212 research outputs found

    Genetic variability in the absorption of dietary sterols affects the risk of coronary artery disease

    Get PDF
    AIMS: To explore whether variability in dietary cholesterol and phytosterol absorption impacts the risk of coronary artery disease (CAD) using as instruments sequence variants in the ABCG5/8 genes, key regulators of intestinal absorption of dietary sterols. METHODS AND RESULTS: We examined the effects of ABCG5/8 variants on non-high-density lipoprotein (non-HDL) cholesterol (N up to 610 532) and phytosterol levels (N = 3039) and the risk of CAD in Iceland, Denmark, and the UK Biobank (105 490 cases and 844 025 controls). We used genetic scores for non-HDL cholesterol to determine whether ABCG5/8 variants confer greater risk of CAD than predicted by their effect on non-HDL cholesterol. We identified nine rare ABCG5/8 coding variants with substantial impact on non-HDL cholesterol. Carriers have elevated phytosterol levels and are at increased risk of CAD. Consistent with impact on ABCG5/8 transporter function in hepatocytes, eight rare ABCG5/8 variants associate with gallstones. A genetic score of ABCG5/8 variants predicting 1 mmol/L increase in non-HDL cholesterol associates with two-fold increase in CAD risk [odds ratio (OR) = 2.01, 95% confidence interval (CI) 1.75-2.31, P = 9.8 × 10-23] compared with a 54% increase in CAD risk (OR = 1.54, 95% CI 1.49-1.59, P = 1.1 × 10-154) associated with a score of other non-HDL cholesterol variants predicting the same increase in non-HDL cholesterol (P for difference in effects = 2.4 × 10-4). CONCLUSIONS: Genetic variation in cholesterol absorption affects levels of circulating non-HDL cholesterol and risk of CAD. Our results indicate that both dietary cholesterol and phytosterols contribute directly to atherogenesis

    Deficient NRG1-ERBB signaling alters social approach: relevance to genetic mouse models of schizophrenia

    Get PDF
    Growth factor Neuregulin 1 (NRG1) plays an essential role in development and organization of the cerebral cortex. NRG1 and its receptors, ERBB3 and ERBB4, have been implicated in genetic susceptibility for schizophrenia. Disease symptoms include asociality and altered social interaction. To investigate the role of NRG1-ERBB signaling in social behavior, mice heterozygous for an Nrg1 null allele (Nrg1+/−), and mice with conditional ablation of Erbb3 or Erbb4 in the central nervous system, were evaluated for sociability and social novelty preference in a three-chambered choice task. Results showed that deficiencies in NRG1 or ERBB3 significantly enhanced sociability. All of the mutant groups demonstrated a lack of social novelty preference, in contrast to their respective wild-type controls. Effects of NRG1, ERBB3, or ERBB4 deficiency on social behavior could not be attributed to general changes in anxiety-like behavior, activity, or loss of olfactory ability. Nrg1+/− pups did not exhibit changes in isolation-induced ultrasonic vocalizations, a measure of emotional reactivity. Overall, these findings provide evidence that social behavior is mediated by NRG1-ERBB signaling

    Schizophrenia-associated HapICE haplotype is associated with increased NRG1 type III expression and high nucleotide diversity

    Get PDF
    Excitement and controversy have followed neuregulin (NRG1) since its discovery as a putative schizophrenia susceptibility gene; however, the mechanism of action of the associated risk haplotype (HapICE) has not been identified, and specific genetic variations, which may increase risk to schizophrenia have remained elusive. Using a postmortem brain cohort from 37 schizophrenia cases and 37 controls, we resequenced upstream of the type I–IV promoters, and the HapICE repeat regions in intron 1. Relative abundance of seven NRG1 mRNA transcripts in the prefrontal cortex were determined and compared across diagnostic and genotypic groups. We identified 26 novel DNA variants and showed an increased novel variant load in cases compared with controls (χ2=7.815; P=0.05). The average nucleotide diversity (θ=10.0 × 10−4) was approximately twofold higher than that previously reported for BDNF, indicating that NRG1 may be particularly prone to genetic change. A greater nucleotide diversity was observed in the HapICE linkage disequilibrium block in schizophrenia cases (θ(case)=13.2 × 10−4; θ(control)=10.0 × 10−4). The specific HapICE risk haplotype was associated with increased type III mRNA (F=3.76, P=0.028), which in turn, was correlated with an earlier age of onset (r=−0.343, P=0.038). We found a novel intronic five-SNP haplotype ∼730 kb upstream of the type I promoter and determined that this region functions as transcriptional enhancer that is suppressed by SRY. We propose that the HapICE risk haplotype increases expression of the most brain-abundant form of NRG1, which in turn, elicits an earlier clinical presentation, thus providing a novel mechanism through which this genetic association may increase risk of schizophrenia

