no conversion was observed when a phosphoramidite ligand as used.
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Sadly, in none of hydrogenation reactions of 5.7 in which a phosphoramidite

ligand was used any conversion was observed. Also a switch in solvent from

methanol to DCM did not get the reaction started.

With these disappointing results in hand we decided to try a different class of

substrates which could also undergo asymmetric hydrogenation under DKR

conditions.

5.3 Synthesis of α-arylaldehydes

Figure 10: Synthesis of the α-branched arylaldehydes.

The various α-substituted arylaldehydes were synthesized as previously

described by Xie et al.[6] and Yamazaki et al.[10] starting from the corresponding

ketones. On these substrates a Wittig methoxymethylenation was performed

using (methoxymethyl)triphenylphosphonium chloride with KOtBu as a base.

This resulted in the corresponding enol-methyl ethers. An acid catalyzed

hydrolysis, using hydrochloric acid, gave the various arylaldehydes (5.9b-h) in

moderate to good yields (51-72%), over two steps, as shown in Figure 11.
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Figure 11: The α-alkylated phenyl acetaldehydes with the yields over two steps.
Aldehyde 5.9a is commercially available.

5.4 Results of the asymmetric hydrogenation of α-arylaldehydes

In order to get good results in the asymmetric hydrogenation of aryl aldehydes

we had to make sure that the base induced racemization of the starting material

was faster than the rate of hydrogenation. If this would not be the case the

catalyst would eventually have no choice but to start hydrogenation the non-

preferred enantiomer of the starting material.

Figure 12: Base induced racemization during dynamic kinetic resolution in the
hydrogenation of aldehydes.

By stopping the hydrogenation reaction at different times before full completion

we were able to check the ee of the starting material.
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In all cases, chiral-GC analysis of the reaction mixture showed that the starting

material remained a racemic mixture. This was proof that the racemization was

fast enough to keep up with the actual DKR hydrogenation experiments.

In the hydrogenation of hydratropaldehyde (5.9a) we started with the catalyst

that performed best in the hydrogenation of simple aryl ketones. Using (R)-L1,

different combinations with diamines were tested as well as different amounts of

base to get the right combinations for this type of hydrogenation. As can be seen

in Table 2 the best results in this type of hydrogenations are obtained when using

a diamine of opposite configuration as the phosphoramidite.

Table 2: Results of ligand diamine combinations

Entry Ligand Diamine Base

(mol%)

Conversiona

(%)

eeb

(%)

1 (R)-L6 (R,R)-DACH 12 85 −62

2 (R)-L6 (S,S)-DACH 12 full (85) 83

3 (R)-L6 (R,R)-DACH 24 full (93) −33

4 (R)-L6 (S,S)-DPEN 12 full (90) 32

5 (R)-L6 (S,S)-DPEN 24 full (90) 29

All reactions were carried out on 2 mmol of 5.9a with 0.25 mol% Ru-catalyst, which
was made the same way as described in chapter 2, in a total volume of 4 mL while
applying 50 bar H2 pressure at room temperature for 24 hours.
Substrate/Ru/PPA/Diamine 400/1/2/1. a) Number in parentheses is the isolated yield of
the product. b) Ee’s were determined via chiral GC using a Chiralsil Dex-CB column.
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Table 3: Results of the ligand screening in the asymmetric hydrogenation of
hydratropaldehyde.

Ligand Conversion (%) ee (%)

1 (R)-L6 full 83

2 (S)-L7 70 −14

3 (S)-L8 40 −28

4 (R)-L3 full 71

5 (S)-L5 full −51

6 (S)-L2 <10 nd

7 (S)-L9 <10 nd

8 (S)-L10 <10 nd

9 (S)-L11 <10 nd

10 (S)-L12 <10 nd

Unless stated otherwise all reactions were carried out on 2 mmol 5.9a with 0.25 mol%
ruthenium catalyst bearing the mentioned PPA-ligand in combination with DACH of the
opposite absolute configuration.

After finding a catalyst and conditions that led to full conversion but induced an

ee that is up for improvement, a small screening of ligands was done. As shown

in Table 3 none of the ligands led to a better performing catalyst than the

DiMePip ligand L6 which was used in first instance.
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Use of MonoPhos, L7, and the somewhat bigger Et-Propyl ligand L8 did not

result in full conversion within 20 hours. Also the ee’s reached after the 20 hours

of 14% and 28% respectively were nowhere near the level reached when L6 was

used. The even bulkier phosphoramidites, di-isopropyl phosphoramidite L9 and

Leggy ligand L10, performed even worse, as hardly any conversion and a

negligible ee were observed. Also the two NH-ligands L11 and L12 and the very

bulky 8H-Ph-piperazine L2 did not result in conversion and ee. The only two

ligands which allowed us to obtain similar results as with DiMePip were the two

ligands that had a substitution on the 3,3’-position of the binol backbone. Both

the 3,3’-DiMethyl-Morfphos (L3) and the 3,3’-dibromo-Pipphos (L5) ligands

induced full conversion and 71% and 51% ee, respectively. This indicates again

the importance of the extra bulk created at these positions with respect to

enhancing the selectivity of the reaction. However, none of these ligands

outperformed L6.
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5.5 Substrate scope

After it was concluded that none of the tested ligands gave a better result in the

asymmetric hydrogenation of hydratropaldehyde we decided to explore the

substrate scope of the reaction with the catalyst that was used in first instance.

This is the ruthenium catalyst which bears the phosphoramidite (R)-L6 in

combination with the diamine (S,S)-DACH. The results of these reactions can be

found in Table 4. It can be seen that also varying the substrate did not lead to a

higher ee either.

Table 4: Results of the asymmetric hydrogenation of different α-aryl aldehydes.

Aldehyde R1 R2 Conversiona,b (%) eea (%)

1 5.9a H Me full (95) 83

2 5.9b H iPr full (91) 74

3 5.9c H nPr full (96) 71

4 5.9d H cPr full (90) 78

5 5.9e H Cyclohexyl full (89) 78

6 5.9f o-Me Me full (92) 69

7 5.9g p-OMe Me full (89) 62

8 5.9h p-Cl Me full (87) 63

All reactions were carried out on 1 mmol substrate with 0.25 mol% Ru catalyst bearing
two (R)-L6 and (S,S)-DACH in the presence of 12 mol% KOtBu in a total volume of 2
mL iPrOH. During the reaction 50 bar H2 was applied for 20 hours at room temperature.
a) Conversion and ee’s were determined via chiral-GC using a Chiralsil Dex-CB column.
All products are of (R)-configuration. b) Number in parentheses denotes isolated yield.

