82 research outputs found

    X-ray evidence of a native state with increased compactness populated by tryptophan-less B. licheniformis β-lactamase

    Get PDF
    β-lactamases confer antibiotic resistance, one of the most serious world-wide health problems, and are an excellent theoretical and experimental model in the study of protein structure, dynamics and evolution. Bacillus licheniformis exo-small penicillinase (ESP) is a Class-A β-lactamase with three tryptophan residues located in the protein core. Here, we report the 1.7-Å resolution X-ray structure, catalytic parameters, and thermodynamic stability of ESPΔW, an engineered mutant of ESP in which phenylalanine replaces the wild-type tryptophan residues. The structure revealed no qualitative conformational changes compared with thirteen previously reported structures of B. licheniformis β-lactamases (RMSD = 0.4-1.2 Å). However, a closer scrutiny showed that the mutations result in an overall more compact structure, with most atoms shifted toward the geometric center of the molecule. Thus, ESPΔW has a significantly smaller radius of gyration (Rg) than the other B. licheniformis β-lactamases characterized so far. Indeed, ESPΔW has the smallest Rg among 126 Class-A β-lactamases in the Protein Data Bank (PDB). Other measures of compactness, like the number of atoms in fixed volumes and the number and average of noncovalent distances, confirmed the effect. ESPΔW proves that the compactness of the native state can be enhanced by protein engineering and establishes a new lower limit to the compactness of the Class-A β-lactamase fold. As the condensation achieved by the native state is a paramount notion in protein folding, this result may contribute to a better understanding of how the sequence determines the conformational variability and thermodynamic stability of a given fold.Fil: Risso, Valeria Alejandra. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Acierno, Juan Pablo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Capaldi, Stefano. Universita di Verona; ItaliaFil: Monaco, Hugo L.. Universita di Verona; ItaliaFil: Ermacora, Mario Roberto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; Argentin

    Espresso Coffee Mitigates the Aggregation and Condensation of Alzheimer′s Associated Tau Protein

    Get PDF
    : Espresso coffee is among the most consumed beverages in the world. Recent studies report a protective activity of the coffee beverage against neurodegenerative disorders such as Alzheimer's disease. Alzheimer's disease belongs to a group of disorders, called tauopathies, which are characterized by the intraneuronal accumulation of the microtubule-associated protein tau in fibrillar aggregates. In this work, we characterized by NMR the molecular composition of the espresso coffee extract and identified its main components. We then demonstrated with in vitro and in cell experiments that the whole coffee extract, caffeine, and genistein have biological properties in preventing aggregation, condensation, and seeding activity of the repeat region of tau. We also identified a set of coffee compounds capable of binding to preformed tau fibrils. These results add insights into the neuroprotective potential of espresso coffee and suggest candidate molecular scaffolds for designing therapies targeting monomeric or fibrillized forms of tau

    High diagnostic accuracy of RT-QuIC assay in a prospective study of patients with suspected sCJD

    Get PDF
    The early and accurate in vivo diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) is essential in order to differentiate CJD from treatable rapidly progressive dementias. Diagnostic investigations supportive of clinical CJD diagnosis include magnetic resonance imaging (MRI), electroencephalogram (EEG), 14-3-3 protein detection, and/or real-time quaking-induced conversion (RT-QuIC) assay positivity in the cerebrospinal fluid (CSF) or in other tissues. The total CSF tau protein concentration has also been used in a clinical setting for improving the CJD diagnostic sensitivity and specificity. We analyzed 182 CSF samples and 42 olfactory mucosa (OM) brushings from patients suspected of having sCJD with rapidly progressive dementia (RPD), in order to determine the diagnostic accuracy of 14-3-3, the total tau protein, and the RT-QuIC assay. A probable and definite sCJD diagnosis was assessed in 102 patients. The RT-QuIC assay on the CSF samples showed a 100% specificity and a 96% sensitivity, significantly higher compared with 14-3-3 (84% sensitivity and 46% specificity) and tau (85% sensitivity and 70% specificity); however, the combination of RT-QuIC testing of the CSF and OM samples resulted in 100% sensitivity and specificity, proving a significantly higher accuracy of RT-QuIC compared with the surrogate biomarkers in the diagnostic setting of patients with RPD. Moreover, we showed that CSF blood contamination or high protein levels might interfere with RT-QuIC seeding. In conclusion, we provided further evidence that the inclusion of an RT-QuIC assay of the CSF and OM in the diagnostic criteria for sCJD has radically changed the clinical approach towards the diagnosis