    Extracellular cleavage and shedding of P-cadherin: a mechanism underlying the invasive behaviour of breast cancer cells

    Get PDF
    Cell-cell adhesion is an elementary process in normal epithelial cellular architecture. Several studies have shown the role mediated by cadherins in this process, besides their role in the maintenance of cell polarity, differentiation and cell growth. However, during tumour progression, these molecules are frequently altered. In breast cancer, tumours that overexpress P-cadherin usually present a high histological grade, show decreased cell polarity and are associated with worse patient survival. However, little is known about how this protein dictates the very aggressive behaviour of these tumours. To achieve this goal, we set up two breast cancer cell models, where P-cadherin expression was differently modulated and analysed in terms of cell invasion, motility and migration. We show that P-cadherin overexpression, in breast cancer cells with wild-type E-cadherin, promotes cell invasion, motility and migration. Moreover, we found that the overexpression of P-cadherin induces the secretion of matrix metalloproteases, specifically MMP-1 and MMP-2, which then lead to P-cadherin ectodomain cleavage. Further, we showed that soluble P-cadherin fragment is able to induce in vitro invasion of breast cancer cells. Overall, our results contribute to elucidate the mechanism underlying the invasive behaviour of P-cadherin expressing breast tumours.scientific project (POCI/BIA-BCM/59252/2004) financed by the Portuguese Science and Technology Foundation (FCT). FCT also provided research grants as follows: Programa Ciência 2007 (FCT) for Joana Paredes, and PhD research grants for Ana Sofia Ribeiro (SFRH/BD/36096/2007) and André Albergaria (SFRH/BD/15316/2005)

    Comprehensive Analysis of NRG1 Common and Rare Variants in Hirschsprung Patients

    Get PDF
    Hirschsprung disease (HSCR, OMIM 142623) is a developmental disorder characterized by the absence of ganglion cells along variable lengths of the distal gastrointestinal tract, which results in tonic contraction of the aganglionic gut segment and functional intestinal obstruction. The RET proto-oncogene is the major gene for HSCR with differential contributions of its rare and common, coding and noncoding mutations to the multifactorial nature of this pathology. Many other genes have been described to be associated with the pathology, as NRG1 gene (8p12), encoding neuregulin 1, which is implicated in the development of the enteric nervous system (ENS), and seems to contribute by both common and rare variants. Here we present the results of a comprehensive analysis of the NRG1 gene in the context of the disease in a series of 207 Spanish HSCR patients, by both mutational screening of its coding sequence and evaluation of 3 common tag SNPs as low penetrance susceptibility factors, finding some potentially damaging variants which we have functionally characterized. All of them were found to be associated with a significant reduction of the normal NRG1 protein levels. The fact that those mutations analyzed alter NRG1 protein would suggest that they would be related with HSCR disease not only in Chinese but also in a Caucasian population, which reinforces the implication of NRG1 gene in this pathology

    Enhanced Hippocampal Long-Term Potentiation and Fear Memory in Btbd9 Mutant Mice

    Get PDF
    Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS), a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS

    A sequence variant at 4p16.3 confers susceptibility to urinary bladder cancer

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldPreviously, we reported germline DNA variants associated with risk of urinary bladder cancer (UBC) in Dutch and Icelandic subjects. Here we expanded the Icelandic sample set and tested the top 20 markers from the combined analysis in several European case-control sample sets, with a total of 4,739 cases and 45,549 controls. The T allele of rs798766 on 4p16.3 was found to associate with UBC (odds ratio = 1.24, P = 9.9 x 10(-12)). rs798766 is located in an intron of TACC3, 70 kb from FGFR3, which often harbors activating somatic mutations in low-grade, noninvasive UBC. Notably, rs798766[T] shows stronger association with low-grade and low-stage UBC than with more aggressive forms of the disease and is associated with higher risk of recurrence in low-grade stage Ta tumors. The frequency of rs798766[T] is higher in Ta tumors that carry an activating mutation in FGFR3 than in Ta tumors with wild-type FGFR3. Our results show a link between germline variants, somatic mutations of FGFR3 and risk of UBC.info:eu-repo/grantAgreement/EC/FP7/21807