What does become clear from this table is that the substituent on the alpha

position or on the phenyl ring does not influence the outcome of the reaction

very much. In all cases the reaction goes to full completion and the ee’s are all

moderate to good (62 – 83%). Selectivity-wise it can be seen that the ee drops a
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little bit when a substituent is placed on the phenyl ring (5.9f-h), although it does

not seem to matter whether these substituents are electron withdrawing (5.9h),

electron donating (5.9g) or a more sterically demanding o-methyl group (5.9f).

In all cases the ee drops about 15-20% compared to the best performing

substrate 4a. Placing different substituents on the alpha position (5.9b-e) does

not seem to make much difference since in all cases the ee remains about the

same. If anything it can be said, it is that the introduction of a cycloalkane (5.9d-

e) makes the reaction a bit more selective in comparison to the non cyclic side

chains (5.9b-c).

5.6 Conclusions

It is concluded that the hydrogenation of 5.5 under DKR conditions is possible.

Unfortunately, the selectivity in this hydrogenation is not very high. Mostly

equimolar mixtures of syn and anti product are formed with at best a 9:5 ratio in

favor of the anti product. The ee’s of the major diastereomer are at best moderate.

The minor diastereomer displayed better enantioselectivity up to a good 71%.

Also it appeared that the reaction proceeded much slower in comparison with

that of the unsubstituted β-ketoesters (See Chapter 4), and did not go to full

conversion. Apparently the extra substituent on the α-position made the substrate

less likely to coordinate to the catalyst. In the case of substrate 5.7 the ring

structure made it even impossible for the substrate to be hydrogenated using

phosphoramidite ligands in the catalyst.

The α-aryl aldehydes could be fully hydrogenated in most cases, however, the

selectivity of the reaction is only moderate. It appears that the phosphoramidite

ligands in combination with the chiral 1,2-diamine, in this case, cannot create an

environment selective enough to obtain good ee’s.
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5.7 Experimental

General Experimental

For general experimental remarks see Chapter 2. Substrates 5.5, 5.7 as well as the

ketones used in the aldehyde synthesis were purchased from Aldrich and used as

received. The Ph3P
+CH2OCH3 Cl- was obtained from Alfa Aesar. Ligands L4 and L6 are

previously described in this thesis, L1,[11] L2,[12] L3,[11] L7,[13] L8,[14] L9-10,[11] L11[15]

and L12[16] were all described in literature before.

Procedure for the hydrogenation of ethyl 2-methyl-acetoacetate (5.5)

In 2 mL DMF 1.5 mg (2.5 μmol) [RuCl2(cymene)]2 and 4 eq (10 μmol) phosphoramidite

were dissolved. The solution was heated at 90 oC for two hours while stirring. After two

hours the solution was cooled down to room temperature after which the DMF was

removed in vacuo. The residue was redissolved in 4 mL MeOH. The solution containing

the catalyst was transferred to a glass vial loaded with 288 mg (2 mmol) 5.5 and a

stirring bar. The vial was closed with a septum cap. The septum was pierced with a

hypodermic needle and placed in an autoclave. After the autoclave was closed it was

purged three times with 5 bar N2 and three times with 8 bar H2. After purging the

pressure was set at 70 bar and the autoclave was heated till 70 oC for 24 hours. When the

reaction time had passed, the autoclave was let to cool down to room temperature and

the hydrogen pressure was carefully released. After evaporation of the solvent the

residue was passed over a small silica column. Ethyl 2-methyl-3-hydroxybutanoate (5.6)

was obtained as a mixture of four products (R,S)-5.6, (R,R)-5.6, (S,R)-5.6 and (S,S)-5.6.
1H-NMR (200 MHz, CDCl3) δ (ppm) 4.38-4.01 (m, 6H), 2.56-2.41 (m, 2H), 1.37-1.17

(m, 18H). 13C-NMR (50 MHz, CDCl3) δ (ppm) 170.5, 67.9, 61.3, 45.4, 21.8, 14.0, 12.7.

Ee’s and syn / anti ratios were determined via chiral GC[17], Chiralsil Dex-CB Tinlet = Tdet

= 250 oC; Tstart = 110 oC (50 min) – (10 oC / min)  180 oC. TS,S = 33.45 min, TR,S =

34.19 min, TS,R = 34.47 min, TR,R = 35.37 min.

General procedure for the aldehyde synthesis: A suspension of 5.1 gram

Ph3P
+CH2OCH3 Cl- (15 mmol) in 40 mL ether was cooled to 0 oC and 2.0 gram KOt-Bu

(17.5 mmol, 1.2 equiv.) was added in portions to give a dark red solution. After stirring

this mixture for 30 minutes, a solution of 0.66 eq of ketone (10 mmol) in 10 mL ether

was added dropwise to the solution containing the Wittig reagent. The resulting mixture

was stirred at 0 oC for 30 minutes, after which it was allowed to warm up to room

temperature and kept stirring until the reaction was finished (TLC monitor). When the
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reaction was completed, the mixture was poured into 75 mL of water. The layers were

separated and the aqueous layer was extracted twice with EtOAc (30 mL). The combined

organic layers were washed with water (50 mL) and brine (50 mL), dried over MgSO4,

and concentrated in vacuo. The residue was purified on a silica gel column with a

ether/pentane (1 : 20) mixture as eluent to afford the enol-methyl ether.

This enol-methyl ether was dissolved in Et2O (30 mL) and to this solution was slowly

added a 70% aqueous solution of HClO4 (~3 mL). After stirring for several hours (TLC

monitor) at room temperature the mixture was added slowly to a saturated aqueous

NaHCO3 solution (100 mL). The organic layer was separated and the aqueous layer was

extracted twice with 30 mL Et2O. The combined organic layers were dried over MgSO4,

and the solvent was removed under reduced pressure. The residue was purified on a

silica gel column with a ether/pentane (1 : 20) mixture as eluent to afford the

corresponding α-aryl aldehyde as an oil in reasonable to good yields.