    Use of Contrast-Enhanced Ultrasound in Carotid Atherosclerotic Disease: Limits and Perspectives

    Get PDF
    Contrast-enhanced ultrasound (CEUS) has recently become one of the most versatile and powerful diagnostic tools in vascular surgery. One of the most interesting fields of application of this technique is the study of the carotid atherosclerotic plaque vascularization and its correlation with neurological symptoms (transient ischemic attack, minor stroke, and major stroke) and with the characteristics of the “vulnerable plaque” (surface ulceration, hypoechoic plaques, intraplaque hemorrhage, thinner fibrous cap, and carotid plaque neovascularization at histopathological analysis of the sample after surgical removal). The purpose of this review is to collect all the original studies available in literature (24 studies with 1356 patients enrolled) and to discuss the state of the art, limits, and future perspectives of CEUS analysis. The results of this work confirm the reliability of this imaging study for the detection of plaques with high risk of embolization; however, a shared, user-friendly protocol of imaging analysis is not available yet. The definition of this operative protocol becomes mandatory in order to compare results from different centers and to validate a cerebrovascular risk stratification of the carotid atherosclerotic lesions evaluated with CEUS

    The crystal structure of sterol carrier protein 2 from Yarrowia lipolytica and the evolutionary conservation of a large, non-specific lipid-binding cavity

    Get PDF
    Sterol carrier protein 2 (SCP2), a small intracellular domain present in all forms of life, binds with high affinity a broad spectrum of lipids. Due to its involvement in the metabolism of long-chain fatty acids and cholesterol uptake, it has been the focus of intense research in mammals and insects; much less characterized are SCP2 from other eukaryotic cells and microorganisms. We report here the X-ray structure of Yarrowia lipolytica SCP2 (YLSCP2) at 2.2 Å resolution in complex with palmitic acid. This is the first fungal SCP2 structure solved, and it consists of the canonical five-stranded β-sheet covered on the internal face by a layer of five α-helices. The overall fold is conserved among the SCP2 family, however, YLSCP2 is most similar to the SCP2 domain of human MFE-2, a bifunctional enzyme acting on peroxisomal β-oxidation. We have identified the common structural elements defining the shape and volume of the large binding cavity in all species characterized. Moreover, we found that the cavity of the SCP2 domains is distinctly formed by carbon atoms, containing neither organized water nor rigid polar interactions with the ligand. These features are in contrast with those of fatty acid binding proteins, whose internal cavities are more polar and contain bound water. The results will help to design experiments to unveil the SCP2 function in very different cellular contexts and metabolic conditions.Fil: Pérez de Berti, Federico Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Multidisciplinario de Biología Celular (i); Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Capaldi, Stefano. Universita Di Verona; ItaliaFil: Ferreyra, Raul Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Multidisciplinario de Biología Celular (i); Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Burgardt, Noelia Ines. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Acierno, Juan Pablo. Universidad Nacional de Quilmes; ArgentinaFil: Klinke, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Monaco, Hugo L.. Universita Di Verona; ItaliaFil: Ermacora, Mario Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Multidisciplinario de Biología Celular (i); Argentina. Universidad Nacional de Quilmes; Argentin

    Molecular Mechanisms of Light Harvesting in the Minor Antenna {CP}29 in Near-Native Membrane Lipidic Environment