    Using population admixture to help complete maps of the human genome

    Get PDF
    Tens of millions of base pairs of euchromatic human genome sequence, including many protein-coding genes, have no known location in the human genome. We describe an approach for localizing the human genome's missing pieces by utilizing the patterns of genome sequence variation created by population admixture. We mapped the locations of 70 scaffolds spanning four million base pairs of the human genome's unplaced euchromatic sequence, including more than a dozen protein-coding genes, and identified eight large novel inter-chromosomal segmental duplications. We find that most of these sequences are hidden in the genome's heterochromatin, particularly its pericentromeric regions. Many cryptic, pericentromeric genes are expressed in RNA and have been maintained intact for millions of years while their expression patterns diverged from those of paralogous genes elsewhere in the genome. We describe how knowledge of the locations of these sequences can inform disease association and genome biology studies

    Neuregulin-1 Regulates Cell Adhesion via an ErbB2/Phosphoinositide-3 Kinase/Akt-Dependent Pathway: Potential Implications for Schizophrenia and Cancer

    Get PDF
    Neuregulin-1 (NRG1) is a putative schizophrenia susceptibility gene involved extensively in central nervous system development as well as cancer invasion and metastasis. Using a B lymphoblast cell model, we previously demonstrated impairment in NRG1alpha-mediated migration in cells derived from patients with schizophrenia as well as effects of risk alleles in NRG1 and catechol-O-methyltransferase (COMT), a second gene implicated both in schizophrenia susceptibility and in cancer.Here, we examine cell adhesion, an essential component process of cell motility, using an integrin-mediated cell adhesion assay based on an interaction between ICAM-1 and the CD11a/CD18 integrin heterodimer expressed on lymphoblasts. In our assay, NRG1alpha induces lymphoblasts to assume varying levels of adhesion characterized by time-dependent fluctuations in the firmness of attachment. The maximum range of variation in adhesion over sixty minutes correlates strongly with NRG1alpha-induced migration (r(2) = 0.61). NRG1alpha-induced adhesion variation is blocked by erbB2, PI3K, and Akt inhibitors, but not by PLC, ROCK, MLCK, or MEK inhibitors, implicating the erbB2/PI3K/Akt1 signaling pathway in NRG1-stimulated, integrin-mediated cell adhesion. In cell lines from 20 patients with schizophrenia and 20 normal controls, cells from patients show a significant deficiency in the range of NRG1alpha-induced adhesion (p = 0.0002). In contrast, the response of patient-derived cells to phorbol myristate acetate is unimpaired. The COMT Val108/158Met genotype demonstrates a strong trend towards predicting the range of the NRG1alpha-induced adhesion response with risk homozygotes having decreased variation in cell adhesion even in normal subjects (p = 0.063).Our findings suggest that a mechanism of the NRG1 genetic association with schizophrenia may involve the molecular biology of cell adhesion

    Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable disorder, but specific genetic factors underlying risk remain elusive. To assess the role of structural variation in ADHD, we identified 222 inherited copy number variations (CNVs) within 335 ADHD patients and their parents that were not detected in 2026 unrelated healthy individuals. Although no excess CNVs, either deletions or duplications, were found in the ADHD cohort relative to controls, the inherited rare CNV-associated gene set was significantly enriched for genes reported as candidates in studies of autism, schizophrenia and Tourette syndrome, including A2BP1, AUTS2, CNTNAP2 and IMMP2L. The ADHD CNV gene set was also significantly enriched for genes known to be important for psychological and neurological functions, including learning, behavior, synaptic transmission and central nervous system development. Four independent deletions were located within the protein tyrosine phosphatase gene, PTPRD, recently implicated as a candidate gene for restless legs syndrome, which frequently presents with ADHD. A deletion within the glutamate receptor gene, GRM5, was found in an affected parent and all three affected offspring whose ADHD phenotypes closely resembled those of the GRM5 null mouse. Together, these results suggest that rare inherited structural variations play an important role in ADHD development and indicate a set of putative candidate genes for further study in the etiology of ADHD
    corecore