2,010 research outputs found
The changing epidemiology of human monkeypox-A potential threat? A systematic review
Monkeypox, a zoonotic disease caused by an orthopoxvirus, results in a smallpox-like disease in humans. Since monkeypox in humans was initially diagnosed in 1970 in the Democratic Republic of the Congo (DRC), it has spread to other regions of Africa (primarily West and Central), and cases outside Africa have emerged in recent years. We conducted a systematic review of peer-reviewed and grey literature on how monkeypox epidemiology has evolved, with particular emphasis on the number of confirmed, probable, and/or possible cases, age at presentation, mortality, and geographical spread. The review is registered with PROSPERO (CRD42020208269). We identified 48 peer-reviewed articles and 18 grey literature sources for data extraction. The number of human monkeypox cases has been on the rise since the 1970s, with the most dramatic increases occurring in the DRC. The median age at presentation has increased from 4 (1970s) to 21 years (2010-2019). There was an overall case fatality rate of 8.7%, with a significant difference between clades-Central African 10.6% (95% CI: 8.4%- 13.3%) vs. West African 3.6% (95% CI: 1.7%- 6.8%). Since 2003, import- and travel-related spread outside of Africa has occasionally resulted in outbreaks. Interactions/activities with infected animals or individuals are risk behaviors associated with acquiring monkeypox. Our review shows an escalation of monkeypox cases, especially in the highly endemic DRC, a spread to other countries, and a growing median age from young children to young adults. These findings may be related to the cessation of smallpox vaccination, which provided some cross-protection against monkeypox, leading to increased human-to-human transmission. The appearance of outbreaks beyond Africa highlights the global relevance of the disease. Increased surveillance and detection of monkeypox cases are essential tools for understanding the continuously changing epidemiology of this resurging disease
Optical and Infrared Imaging and Spectroscopy of the Multiple-Shell Planetary Nebula NGC 6369
NGC 6369 is a double-shell planetary nebula (PN) consisting of a bright
annular inner shell with faint bipolar extensions and a filamentary envelope.
We have used ground- and space-based narrow-band optical and near-IR images,
broad-band mid-IR images, optical long-slit echelle spectra, and mid-IR spectra
to investigate its physical structure. These observations indicate that the
inner shell of NGC 6369 can be described as a barrel-like structure shape with
polar bubble-like protrusions, and reveal evidence for H2 and strong polycyclic
aromatic hydrocarbons (PAHs) emission from a photo-dissociative region (PDR)
with molecular inclusions located outside the bright inner shell.
High-resolution HST narrow-band images reveal an intricate excitation structure
of the inner shell and a system of "cometary" knots. The knotty appearance of
the envelope, the lack of kinematical evidence for shell expansion and the
apparent presence of emission from ionized material outside the PDR makes us
suggest that the envelope of NGC 6369 is not a real shell, but a flattened
structure at its equatorial regions. We report the discovery of irregular knots
and blobs of diffuse emission in low-excitation and molecular line emission
that are located up to 80" from the central star, well outside the main nebular
shells. We also show that the filaments associated to the polar protrusions
have spatial extents consistent with post-shock cooling regimes, and likely
represent regions of interaction of these structures with surrounding material.Comment: 14 pages, 13 figures. Accepted for publication in MNRA
Serum Metabolomic Markers of Protein-Rich Foods and Incident CKD: Results From the Atherosclerosis Risk in Communities Study
RATIONALE & OBJECTIVE: While urine excretion of nitrogen estimates the total protein intake, biomarkers of specific dietary protein sources have been sparsely studied. Using untargeted metabolomics, this study aimed to identify serum metabolomic markers of 6 protein-rich foods and to examine whether dietary protein-related metabolites are associated with incident chronic kidney disease (CKD).
STUDY DESIGN: Prospective cohort study.
SETTING & PARTICIPANTS: A total of 3,726 participants from the Atherosclerosis Risk in Communities study without CKD at baseline.
EXPOSURES: Dietary intake of 6 protein-rich foods (fish, nuts, legumes, red and processed meat, eggs, and poultry), serum metabolites.
OUTCOMES: Incident CKD (estimated glomerular filtration rate \u3c 60 mL/min/1.73 m
ANALYTICAL APPROACH: Multivariable linear regression models estimated cross-sectional associations between protein-rich foods and serum metabolites. C statistics assessed the ability of the metabolites to improve the discrimination of highest versus lower 3 quartiles of intake of protein-rich foods beyond covariates (demographics, clinical factors, health behaviors, and the intake of nonprotein food groups). Cox regression models identified prospective associations between protein-related metabolites and incident CKD.
RESULTS: Thirty significant associations were identified between protein-rich foods and serum metabolites (fish, n = 8; nuts, n = 5; legumes, n = 0; red and processed meat, n = 5; eggs, n = 3; and poultry, n = 9). Metabolites collectively and significantly improved the discrimination of high intake of protein-rich foods compared with covariates alone (difference in C statistics = 0.033, 0.051, 0.003, 0.024, and 0.025 for fish, nuts, red and processed meat, eggs, and poultry-related metabolites, respectively;
LIMITATIONS: Residual confounding and sample-storage duration.
