130 research outputs found

    Prevalence and time course of post-stroke pain: A multicenter prospective hospital-based study

    Get PDF
    OBJECTIVE: Pain prevalence data for patients at various stages after stroke. DESIGN: Repeated cross-sectional, observational epidemiological study. SETTING: Hospital-based multicenter study. SUBJECTS: Four hundred forty-three prospectively enrolled stroke survivors. METHODS: All patients underwent bedside clinical examination. The different types of post-stroke pain (central post-stroke pain, musculoskeletal pains, shoulder pain, spasticity-related pain, and headache) were diagnosed with widely accepted criteria during the acute, subacute, and chronic stroke stages. Differences among the three stages were analyzed with χ(2)-tests. RESULTS: The mean overall prevalence of pain was 29.56% (14.06% in the acute, 42.73% in the subacute, and 31.90% in the chronic post-stroke stage). Time course differed significantly according to the various pain types (P < 0.001). The prevalence of musculoskeletal and shoulder pain was higher in the subacute and chronic than in the acute stages after stroke; the prevalence of spasticity-related pain peaked in the chronic stage. Conversely, headache manifested in the acute post-stroke stage. The prevalence of central post-stroke pain was higher in the subacute and chronic than in the acute post-stroke stage. Fewer than 25% of the patients with central post-stroke pain received drug treatment. CONCLUSIONS: Pain after stroke is more frequent in the subacute and chronic phase than in the acute phase, but it is still largely undertreated

    Analisi di rete basata sul modello matematico dei grafi, sperimentazione nell\u27ambito del progetto BINET

    Get PDF
    The research activity carried out in BINET project aims at designing a Business Intelligence framework based on Social Network technology, better known as Complex Networks in the healthcare field, in order to establish a platform to analyze data through non-conventional graph methodologies and interfaces (graph data-browsing). Scientific validation of methodologies used by the framework is carried out in the healthcare field and focuses on the analysis of therapeutic, time and spatial associations among the various treatments, such as outpatient, drug prescriptions, length of hospital stays etc., received by the patients recruited for the study, to find out correlations between treatments at the individual level and enabling patient "follow-up". Another aspect of the validation concerns the analysis of papers extracted from epidemiological and clinical databases in order to identify emerging technologies, standard of care, "benchmarking" among various operational units dealing with the same pathologies, as well as population profiling to enable identification of homogeneous groups, from a socio-demographic point of view and healthcare demand, subject to tailored prevention campaigns. A more specific application deals with the analysis of drug prescriptions to find out correlations between patient pathology profiles (derived from all treatments and diagnosis received by patients) and prescriptive behaviors of their general practitioners in order to define shared "guidelines" and identify standard practices to compare with practice guidelines. The document describe some sperimentation in these area

    Discovery of Substituted (2-Aminooxazol-4-yl)Isoxazole-3-carboxylic Acids as Inhibitors of Bacterial Serine Acetyltransferase in the Quest for Novel Potential Antibacterial Adjuvants

    Get PDF
    Many bacteria and actinomycetales use L-cysteine biosynthesis to increase their tolerance to antibacterial treatment and establish a long-lasting infection. In turn, this might lead to the onset of antimicrobial resistance that currently represents one of the most menacing threats to public health worldwide. The biosynthetic machinery required to synthesise L-cysteine is absent in mammals; therefore, its exploitation as a drug target is particularly promising. In this article, we report a series of inhibitors of Salmonella thyphimurium serine acetyltransferase (SAT), the enzyme that catalyzes the rate-limiting step of L-cysteine biosynthesis. The development of such inhibitors started with the virtual screening of an in-house library of compounds that led to the selection of seven structurally unrelated hit derivatives. A set of molecules structurally related to hit compound 5, coming either from the original library or from medicinal chemistry efforts, were tested to determine a preliminary structure–activity relationship and, especially, to improve the inhibitory potency of the derivatives, that was indeed ameliorated by several folds compared to hit compound 5 Despite these progresses, at this stage, the most promising compound failed to interfere with bacterial growth when tested on a Gram-negative model organism, anticipating the need for further research efforts

    a metaproteomic pipeline to identify newborn mouse gut phylotypes

    Get PDF
    Abstract In order to characterize newborn mouse gut microbiota phylotypes in very early-life stages, an original metaproteomic pipeline, based on LC–MS 2 -spectra and Mascot driven NCBI non-redundant repository database interrogation was developed. An original computational analysis assisted in the generation of a taxonomic gut architecture from protein hits to operational taxonomic units (OTUs) and related functional categories. Regardless of the mouse's genetic background, a prevalence of Firmicutes (Lactobacillaceae) and Proteobacteria (Enterobacteriaceae) was observed among the entire Eubacteria taxonomic node. However, a higher abundance of Firmicutes was retrieved for Balb/c gut microbiota compared to Rag2 ko mice, the latter was mainly characterized by a Proteobacteria enriched microbiota. The metaproteomic-obtained OTUs were supported, for the identification (ID) of the cultivable bacteria fraction, corroborated by axenic culture-based MALDI-TOF MS IDs. Particularly, functional analysis of Rag2 ko mice gut microbiota proteins revealed the presence of abundant glutathione, riboflavin metabolism and pentose phosphate pathway components, possibly related to genetic background. The metaproteomic pipeline herein presented may represent a useful tool to investigate the highly debated onset of the human gut microbiota in the first days of life, when the bacterial composition, despite its very low diversity (complexity), is still very far from an exhaustive description and other complex microbial consortia. Biological significance The manuscript deals with a "frontier" topic regarding the study of the gut microbiota and the application of a metaproteomic pipeline to unveil the complexity of this fascinating ecosystem at the very early stages of life. Indeed during these phases, its diversity is very low but the bacterial content is highly "instable", and the relative balance between mucosal and fecal bacteria starts its dynamics of "fight" to get homeostasis. However, in the neonatal period, especially immediately after birth, a comprehensive description of this microbial eco-organ is still lacking, while it should be mandatory to highlight its first mechanisms of homeostasis and perturbation, while it co-develops with and within the host species. In order to unravel its low but almost unknown microbial community multiplicity, the newborn mouse gut, characterized by a "very" low complexity, was herein selected as model to design a LC–MS 2 -based shotgun metaproteomic approach, potentially suitable to study onset and shaping in human newborns. A microbiological semi-automatic computational analysis was performed to infer gut phylotypes; such as proof of evidence, related OTUs were compared to axenic-culture-based MALDI-TOF MS IDs showing consistency at family and phyla levels for the bacterial cultivable fraction. This article is part of a Special Issue entitled: Trends in Microbial Proteomics