2-phenyl-3-methylbutanal[6] (5.9b)

The product was obtained as a colorless oil after column chromatography,

1.02 gram (6.31 mmol 63%). 1H-NMR (200 MHz, CDCl3) δ (ppm) 9.70 (d,

J = 3.2 Hz, 1H), 7.37-7.16 (m, 5H), 3.18 (dd, J = 3.2 Hz, J = 9.4 Hz, 1H),

2.47-2.33 (m, 1H), 1.04 (d, J = 6.8 Hz, 3H), 0.77 (d, J = 6.8 Hz, 3H). 13C-NMR (50 MHz,

CDCl3) δ (ppm) 201.1, 134.9, 129.3, 128.9, 127.4, 66.8, 28.8, 21.2, 20.0. HRMS (EI)

calcd for C11H14O (M+) 162.1045 found 162.1051.

2-phenylpentanal[18] (5.9c)

The product was obtained as a colorless oil after column chromatography,

0.98 gram (6.02 mmol, 60%). 1H-NMR (200 MHz, CDCl3) δ (ppm) 9.66

(d, J = 1.9 Hz, 1H), 7.38-7.17 (m, 5H), 3.51 (dt, J = 2.0 Hz, J = 3.5 Hz,

1H), 1.83-1.60 (m, 2H), 1.32-1.22 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H). 13C-

NMR (50 MHz, CDCl3) δ (ppm) 201.1, 134.8, 129.0, 128.8, 127.5, 58.4, 31.8, 20.3, 13.9.

HRMS (EI) calcd for C11H14O (M+) 162.1045 found 162.1049.

2-cyclopropyl-2-phenylacetaldehyde[19] (5.9d)

The product was obtained as a colorless oil after column chromatography,

0.94 gram (5.89 mmol, 59%). 1H-NMR (200 MHz, CDCl3) δ (ppm) 9.75

(d, J = 3.4 Hz, 1H), 7.39-7.24 (m, 5H), 2.80 (dd, J = 2.5 Hz, J = 9.5 Hz,

O

O

O
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1H), 1.41-1.23 (m, 1H), 0.82-0.55 (m, 2H), 0.44-0.17 (m, 2H). 13C-NMR (50 MHz,

CDCl3) δ (ppm) 197.0, 132.9, 125.5, 125.2, 124.2, 59.9, 7.5, 1.1, 0.0. HRMS (EI) calcd

for C11H12O (M+) 160.0888 found 160.0877.

2-cyclohexyl-2-phenylacetaldehyde[20] (5.9e)

The product was obtained as a colorless oil after column chromatography,

1.38 gram (6.84 mmol, 68%). 1H-NMR (200 MHz, CDCl3) δ (ppm) 9.69

(d, J = 3.6 Hz, 1H), 7.40-7.14 (m, 5H), 3.25 (dd, J = 3.5 Hz, J = 9.7 Hz,

1H), 2.20-2.01 (m, 1H), 1.87-1.62 (m, 4H), 1.44-0.95 (m, 4H), 0.90-0.70

(m, 2H). 13C-NMR (50 MHz, CDCl3) δ (ppm) 201.2, 135.2, 129.3, 128.9, 127.4, 65.8,

38.2, 31.8, 30.2, 26.2, 26.0. HRMS (EI) calcd for C14H18O (M+) 202.1358 found

202.1351.

2-(2-methylphenyl)-propanal[21] (5.9f).

The product was obtained as a colorless oil after column chromatography

1.06 gram (7.16 mmol, 72%). 1H-NMR (200 MHz, CDCl3) δ (ppm) 9.66,

(d, J = 1.5 Hz, 1H), 7.28-7.16 (m, 2H), 7.09-7.02 (m, 2H), 3.84 (dq, J = 1.3 Hz, J = 6.9

Hz, 1H), 2.36 (s, 3H), 1.41 (d, J = 7.1 Hz, 3H). 13C-NMR (50 MHz, CDCl3) δ (ppm)

201.1, 136.3, 130.9, 127.5, 127.4, 126.7, 49.3, 19.6, 14.3. HRMS (EI) calcd for C10H12O

(M+) 148.0888 found 148.0892.

2-(4-metoxyphenyl)-propanal[22] (5.9g)

The product was obtained as a colorless oil after column

chromatography, 1.12 gram (6.83 mmol, 68%) 1H-NMR (200 MHz,

CDCl3) δ (ppm) 9.65 (d, J = 1.4 Hz, 1H), 7.15-7.09 (m, 2H), 6.95-6.88

(m, 2H), 3.81 (s, 3H), 3.60-3.56 (m, 1H), 1.41 (d, J = 7.1 Hz, 3H) 13C-NMR (50 MHz,

CDCl3) δ (ppm) 201.2, 159.0, 129.6, 129.3, 114.5, 66.3, 52.1, 14.7. HRMS (EI) calcd for

C10H12O2 (M+) 164.0837 found 164.0849.

2-(4-chlorophenyl)-propanal[22] (5.9h)

The product was obtained as a yellow oil after column

chromatography, 0.85 gram (5.06 mmol, 51%). 1H-NMR (200 MHz,

CDCl3) δ (ppm) 9.66 (d, J = 1.2 Hz, 1H), 7.47-7.08 (m, 4H), 3.48 (q, J

= 7.0 Hz, 1H), 1.43 (d, J = 7.1 Hz, 3H). 13C-NMR (50 MHz, CDCl3) δ (ppm) 200.2,

O

O

O

O

Cl

O
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136.2, 133.1, 129.6, 129.2, 65.8, 14.6. HRMS (EI) calcd for C9H9ClO (M+) 168.0342

found 168.0337.

General procedure for the hydrogenation of the aldehydes: In 2 mL DMF were

dissolved 1.5 mg (2.5 μmol) [RuCl2(cymene)]2 and 10 μmol (4 equiv) phosphoramidite

ligand. The solution was heated at 90 oC for two hours while stirring. Subsequently, the

solution was cooled down to room temperature after which 5 μmol (2 equiv.) of diamine

were added and the solution was stirred for an additional 16 hours. After overnight

stirring the DMF was removed in vacuo and the residue was stripped twice with toluene

and washed once with hexane. The now remaining powder was redissolved in 2 mL

iPrOH. The solution containing the catalyst was transferred to a glass vial loaded with 1

mmol of the aldehyde substrate and a stirring bar. Just prior to placing the vial in the

autoclave 0.12 mL of a 1.0M KOtBu solution was added to the solution. The vial was

closed with a septum cap. The septum was pierced with a hypodermic needle and placed

in an autoclave. After the autoclave was closed it was purged three times with 5 bar N2

and three times with 8 bar H2. After purging the pressure was set to 50 bar and the

autoclave was placed on a stirring plate and stirred at room temperature for 24 hours.