CONCLUSIONS: We identified candidate biomarkers of fish, nuts, red and processed meat, eggs, and poultry. A fish-related metabolite, 1-docosahexaenoylglycerophosphocholine (22:6n3), was associated with a lower risk of CKD
Many Putative Endocrine Disruptors Inhibit Prostaglandin Synthesis
International audienceBACKGROUND: Prostaglandins (PGs) play key roles in development and maintenance of homeostasis of the adult body. Despite these important roles, it remains unclear whether the PG pathway is a target for endocrine disruption. However, several known endocrine-disrupting compounds (EDCs) share a high degree of structural similarity with mild analgesics. OBJECTIVES AND METHODS: Using cell-based transfection and transduction experiments, mass spectrometry, and organotypic assays together with molecular modeling, we investigated whether inhibition of the PG pathway by known EDCs could be a novel point of endocrine disruption. RESULTS: We found that many known EDCs inhibit the PG pathway in a mouse Sertoli cell line and in human primary mast cells. The EDCs also reduced PG synthesis in ex vivo rat testis, and this reduction was correlated with a reduced testosterone production. The inhibition of PG synthesis occurred without involvement of canonical PG receptors or the peroxisome proliferator-activated receptors (PPARs), which have previously been described as targets of EDCs. Instead, our results suggest that the compounds may bind directly into the active site of the cyclooxygenase (COX) enzymes, thereby obstructing the conversion of arachidonic acid to PG precursors without interfering with the expression of the COX enzymes. A common feature of the PG inhibitory EDCs is the presence of aromatic groups that may stabilize binding in the hydrophobic active site of the COX enzymes. CONCLUSION: Our findings suggest a hitherto unknown mode of action by EDCs through inhibition of the PG pathway and suggest new avenues to investigate effects of EDCs on reproductive and immunological disorders that have become increasingly common in recent decades
Final report of EURAMET.M.G-K3 regional comparison of absolute gravimeters
The regional key comparison of absolute gravimeters, EURAMET.M.G-K3 and the simultaneously organized additional comparison, was held in Germany at the Geodetic Observatory Wettzell of the German Federal Agency for Cartography and Geodesy in the spring of 2018.Here we present the list of the participants who actually performed measurements during the comparison, the data submitted by the operators as well as the results of the determination of the gravity as a function of height at the comparison sites. The measurement strategy is briefly discussed and the results of the data harmonization is documented. Finally, the results of the constrained least squares adjustment are presented including the degrees of equivalence of each gravimeter and the key comparison reference values.Main textTo reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/.The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).Export citation and abstract BibTeX RIS
Upper limits on the strength of periodic gravitational waves from PSR J1939+2134
The first science run of the LIGO and GEO gravitational wave detectors
presented the opportunity to test methods of searching for gravitational waves
from known pulsars. Here we present new direct upper limits on the strength of
waves from the pulsar PSR J1939+2134 using two independent analysis methods,
one in the frequency domain using frequentist statistics and one in the time
domain using Bayesian inference. Both methods show that the strain amplitude at
Earth from this pulsar is less than a few times .Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo
Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July
200
Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers
We study frequency dependent (FD) input-output schemes for signal-recycling
interferometers, the baseline design of Advanced LIGO and the current
configuration of GEO 600. Complementary to a recent proposal by Harms et al. to
use FD input squeezing and ordinary homodyne detection, we explore a scheme
which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are
sub-optimal among all possible input-output schemes, provide a global noise
suppression by the power squeeze factor, while being realizable by using
detuned Fabry-Perot cavities as input/output filters. At high frequencies, the
two schemes are shown to be equivalent, while at low frequencies our scheme
gives better performance than that of Harms et al., and is nearly fully
optimal. We then study the sensitivity improvement achievable by these schemes
in Advanced LIGO era (with 30-m filter cavities and current estimates of
filter-mirror losses and thermal noise), for neutron star binary inspirals, and
for narrowband GW sources such as low-mass X-ray binaries and known radio
pulsars. Optical losses are shown to be a major obstacle for the actual
implementation of these techniques in Advanced LIGO. On time scales of
third-generation interferometers, like EURO/LIGO-III (~2012), with
kilometer-scale filter cavities, a signal-recycling interferometer with the FD
readout scheme explored in this paper can have performances comparable to
existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure
Quantum state preparation and macroscopic entanglement in gravitational-wave detectors
Long-baseline laser-interferometer gravitational-wave detectors are operating
at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within
a broad frequency band. Such a low classical noise budget has already allowed
the creation of a controlled 2.7 kg macroscopic oscillator with an effective
eigenfrequency of 150 Hz and an occupation number of 200. This result, along
with the prospect for further improvements, heralds the new possibility of
experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical
behavior of objects in the realm of everyday experience - using
gravitational-wave detectors. In this paper, we provide the mathematical
foundation for the first step of a MQM experiment: the preparation of a
macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum
state, which is possible if the interferometer's classical noise beats the SQL
in a broad frequency band. Our formalism, based on Wiener filtering, allows a
straightforward conversion from the classical noise budget of a laser
interferometer, in terms of noise spectra, into the strategy for quantum state
preparation, and the quality of the prepared state. Using this formalism, we
consider how Gaussian entanglement can be built among two macroscopic test
masses, and the performance of the planned Advanced LIGO interferometers in
quantum-state preparation
- …