    Discovery of Substituted (2-Aminooxazol-4-yl)Isoxazole-3-carboxylic Acids as Inhibitors of Bacterial Serine Acetyltransferase in the Quest for Novel Potential Antibacterial Adjuvants

    Get PDF
    Many bacteria and actinomycetales use L-cysteine biosynthesis to increase their tolerance to antibacterial treatment and establish a long-lasting infection. In turn, this might lead to the onset of antimicrobial resistance that currently represents one of the most menacing threats to public health worldwide. The biosynthetic machinery required to synthesise L-cysteine is absent in mammals; therefore, its exploitation as a drug target is particularly promising. In this article, we report a series of inhibitors of Salmonella thyphimurium serine acetyltransferase (SAT), the enzyme that catalyzes the rate-limiting step of L-cysteine biosynthesis. The development of such inhibitors started with the virtual screening of an in-house library of compounds that led to the selection of seven structurally unrelated hit derivatives. A set of molecules structurally related to hit compound 5, coming either from the original library or from medicinal chemistry efforts, were tested to determine a preliminary structure–activity relationship and, especially, to improve the inhibitory potency of the derivatives, that was indeed ameliorated by several folds compared to hit compound 5 Despite these progresses, at this stage, the most promising compound failed to interfere with bacterial growth when tested on a Gram-negative model organism, anticipating the need for further research efforts

    Behavioral, neuromorphological, and neurobiochemical effects induced by omega-3 fatty acids following basal forebrain cholinergic depletion in aged mice

    Get PDF
    Background: In recent years, mechanistic, epidemiologic, and interventional studies have indicated beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) against brain aging and age-related cognitive decline, with the most consistent effects against Alzheimer’s disease (AD) confined especially in the early or prodromal stages of the pathology. In the present study, we investigated the action of n-3 PUFA supplementation on behavioral performances and hippocampal neurogenesis, volume, and astrogliosis in aged mice subjected to a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valuable model to mimic one of the most reliable hallmarks of early AD neuropathology. Methods: Aged mice first underwent mu-p75-saporin immunotoxin intraventricular lesions to obtain a massive cholinergic depletion and then were orally supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks. Four weeks after the beginning of the dietary supplementation, anxiety levels as well as mnesic, social, and depressive-like behaviors were evaluated. Subsequently, hippocampal morphological and biochemical analyses and n-3 PUFA brain quantification were carried out. Results: The n-3 PUFA treatment regulated the anxiety alterations and reverted the novelty recognition memory impairment induced by the cholinergic depletion in aged mice. Moreover, n-3 PUFA preserved hippocampal volume, enhanced neurogenesis in the dentate gyrus, and reduced astrogliosis in the hippocampus. Brain levels of n-3 PUFA were positively related to mnesic abilities. Conclusions: The demonstration that n-3 PUFA are able to counteract behavioral deficits and hippocampal neurodegeneration in cholinergically depleted aged mice promotes their use as a low-cost, safe nutraceutical tool to improve life quality at old age, even in the presence of first stages of AD

    Cardiogenic Shock in Obstructive Hypertrophic Cardiomyopathy Plus Apical Ballooning: Management With VA-ECMO and Myectomy

    Get PDF
    A patient with known obstructive hypertrophic cardiomyopathy developed worsening left ventricular outflow tract obstruction, severe mitral regurgitation, and apical ballooning leading to cardiogenic shock, a combination in which treatment of each component could worsen the others. Emergency veno-arterial extracorporeal membrane oxygenation, levosimendan, and noradrenaline transiently restored adequate systemic perfusion and gas exchange. Surgical myectomy offered a more definitive solution. (Level of Difficulty: Intermediate.

    Discovery of novel fragments inhibiting O-acetylserine sulphhydrylase by combining scaffold hopping and ligand-based drug design.

    Get PDF
    Several bacteria rely on the reductive sulphur assimilation pathway, absent in mammals, to synthesise cysteine. Reduction of virulence and decrease in antibiotic resistance have already been associated with mutations on the genes that codify cysteine biosynthetic enzymes. Therefore, inhibition of cysteine biosynthesis has emerged as a promising strategy to find new potential agents for the treatment of bacterial infection. Following our previous efforts to explore OASS inhibition and to expand and diversify our library, a scaffold hopping approach was carried out, with the aim of identifying a novel fragment for further development. This novel chemical tool, endowed with favourable pharmacological characteristics, was successfully developed, and a preliminary Structure-Activity Relationship investigation was carried out
    • …
    corecore