The hydrogen pressure was carefully released. After evaporation of the solvent a small

sample of the residue was passed over a silica plug in order to obtain a GC sample.

Conversion and ee were determined via 1H-NMR and chiral GC respectively.

All alcohols were made via the hydrogenation using (R)-DimethylPipPhos (L6) and

(S,S)-DACH.

(R)-2-phenylpropan-1-ol[6] (5.10a)

The product was obtained as a colorless oil in 95% yield. [α]D = 13.3 (c

1.19, CHCl3), 83% ee. 1H-NMR (200 MHz, CDCl3) δ (ppm) 7.42-7.01

(m, 5H), 3.70 (d, J = 6.8 Hz, 2H), 3.03-2.86 (m, 1H) 1.28 (d, J = 7.0 Hz, 3H). 13C-NMR

(50 MHz, CDCl3) δ (ppm) 143.6, 128.6, 137.5, 126.7, 68.7, 42.4, 17.6. Ee determination

was carried out on Chiralsil Dex-CB column Tinlet = Tdet = 250 oC; Tstart = 100 oC (35 min)

– (10 oC / min) 180 oC. TS = 34.80 min; TR = 35.48 min.

OH
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(R)-2-phenyl-3-methyl-butan-1-ol[6] (5.10b)

The product was obtained as a colorless oil in 91% yield. [α]D = −9.9 (c

1.14, CHCl3), 74% ee. 1H-NMR (200 MHz, CDCl3) δ (ppm) 7.37-7.20

(m, 5H), 4.01-3.77 (m, 2H), 2.56-2.45 (m, 1H), 1.94-1.84 (m, 1H), 1.20

(d, J = 6.2 Hz, 1H), 1.01 (d, J = 6.6 Hz, 3H), 0.73 (d, J = 6.7 Hz, 3H). 13C-NMR (50

MHz, CDCl3) δ (ppm) 141.7, 128.7, 128.5, 126.7, 65.2, 55.8, 30.1, 21.0. Ee

determination was carried out on Chiralsil Dex-CB column Tinlet = Tdet = 250 oC; Tstart =

100 oC (30 min) – (10 oC / min) 180 oC. TS = 26.86 min; TR = 26.93 min.

(R)-2-phenylpentan-1-ol[23] (5.10c)

The product was obtained as a colorless oil in 96% yield. [α]D = −8.3 (c

1.05, CHCl3), 71% ee. 1H-NMR (200 MHz, CDCl3) δ (ppm) 7.36-7.20

(m, 5H), 3.80-3.65 (m, 2H), 2.81-2.78 (m, 1H), 1.71-1.50 (m, 2H),

1.34 (bs, 1H), 1.25-1.22 (m, 2H), 0.87 (t, J = 7.1 Hz, 3H). 13C-NMR (50 MHz, CDCl3) δ

(ppm) 142.5, 128.6, 128.1, 126.8, 67.7, 48.4, 34.2, 20.5, 14.1. Ee determination was

carried out on Chiralsil Dex-CB column Tinlet = Tdet = 250 oC; Tstart = 110 oC (3 min) – (1
oC / min) 180 oC. TS = 52.85 min; TR = 53.05 min.

(R)-2-cyclopropyl-2-phenylethanol[24] (5.10d)

The product was obtained as a colorless oil in 90% yield. [α]D = −8.5 (c

0.93, CHCl3), 78% ee. 1H-NMR (200 MHz, CDCl3) δ (ppm) 7.40-7.20

(m, 5H), 3.89-3.86 (m, 2H), 2.09-1.98 (m, 1H), 1.45 (bs, 1H), 1.11-0.93

(m, 1H), 0.71-0.58 (m, 1H), 0.51-0.26 (m, 2H), 0.16-0.04 (m, 1H). 13C-NMR (50 MHz,

CDCl3) δ (ppm) 139.3, 125.5, 124.9, 123.7, 64.5, 50.3, 10.2, 2.0, 0.0. Ee determination

was carried out on Chiralsil Dex-CB column Tinlet = Tdet = 250 oC; Tstart = 110 oC (3 min)

– (1 oC / min) 180 oC. TR = 47.59 min; TS = 49.59 min.

(R)-2-cyclohexyl-2-phenylethanol[6] (5.10e)

The product was obtained as a white solid, Mp = 48-50 oC, in 89% yield.

[α]D = −4.7 (c 0.95, CHCl3), 78% ee. 1H-NMR (200 MHz, CDCl3) δ

(ppm) 7.37-7.16 (m, 5H), 4.04-3.77 (m, 2H), 2.62-2.51 (m, 1H), 1.91-

0.76 (m, 11H) 13C-NMR (50 MHz, CDCl3) δ (ppm) 141.7, 128.8, 128.5,

126.6, 64.8, 54.8, 39.7, 31.3, 31.2, 26.4, 26.3, 26.3. Ee determination was carried out on

OH

OH

OH
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Chiralsil Dex-CB column Tinlet = Tdet = 250 oC; Tstart = 110 oC (3 min) – (1 oC / min) 

180 oC. TS = 69.16 min; TR = 69.44 min.

(R)-2-(2-methylphenyl)-propan-1-ol[25] (5.10f)

The product was obtained as a colorless oil in 92% yield. [α]D = 10.1 (c

1.16, CHCl3), 69% ee. 1H-NMR (200 MHz, CDCl3) δ (ppm) 7.22-7.07

(m, 4H), 3.80-3.63 (m, 2H), 3.27-3.17 (m, 1H), 2.36 (s, 3H), 1.41 (bs, 1H), 1.24 (d, J =

6.9 Hz, 3H) 13C-NMR (50 MHz, CDCl3) δ (ppm) 141.7, 136.4, 130.5, 126.3, 126.3,

125.4, 68.0, 37.2, 19.6, 17.5. Ee determination was carried out on Chiralsil Dex-CB

column Tinlet = Tdet = 250 oC; Tstart = 100 oC (30 min) – (10 oC / min)  180 oC. TS =

24.80 min; TR = 24.91 min.