    Get PDF
    CP29, a chlorophyll a/b-xanthophyll binding protein, bridges energy transfer between the major LHCII antenna complexes and photosystem II reaction centers. It hosts one of the two identified quenching sites, making it crucial for regulated photoprotection mechanisms. Until now, the photophysics of CP29 has been studied on the purified protein in detergent solutions since spectrally overlapping signals affect in vivo measurements. However, the protein in detergent assumes non-native conformations compared to its physiological state in the thylakoid membrane. Here, we report a detailed photophysical study on CP29 inserted in discoidal lipid bilayers, known as nanodiscs, which mimic the native membrane environment. Using picosecond time-resolved fluorescence and femtosecond transient absorption (TA), we observed shortening of the Chl fluorescence lifetime with a decrease of the carotenoid triplet formation yield for CP29 in nanodiscs as compared to the protein in detergent. Global analysis of TA data suggests a (1)Chl* quenching mechanism dependent on excitation energy transfer to a carotenoid dark state, likely the proposed S*, which is believed to be formed due to a carotenoid conformational change affecting the S-1 state. We suggest that the accessibility of the S* state in different local environments plays a key role in determining the quenching of Chl excited states. In vivo, non-photochemical quenching is activated by de-epoxidation of violaxanthin into zeaxanthin. CP29-zeaxanthin in nanodiscs further shortens the Chl lifetime, which underlines the critical role of zeaxanthin in modulating photoprotection activity.Published under an exclusive license by AIP Publishing

    Structure and Properties of the C-terminal Domain of Insulin-like Growth Factor-binding Protein-1 Isolated from Human Amniotic Fluid

    Get PDF
    Insulin-like growth factor (IGF)-binding protein-1 (IGFBP-1) regulates the activity of the insulin-like growth factors in early pregnancy and is, thus, thought to play a key role at the fetal-maternal interface. The C-terminal domain of IGFBP-1 and three isoforms of the intact protein were isolated from human amniotic fluid, and sequencing of the four N-terminal polypeptide chains showed them to be highly pure. The addition of both intact IGFBP-1 and its C-terminal fragment to cultured fibroblasts has a similar stimulating effect on cell migration, and therefore, the domain has a biological activity on its own. The three-dimensional structure of the C-terminal domain was determined by x-ray crystallography to 1.8 Angstroms resolution. The fragment folds as a thyroglobulin type I domain and was found to bind the Fe(2+) ion in the crystals through the only histidine residue present in the polypeptide chain. Iron (II) decreases the binding of intact IGFBP-1 and the C-terminal domain to IGF-II, suggesting that the metal binding site is close to or part of the surface of interaction of the two molecules

    Structure of eukaryotic purine/H(+) symporter UapA suggests a role for homodimerization in transport activity

    Get PDF
    The uric acid/xanthine H(+) symporter, UapA, is a high-affinity purine transporter from the filamentous fungus Aspergillus nidulans. Here we present the crystal structure of a genetically stabilized version of UapA (UapA-G411VΔ1-11) in complex with xanthine. UapA is formed from two domains, a core domain and a gate domain, similar to the previously solved uracil transporter UraA, which belongs to the same family. The structure shows UapA in an inward-facing conformation with xanthine bound to residues in the core domain. Unlike UraA, which was observed to be a monomer, UapA forms a dimer in the crystals with dimer interactions formed exclusively through the gate domain. Analysis of dominant negative mutants is consistent with dimerization playing a key role in transport. We postulate that UapA uses an elevator transport mechanism likely to be shared with other structurally homologous transporters including anion exchangers and prestin

    Structural changes in the BH3 domain of SOUL protein upon interaction with the anti-apoptotic protein Bcl-xL

    Get PDF
    The SOUL protein is known to induce apoptosis by provoking the mitochondrial permeability transition, and a sequence homologous with the BH3 (Bcl-2 homology 3) domains has recently been identified in the protein, thus making it a potential new member of the BH3-only protein family. In the present study, we provide NMR, SPR (surface plasmon resonance) and crystallographic evidence that a peptide spanning residues 147–172 in SOUL interacts with the anti-apoptotic protein Bcl-xL. We have crystallized SOUL alone and the complex of its BH3 domain peptide with Bcl-xL, and solved their three-dimensional structures. The SOUL monomer is a single domain organized as a distorted β-barrel with eight anti-parallel strands and two α-helices. The BH3 domain extends across 15 residues at the end of the second helix and eight amino acids in the chain following it. There are important structural differences in the BH3 domain in the intact SOUL molecule and the same sequence bound to Bcl-xL
    corecore