2,453 research outputs found
The photospheric solar oxygen project: III. Investigation of the centre-to-limb variation of the 630nm [OI]-NiI blend
The solar photospheric abundance of oxygen is still a matter of debate. For
about ten years some determinations have favoured a low oxygen abundance which
is at variance with the value inferred by helioseismology. Among the oxygen
abundance indicators, the forbidden line at 630nm has often been considered the
most reliable even though it is blended with a NiI line. In Papers I and Paper
II of this series we reported a discrepancy in the oxygen abundance derived
from the 630nm and the subordinate [OI] line at 636nm in dwarf stars, including
the Sun. Here we analyse several, in part new, solar observations of the the
centre-to-limb variation of the spectral region including the blend at 630nm in
order to separate the individual contributions of oxygen and nickel. We analyse
intensity spectra observed at different limb angles in comparison with line
formation computations performed on a CO5BOLD 3D hydrodynamical simulation of
the solar atmosphere. The oxygen abundances obtained from the forbidden line at
different limb angles are inconsistent if the commonly adopted nickel abundance
of 6.25 is assumed in our local thermodynamic equilibrium computations. With a
slightly lower nickel abundance, A(Ni)~6.1, we obtain consistent fits
indicating an oxygen abundance of A(O)=8.73+/-0.05. At this value the
discrepancy with the subordinate oxygen line remains. The derived value of the
oxygen abundance supports the notion of a rather low oxygen abundance in the
solar hotosphere. However, it is disconcerting that the forbidden oxygen lines
at 630 and 636nm give noticeably different results, and that the nickel
abundance derived here from the 630nm blend is lower than expected from other
nickel lines.Comment: to appear in A&
Electro-optic techniques for longitudinal electron bunch diagnostics
Electro-optic techniques are becoming increasingly important in ultrafast electron bunch longitudinal diagnostics and have been successfully implemented at various accelerator laboratories. The longitudinal bunch shape is directly obtained from a single-shot, non-intrusive measurement of the temporal electric field profile of the bunch. Further- more, the same electro-optic techniques can be used to measure the temporal profile of terahertz / far-infrared opti- cal pulses generated by a CTR screen, at a bending magnet (CSR), or by an FEL. This contribution summarizes the re- sults obtained at FELIX and FLASH
Long-term in vivo imaging of fibrillar tau in the retina of P301S transgenic mice.
Tauopathies are widespread neurodegenerative disorders characterised by the intracellular accumulation of hyperphosphorylated tau. Especially in Alzheimer's disease, pathological alterations in the retina are discussed as potential biomarkers to improve early diagnosis of the disease. Using mice expressing human mutant P301S tau, we demonstrate for the first time a straightforward optical approach for the in vivo detection of fibrillar tau in the retina. Longitudinal examinations of individual animals revealed the fate of single cells containing fibrillar tau and the progression of tau pathology over several months. This technique is most suitable to monitor therapeutic interventions aimed at reducing the accumulation of fibrillar tau. In order to evaluate if this approach can be translated to human diagnosis, we tried to detect fibrillar protein aggregates in the post-mortem retinas of patients that had suffered from Alzheimer's disease or Progressive Supranuclear Palsy. Even though we could detect hyperphosphorylated tau, we did not observe any fibrillar tau or Aß aggregates. In contradiction to previous studies, our observations do not support the notion that Aβ or tau in the retina are of diagnostic value in Alzheimer's disease
Electro-optic time profile monitors for femtosecond electron bunches at the soft x-ray free-electron laser FLASH
Precise measurements of the temporal profile of ultrashort electron bunches are of high interest for the optimization and operation of ultraviolet and x-ray free-electron lasers. The electro-optic (EO) technique has been applied for a single-shot direct visualization of the time profile of individual electron bunches at FLASH. This paper presents a thorough description of the experimental setup and the results. An absolute calibration of the EO technique has been performed utilizing simultaneous measurements with a transverse-deflecting radio-frequency structure that transforms the longitudinal bunch charge distribution into a transverse streak. EO signals as short as 60 fs (rms) have been observed using a gallium-phosphide (GaP) crystal, which is a new record in the EO detection of single electron bunches and close to the physical limit imposed by the EO material properties. The data are in quantitative agreement with a numerical simulation of the EO detection process
Single shot longitudinal bunch profile measurements by temporally resolved electro-optical detection
For the high gain operation of a SASE FEL, extremely short electron bunches are essential to generate sufficiently high peak currents. At the superconducting linac of FLASH at DESY, we have installed an electro- optic measurement system to probe the time structure of the electric field of single ~100 fs electron bunches. In this technique, the field induced birefringence in an electro-optic crystal is encoded on a chirped picosecond laser pulse. The longitudinal electric field profile of the electron bunch is then obtained from the encoded optical pulse by a single shot cross correlation with a 35 fs laser pulse using a second harmonic crystal (temporal decoding). An electro-optical signal exhibiting a feature with 118 fs FWHM was observed, and this is close to the limit of resolution due to the material properties of the particular electro-optic crystal used. The measured electro-optic signals are compared to bunch shapes simultaneously measured with a transverse deflecting cavity