(R)-2-(4-methoxyphenyl)-propan-1-ol[23] (5.10g)

The product was obtained as a colorless oil in 89% yield. [α]D = 9.6 (c

1.11, CHCl3), 62% ee. 1H-NMR (200 MHz, CDCl3) δ (ppm) 7.19-

7.13 (m, 2H), 6.91-6.84 (m, 2H), 3.79 (s, 3H), 3.66 (d, J = 7.0 Hz, 2H),

2.92-2.82 (m, 1H), 1.25 (d, J = 7.0 Hz, 3H). 13C-NMR (50 MHz, CDCl3) δ (ppm) 158.3,

135.6, 128.4, 114.0, 68.8, 55.3, 41.6, 17.7. Ee determination was carried out on Chiralsil

Dex-CB column Tinlet = Tdet = 250 oC; Tstart = 110 oC (3 min) – (1 oC / min)  180 oC.

TS = 31.65 min; TR = 33.21 min.

(R)-2-(4-chlorophenyl)-propan-1-ol[26] (5.10h)

The product was obtained as a colorless oil in 87% yield. [α]D = 5.3

(c 0.98, CHCl3), 63% ee. 1H-NMR (200 MHz, CDCl3) δ (ppm) 7.33-

7.27 (m, 2H), 7.20-7.15 (m, 2H), 3.71-3.62 (m, 2H), 2.95-2.86 (m,

1H), 1.52 (bs, 1H), 1.24 (d, J = 6.9 Hz, 3H). 13C-NMR (50 MHz, CDCl3) δ (ppm) 142.2,

132.4, 128.9, 128.7, 68.5, 41.7, 17.5. Ee determination was carried out on Chiralsil Dex-

CB column Tinlet = Tdet = 250 oC; Tstart = 100 oC (30 min) – (10 oC / min) 180 oC. TS =

23.55 min; TR = 26.09 min.

OH
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6.1 Introduction

In the year 2000 several groups rediscovered the use of monodentate ligands in

asymmetric hydrogenation.[1-3] The search for new methodologies using these

monodentate ligands instead of bidentate ligands in several types of asymmetric

hydrogenation reactions has been a topic of great interest since then. In our

group a number of methods have successfully been developed using

monodentate phosphoramidite ligands in the asymmetric hydrogenation of

olefinic[4;5] and imine[6] type substrates.[7]

The goal of the research described in this thesis was to develop methodologies

for the asymmetric hydrogenation of different types of ketones using

monodentate phosphoramidite ligands. Here the conclusions of this research are

presented and a brief outlook towards future research is given.

6.2 Conclusions

We have shown that monodentate phosphoramidites are highly versatile chiral

ligands in the ruthenium catalyzed asymmetric hydrogenation of several types of

carbonyl compounds.

In chapter 2 we showed that a ruthenium catalyst containing a chiral diamine and

two bulky phosphoramidite ligands, all with the same absolute configuration,

was able to hydrogenate a range of acetophenone type ketones in good yields

and enantioselectivities. The best performing combination was found to be the

one in which DACH is used in combination with the phosporamidite ligand 3-

3’-dimethyl PipPhos (See Figure 1). Reaching ee’s of up to 97%, the catalytic

experiments show that the selectivity, as well as the substrate scope, of these

types of complexes are better or comparable with other catalysts based upon

monodentate ligands so far reported in literature.[8-10] This, combined with a

turnover number (TON) up to 1000 and the easy ligand synthesis and access to

structurally diverse ligands, makes the method, although slower then Noyori’s

original binap based catalyst and other bidentate ligand based catalysts, a good

candidate for possible applications in industry.
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Elucidating the structure of the complex proved, however, to be troublesome.

From 31P-NMR studies it became clear that, in the pre-catalyst, despite a Ru-

ligand ratio of 1:2, only one phosphoramidite ligand is bound per ruthenium as

an absorption was found corresponding to the free phosphoramidite ligand. We

assume that the pre-catalyst has a dimeric structure in which one

phosphoramidite ligand per ruthenium is bound. However all attempts at

obtaining further analytical data on this complex failed. From the experimental

results, however, we must conclude that in order to get good selectivity in the

hydrogenation reactions there need to be two phosphoramidite ligands per metal

center present in the reaction mixture.

Figure 1: The two best performing phosphoramidite ligands in the acetophenone and
beta-ketoester hydrogenations.

In chapter 3 we showed that the iridium catalyzed asymmetric hydrogenation of

aryl, alkyl-ketones using phosphoramidite ligands works as well. However, the

catalyst proved to be less selective compared to the ruthenium based catalyst.

Still the obtained ee’s of up to 68% are not bad for an iridium based catalyst

containing both a phosphorus type ligand and a chiral diamine. We showed that

in order to get the best results in terms of selectivity, one phosphoramidite ligand

and halve an equivalent of diamine was needed per iridium center. The

phenomenon of an iridium catalyst performing very well with only one

phosphoramidite has been observed before in the hydrogenation of a

dehydroamino acid.[12] The need for just halve an equivalent of diamine per

iridium center might point towards a dimeric type complex which is performing

the catalysis, although further research on a preformed complex will be needed

to prove this indefinitely. So far a TON of <400 is reached which is too low for

an iridium based catalyst. If further research into this catalyst also can lead to a

faster, and somewhat more selective process, this can become a good alternative

for the ruthenium based process in which the presence of a base is necessary in

order to get a good result.
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The second type of ligand that was tested in the iridium catalyzed

hydrogenations was a secondary phosphine oxide ligand. Unfortunately, its use

did not lead to very selective reactions. Also in the ruthenium catalyzed

hydrogenations, the SPO ligand did not induce selectivities that came anywhere

near the ones obtained upon the use of phosphoramidite ligands.

The complex used in the asymmetric hydrogenation of β-ketoesters as described

in chapter 4 displayed the difficulties in characterization as the complexes used

in chapter 2. Also here no clear absorption was found for a bound

phosphoramidite ligand in the 31P NMR of the precatalyst complex that was used

in the catalysis. The experimental results showed the presence of two ligands per

metal center are necessary in the reaction mixture in order to get good

selectivities. We found a metal ligand combination which was able to

hydrogenate a range of β-ketoesters with good conversions and excellent ee’s

(up to 99%). In these types of hydrogenations a phosphoramidite ligand was also

found to perform the best when two groups were present on the 3- and 3’-

positions as well as a partially saturated backbone; the 8H-3,3’-dimethylPipPhos.

This ligand proved to induce the best results in terms of selectivity, creating the

catalyst of choice for the asymmetric hydrogenation of β-ketoesters based on

monodentate ligands.[11] With a TON of up to 400 the catalyst might be

somewhat slower compared to when a bidentate ligand is used, still it might be

considered for use in industry because of its high selectivity and again easy

ligand preparation, which saves a lot of time in the production process.

Chapter 5 describes the dynamic kinetic resolution of racemic α-substituted

aldehydes via hydrogenation to the enantiopure alcohols, using the same catalyst

as developed for the asymmetric hydrogenation of aromatic ketones (Chapter 2).

Full conversions were achieved. The best enantioselectivity that was obtained

never exceeded 85%. This compares poorly with the published results that were

obtained wherein binap and SPD ligands were used. In these cases

enantioselectivities of up to 99% were obtained.[13;14] Thus, several challenges

still remain for the phosphoramidite ligands in the asymmetric hydrogenation

research.



Conclusions and Outlook for Further Research

147

6.3 Outlook

The research into asymmetric hydrogenation has come a long way since the first

reports in the 1960s. Many substrate classes can be hydrogenated with good

conversions and high to excellent selectivities.[15] Also in industry, asymmetric

hydrogenations are recognized as a valuable tool for selectively introducing a

stereogenic center in a product. However, in the industrial practice the substrates

often carry many functional groups that can interfere with the hydrogenation

reaction, for instance by binding to the metal centre. Thus far, the best results

have been obtained with relatively simple substrates containing none or only non

interfering functional groups besides the olefinic double bond

In addition, some substrate classes remain for which no general asymmetric

hydrogenation method is available. Especially for compounds containing sulfur

or phosphorus functionalities no, or very limited, methods are available for fast

and selective hydrogenations.[16;17]

Figure 2: Examples of substrates and reaction types that are (still) difficult to
hydrogenate by asymmetric catalysis.

But also in the hydrogenation of aromatic compounds still some major

challenges remain. For instance the asymmetric hydrogenation of substituted

pyridines, or even more challenging the partial asymmetric hydrogenation of a

substituted benzene type substrate. The challenges in asymmetric hydrogenation

in academia these days lies with these type of substrates.

Careful screening and further understanding of the mechanisms of the

hydrogenations should lead to further insight and development of new ligands
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and methods for asymmetric hydrogenation. Monodentate ligands provide a very

valuable tool in this research as has been shown in the last ten years. Because of

their, often, easy synthesis and high structurally variability they make it easy to

screen a large number of ligands in a short amount of time increasing the

chances of finding a hit enormously compared to bidentate ligands. A second

benefit of using monodentate ligands is the fact that they make it possible to

easily use a mixture of different ligands in a mixed ligand approach, this way

increasing the amount of possible catalysts when using n ligands to n(n+1)/2.[18-

20] Another major challenge that remains in hydrogenation research is replacing

the more expensive metals like rhodium, iridium and ruthenium by the cheaper

variants like copper, nickel and iron. If efficient and selective catalysts can be

created using these types of metals, hydrogenation might become even more

interesting for use in industrial processes. Recently, interesting results have been

obtained using copper[21] and iron catalysts.[22;23]

To further exploit the use of asymmetric hydrogenation, industry should invest

in making the methods, developed by academia, applicable in their processes by

working on improving on selectivity and rate for the hydrogenation of their

specific substrates. This becomes more and more easy since a lot of ligands are

readily available and can be used in high throughput screenings. The

monodentate phosphoramidite ligands provide a major advantage in this

screening phase since beside the ligands that are commercially available the ones

that are not, are very easily synthesized, increasing the chance to find a useful hit.

Asymmetric hydrogenation can become an even more valuable tool in

asymmetric synthesis because of the fact the reactions are clean, fast, selective

and can usually be performed under relatively mild conditions. Often a catalyst

can be chosen in such a way that none of the other functionalities present in the

molecule will be affected.

Overall, asymmetric hydrogenation research has come a long way since the first

results obtained by the groups of Horner[24] and Knowles[25] but still challenges

remain in this field of research for both academia as well as industry.
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Samenvatting

Het in de chemie zo belangrijke begrip chiraliteit komt van het Griekse woord

χειρ (“cheir”), wat hand betekent. Chirale moleculen spelen een zeer belangrijke

rol in de chemie. Een molecuul is chiraal op het moment dat het een

asymmetrisch centrum bevat en het spiegelbeeld van dit molecuul op geen

manier overlegbaar is op het origineel (zie Figuur 2). Op deze manier zijn ook

iemands handen chiraal, links en rechts zijn elkaars spiegelbeeld en niet over

elkaar heen te leggen.

Figuur 1: Voorbeeld van een chiraal molecuul met een asymmetrisch centrum (het C-
atoom met vier verschillende substituenten) en twee chirale handen.

De twee spiegelbeelden van deze chirale moleculen zijn qua eigenschappen

precies gelijk. Het enige, fysische, verschil tussen de twee is het feit dat ze

gepolariseerd licht ieder een andere kant op kunnen draaien. Een groot deel van

alle in de natuur voorkomende stoffen zijn chiraal, zoals aminozuren, DNA,

eiwitten en suikers. Doordat deze stoffen chiraal zijn is vaak het resultaat van

een interactie met een ander chiraal molecuul afhankelijk van welk enantiomeer

dat is. De consequentie is dat twee verschillende enantiomeren van dezelfde stof

een heel ander voorkomen kunnen hebben in biologische systemen. Twee

voorbeelden hiervan zijn bijvoorbeeld ketamine en limoneen. In het geval van

ketamine is het ene enantiomeer een verdovingsmiddel dat veel gebruikt wordt

door dierenartsen en het andere enantiomer een hallucinogeen. Bij limoneen is
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het de geur van de enantiomeren die volledig verschillend is. Het ene

enantiomeer heeft een typische dennengeur terwijl het andere juist naar

sinaasappelschillen ruikt.