Benchmarking of electro-optic monitors for femtosecond electron bunches
The longitudinal profiles of ultrashort relativistic electron bunches at the soft x-ray free-electron laser FLASH have been investigated using two single-shot detection schemes: an electro-optic (EO) detector measuring the Coulomb field of the bunch and a radio-frequency structure transforming the charge distribution into a transverse streak. A comparison permits an absolute calibration of the EO technique. EO signals as short as 60 fs (rms) have been observed, which is a new record in the EO detection of single electron bunches and close to the limit given by the EO material properties
The dynamical evolution of the circumstellar gas around low-and intermediate-mass stars I: the AGB
We have investigated the dynamical interaction of low- and-intermediate mass
stars (from 1 to 5 Msun) with their interstellar medium (ISM). In this first
paper, we examine the structures generated by the stellar winds during the
Asymptotic Giant Branch (AGB) phase, using a numerical code and the wind
history predicted by stellar evolution. The influence of the external ISM is
also taken into account. We find that the wind variations associated with the
thermal pulses lead to the formation of transient shells with an average
lifetime of 20,000 yr, and consequently do not remain recorded in the density
or velocity structure of the gas. The formation of shells that survive at the
end of the AGB occurs via two main processes: shocks between the shells formed
by two consecutive enhancements of the mass-loss or via continuous accumulation
of the material ejected by the star in the interaction region with the ISM. Our
models show that the mass of the circumstellar envelope increases appreciably
due to the ISM material swept up by the wind (up to 70 % for the 1 Msun stellar
model). We also point out the importance of the ISM on the deceleration and
compression of the external shells. According to our simulations, large regions
(up to 2.5 pc) of neutral gas surrounding the molecular envelopes of AGB stars
are expected. These large regions of gas are formed from the mass-loss
experienced by the star during the AGB evolution.Comment: 43 pages, 15 figures. Accepted for publication in the Astrophysical
Journa
Single-shot longitudinal bunch profile measurements at FLASH using electro-optic detection:experiment, simulation, and validation
At the superconducting linac of FLASH at DESY, we have installed an electro-optic (EO) experiment for single- shot, non-destructive measurements of the longitudinal electric charge distribution of individual electron bunches. The time profile of the electric bunch field is electro- optically encoded onto a chirped titanium-sapphire laser pulse. In the decoding step, the profile is retrieved either from a cross-correlation of the encoded pulse with a 30 fs laser pulse, obtained from the same laser (electro- optic temporal decoding, EOTD), or from the spectral intensity of the transmitted probe pulse (electro-optic spectral decoding, EOSD). At FLASH, the longitudinally compressed electron bunches have been measured during FEL operation with a resolution of better than 50 fs. The electro-optic process in gallium phosphide was numerically simulated using as input data the bunch shapes determined with a transverse-deflecting RF structure. In this contribution, we present electro-optically measured bunch profiles and compare them with the simulation
X-ray, Optical, and Infrared Imaging and Spectral Properties of the 1 Ms Chandra Deep Field North Sources
We present the optical, near-infrared, submillimeter, and radio follow-up
catalog of the X-ray selected sources from the 1 Ms Chandra observation of the
Hubble Deep Field North region. We have B, V, R, I, and z' magnitudes for the
370 X-ray point sources, HK' magnitudes for 276, and spectroscopic redshifts
for 182. We present high-quality spectra for 175 of these. The redshift
distribution shows indications of structures at z=0.843 and z=1.0175 (also
detected in optical surveys) which could account for a part of the
field-to-field variation seen in the X-ray number counts. The flux
contributions separated into unit bins of redshift show that the z<1
spectroscopically identified sources already contribute about one-third of the
total flux in both the hard and soft bands. We find from ratios of the X-ray
counts that the X-ray spectra are well-described by absorption of an intrinsic
Gamma=1.8 power-law, with log NH values ranging from 21 to 23.7. We estimate
that the Chandra sources that produce 87% of the HEAO-A X-ray background (XRB)
at 3 keV produce 57% at 20 keV, provided that at high energies the spectral
shape of the sources continues to be well-described by a Gamma=1.8 power-law.
However, when the Chandra contributions are renormalized to the BeppoSAX XRB at
3 keV, the shape matches fairly well the observed XRB at both energies. Thus,
whether a substantial population of as-yet undetected Compton-thick sources is
required to completely resolve the XRB above 10 keV depends critically on how
the currently discrepant XRB measurements in the 1-10 keV energy range tie
together with the higher energy XRB. (Abridged)Comment: October 2002 issue of The Astronomical Journal, 19 pages + Table 1,
Figs 2 and 6 can be found at http://www.astro.wisc.edu/~barger/cdfn.htm
The Gravitino-Stau Scenario after Catalyzed BBN
We consider the impact of Catalyzed Big Bang Nucleosynthesis on theories with
a gravitino LSP and a charged slepton NLSP. In models where the gravitino to
gaugino mass ratio is bounded from below, such as gaugino-mediated SUSY
breaking, we derive a lower bound on the gaugino mass parameter m_1/2. As a
concrete example, we determine the parameter space of gaugino mediation that is
compatible with all cosmological constraints.Comment: 1+14 pages, 6 figures; v2: minor clarifications, 1 reference added,
matches version to appear in JCA
- …