Figuur 2: Voorbeelden van enantiomeren die verschillende biologische voorkomens
hebben. Ketamine (1.1) en limoneen (1.3).

De selectieve synthese van deze chirale moleculen is een van de belangrijkste

onderzoekstypen binnen de organische synthese.

Een van de manieren om selectief een chiraal centrum te creëren is via een

asymmetrische hydrogenering. In een asymmetrische hydrogenering reageert

een molecuul waterstof met een dubbele binding, meestal met behulp van een

katalysator welke is gebaseerd op een overgangsmetaal. Om de hydrogenering

selectief te laten verlopen zodat er voornamelijk maar een van de te vormen

enantiomeren gemaakt wordt zitten er rondom het overgangsmetaal vaak een of

meer chirale liganden.

Tot het jaar 2000 waren deze liganden eigenlijk altijd zogenaamde bidentaten,

dat wil zeggen een ligand met twee atomen die kunnen complexeren aan het

overgangsmetaal (zie Figuur 3). In dat jaar werd een einde gemaakt aan het idee

dat er bidentaat liganden nodig waren om een goede selectiviteit te kunnen

bewerkstelligen. Vrijwel tegelijkertijd publiceerden de groepen van Reetz,

Pringle en onze eigen het gebruik van monodentaat liganden in de

asymmetrische hydrogenering van C=C bindingen.
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Figuur 3: Een bidentaat ligand (binap) en de drie monodentaat liganden zoals gebruikt
door Reetz, Pringle en onze groep.

Het grote voordeel van fosforamidieten ten opzichte van de bidentaat liganden is

hun synthese. Waar de synthese van bidentaat liganden vaak veel en moeilijke

stappen bevat is een fosforamidiet in twee, makkelijke, stappen te synthetiseren

zoals te zien is in Figuur 4.

Figuur 4: Synthese van fosforamidiet liganden.

Sinds die eerste publicatie in 2000 heeft onze groep laten zien dat

fosforamidieten uitermate geschikt zijn als liganden in verschillende soorten

asymmetrische hydrogeneringen.

Het doel van het onderzoek dat in dit proefschrift is beschreven was het

ontwikkelen van methodes voor de asymmetrische hydrogenering van

carbonylen met behulp van fosforamidieten als liganden.

Figuur 5: Asymmetrische hydrogenering van acetofenonen met fosforamidiet liganden.
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In hoofdstuk 2 is het onderzoek beschreven naar een op fosforamidieten

gebaseerde ruthenium katalysator voor acetofenon achtige ketonen. We hebben

ontdekt dat een combinatie van 3,3’-dimethyl PipPhos met DACH de meest

selectieve katalysator vormt voor een reeks van acetofenonen (Figuur 5). De

pogingen om het complex te karakteriseren dat verantwoordelijk is voor de

katalyse leiden, aan de hand van 31P-NMR en massa, tot de conclusie dat het

complex dat gevormd word voor de reactie hoogstwaarschijnlijk een dimeer is

met slechts één fosforamidiet per metaalatoom. Tijdens de reactie valt dit dimeer

uit elkaar en zijn er twee fosforamidieten nodig om de reactie te laten verlopen

met goede selectiviteit.

P
OH

P
H

O

Figuur 6: Het SPO ligand zoals gebruikt in hoofdstuk 3.

In hoofdstuk 3 is er gekeken naar twee dingen. Ten eerste is onderzocht of een

secundair fosfine oxide (Figuur 6) gebruikt kan worden in de ruthenium of

iridium gekatalyseerde hydrogenering van acetofenon. Dit bleek wel te kunnen,

echter bleken de gevormde katalysatoren niet erg selectief te zijn. Ten tweede is

er gekeken naar de iridium gekatalyseerde hydrogenering van acetofenon met

behulp van fosforamidiet liganden. Ook hier bleek dat dit actieve katalysatoren

opleverde maar dat de selectiviteit ervan een stuk minder was ten opzichte van

de in hoofdstuk 2 gevonden katalysatoren.
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Figuur 7: Ruthenium gekatalyseerde hydrogenering van β-ketoesters met behulp van
fosforamidiet 8H-3,3’-dimethyl PipPhos.

In hoofdstuk 4 werd de aandacht verlegd naar een ander type carbonylen,

namelijk de α- en β-ketoesters. Gevonden werd dat in de hydrogenering van α-

ketoesters geen selectiviteit behaald kon worden met behulp van fosforamidiet

liganden. Voor de β-ketoesters bleek dit wel het geval. Een ruthenium complex

met twee 8H-3,3’-dimethyl PipPhos liganden bleek in staat meerdere β-

ketoesters te hydrogeneren met selectiviteiten to 99 % ee (zie figuur 7).

Figuur 8: Synthese van α-aryl aldehydes.

In hoofdstuk 5 gebruikten we de in hoofdstukken 2 en 4 gevonden katalysatoren

in de hydrogeneringen onder DKR condities van α-gesubstitueerde β-ketoesters

en α-aryl aldehydes. In de hydrogenering van de gesubstitueerde β-ketoesters

waren we helaas niet in staat om een katalysator te vinden die goede

enantiomere en diastereomere overmaat gaf.

De aldehydes die gebruikt zijn in de hydrogeneringen werden gesynthetiseerd in

twee stappen vanaf het keton zoals te zien is in Figuur 8. Eerst werd er een

Wittig methoxymethylenering gedaan en vervolgens werd het gevormde methyl

enol ether onder zure condities gehydrolyseerd tot het aldehyde in goede

opbrengsten. Voor de gesynthetiseerde aldehydes waren we in staat een
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katalysator te vinden die tot volledige conversies leidde, echter was de

selectiviteit in geen van de gevallen hoger dan 85 %.

Concluderend kan gezegd worden dat monodentaat fosforamidiet liganden

uitermate geschikt zijn als liganden in de asymmetrische hydrogenering van

verschillende typen ketonen en een goed alternatief bieden voor de, tot nu toe

geprefereerde, bidentaat liganden.
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Summary

The in chemistry very important concept chirality stems from the greek word

 (“cheir”), which means hand. Chiral molecules play a most important role

in chemistry. A molecule is called chiral in the case it possesses an asymmetric

center and its mirror images are in no way superimposable onto each other. In

this way our own hands are chiral as well, they are each other’s mirror image but

in no way is it possible to position our right hand exactly over our left (see

Figure 1).

Figure 1: Example of a chiral molecule containing an asymmetric center (the C-atom
bearing four different substituents) and two chiral hands.

The two mirror images of chiral molecules have the same physical qualities. The

only difference between the two is the fact that they each rotate polarized light in

a different direction. Many of the compounds that appear in nature are chiral,

such as, DNA, amino acids, proteins and sugars. Because of he fact these

compounds are all chiral they can respond differently to interactions with other

chiral molecules depending on its enantiomer. A consequence of these different

responses to different forms of a substrate is that two enantiomers of the same

compound can have a completely different functions or appearances in nature.

Two examples of this are for instance the compound ketamine and limonene,

which are depicted in Figure 2. One of the forms of ketamine acts as an

anesthetic, which is used a lot in veterinarian medicine where the other form is

an hallucinogenic substance. For limonene it holds that both enantiomers of the
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molecule have a completely different smell. One has a typical pine like odor

whereas the other smells like orange peels.

Figure 2: Examples of enantiomers that display completely different behavior.
Ketamine (1.1) and limonene (1.3).

The selective synthesis of chiral molecules is one of the most important research

topics within the organic chemistry these days. One of the many ways to

selectively make a chiral molecule is via asymmetric hydrogenation. In an

asymmetric hydrogenation one molecule of hydrogen reacts with a double bond

which is present in the substrate molecule. This usually occurs with the help of a

transition metal based catalyst. To make sure the hydrogenation goes in a

selective manner and one of the two enantiomers of the product is formed with

high preference the transition metal is often surrounded by one or more, so

called, chiral ligands.

Until the year 2000 these chiral ligands were almost always bidentate ligands,

which means they posses two atoms that can interact with the central metal of

the catalyst. In that year three separate groups made an end to the notion that

bidentate ligands are necessary in order to get the asymmetric hydrogenations to

go with reasonable selectivities. More or less simultaneously three groups, the

ones of Pringle, Reetz and our own, published their excellent results obtained in

the asymmetric hydrogenation of a C=C double bond using two monodentate

ligands instead of one bidentate (see Figure 3).
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Figure 3: A bidentate ligand (binap) and the three monodentate ligands as used by our
group, the group of Reetz and the group of Pringle.

One of the biggest advantages of the use of monodentate ligands instead of

bidentates and especially the use of our phosphoramidites lies in their synthesis.

Where in the synthesis of bidentate ligands is often long and contains one or

more difficult steps the synthesis of a phosphoramidite ligand can be achieved in

two quick and easy steps as is depicted in Figure 4.

Figure 4: The easy two step synthesis of phosphoramidite ligands.

Since that first publication in 2000 our group has shown that phosphoramidite

ligands are very well suited as ligands in a variety of asymmetric hydrogenations.

The goal of the research described in this thesis was to develop one or several

methods in which these ligands can be used in the asymmetric hydrogenation of

carbonyls.

Figure 5: The asymmetric hydrogenations of acetophenone type substrates using a
phosporamidite ligand.
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In chapter 2 the research towards a ruthenium based catalyst, bearing

phosphoramidite ligands, for the asymmetric hydrogenation of acetophenone

type substrates is described.

We found a combination of the phosphoramidite 3,3’-dimethyl PipPhos and the

chiral diamine DACH produced the most selective catalyst for the asymmetric

hydrogenation of a range of acetophenone type substrates (See Figure 5).

Attempts to characterize the active complex, with the help of 31P-NMR and mass

spectrometry let to inconclusive results. We did conclude that the preformed

complex most likely has a dimeric structure containing one phosphoramidite and

one diamine molecule per ruthenium center. During the hydrogenation reaction

this dimer falls apart and the addition of extra equivalents of phosphoramidite

ligand is necessary in order to obtain good selectivity in the reaction.

P
OH

P
H

O

Figure 6: The SPO ligand as used in chapter 3.

In chapter 3 two separate things were investigated. First of all we examined

whether an SPO ligand (see Figure 6) could be used as a ligand in the iridium or

ruthenium catalyzed asymmetric hydrogenation of acetophenon. As it turned out

the SPO ligand could be used to get the reaction going, however, the complex

turned out not to be very selective.

Secondly we investigated the iridium catalyzed asymmetric hydrogenation of

acetophenones with phosphoramidite ligands. This proofed to work better

compared to the use of the SPO ligands but also in this case the selectivities, up

to 68% ee, came nowhere near those obtained in chapter 2.
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Figure 7: The ruthenium catalyzed asymmetric hydrogenation of β-ketoesters using 8H-
3,3’-dimethyl PipPhos as a ligand.

In chapter 4 our attention shifted towards another type of substrates, the α-, and

β-ketoesters. We found that the tested phosphoramidite ligands were not able to

induce any selectivity in the asymmetric hydrogenation of the α-ketoesters. In

the case of the β-ketoester, however, the phosphoramidite ligands proved to be

excellent performing ligands. When using the ligand 8H-3,3’-dimethyl PipPhos

we were able to achieve selectivities of up to 99% ee in the asymmetric

hydrogenation of several β-ketoesters (see figure 7).

Figure 8: Synthesis of an α-aryl aldehyde.

In chapter 5 we used the types of catalysts found in chapters 2 and 4 to perform

asymmetric hydrogenations under DKR conditions. As substrates for these type

of hydrogenations we used α-substituted β-ketoesters and α-aryl aldehydes. In

the hydrogenations of the first type of substrates we were not able to find a

catalyst which was able to induce any good ee or de in the reactions.

In the case of the aldehydes, which were easily synthesized in two steps from

their corresponding acetophenons via a Wittig reaction and subsequent

hydrolysation (see also figure 8), we were able to find a catalyst which was able
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to reduce the substrate to the corresponding alcohol with selectivities of up to

85% ee and full conversions.

In conclusion it can be stated that monodentate phosphoramidite ligands are an

excellent choice of ligands in the asymmetric hydrogenations of several carbonyl

compounds and they are a good alternative for the, so far mainly used, bidentate

ligands.
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