33 research outputs found

    Th2-dependent STAT6-regulated genes in intestinal epithelial cells mediate larval trapping during secondary Heligmosomoides polygyrus bakeri infection

    Get PDF
    Gastrointestinal helminths are a major health threat worldwide. Alternatively activated macrophages (AAMs) have been shown to contribute to host protection during secondary helminth infections. AAMs express effector molecules that depend on activation of the IL-4- or IL-13-induced transcription factor signal transducer and activator of transcription 6 (STAT6). However, the specific role of STAT6-regulated genes like Arginase-1 (Arg1) from AAMs or STAT6-regulated genes in other cell types for host protection remains unclear. To address this point, we generated mice expressing STAT6 only in macrophages (Mac-STAT6 mouse). In the model of Heligmosomoides polygyrus bakeri (Hpb) infection, Mac-STAT6 mice could not trap larvae in the submucosa of the small intestine after secondary infection. Further, mice lacking Arg1 in hematopoietic and endothelial cells were still protected from secondary Hpb infection. On the other hand, specific deletion of IL-4/IL-13 in T cells blunted AAM polarization, activation of intestinal epithelial cells (IECs) and protective immunity. Deletion of IL-4Rα on IEC also caused loss of larval trapping while AAM polarization remained intact. These results show that Th2-dependent and STAT6-regulated genes in IECs are required and AAMs are not sufficient for protection against secondary Hpb infection by mechanisms that remain to be investigated

    A substrate of the ABC transporter PEN3 stimulates bacterial flagellin (flg22)-induced callose deposition in Arabidopsis thaliana

    Get PDF
    Nonhost resistance of Arabidopsis thaliana against Phytophthora infestans, a filamentous eukaryotic microbe and the causal agent of potato late blight, is based on a multilayered defense system. Arabidopsis thaliana controls pathogen entry through the penetration-resistance genes PEN2 and PEN3, encoding an atypical myrosinase and an ABC transporter, respectively, required for synthesis and export of unknown indole compounds. To identify pathogen-elicited leaf surface metabolites and further unravel nonhost resistance in Arabidopsis, we performed untargeted metabolite profiling by incubating a P. infestans zoospore suspension on leaves of WT or pen3 mutant Arabidopsis plants. Among the plant-secreted metabolites, 4-methoxyindol-3- yl-methanol and S-(4-methoxy-indol-3-yl-methyl) cysteine were detected in spore suspensions recollected from WT plants, but at reduced levels from the pen3 mutant plants. In both whole-cell and microsome-based assays, 4-methoxyindol-3-yl- methanol was transported in a PEN3-dependent manner, suggesting that this compound is a PEN3 substrate. The syntheses of both compounds were dependent on functional PEN2 and phytochelatin synthase 1. None of these compounds inhibited mycelial growth of P. infestans in vitro. Of note, exogenous application of 4- methoxyindol-3-yl methanol slightly elevated cytosolic Ca2+ levels and enhanced callose deposition in hydathodes of seedlings treated with a bacterial pathogen- associated molecular pattern (PAMP), flagellin (flg22). Loss of flg22-induced callose deposition in leaves of pen3 seedlings was partially reverted by the addition of 4- methoxyindol-3-yl methanol. In conclusion, we have identified a specific indole compound that is a substrate for PEN3 and contributes to the plant defense response against microbial pathogens

    IL-4 and helminth infection downregulate MINCLE-dependent macrophage response to mycobacteria and Th17 adjuvanticity

    Get PDF
    The myeloid C-type lectin receptor (CLR) MINCLE senses the mycobacterial cell wall component trehalose-6,6’-dimycolate (TDM). Recently, we found that IL-4 downregulates MINCLE expression in macrophages. IL-4 is a hallmark cytokine in helminth infections, which appear to increase the risk for mycobacterial infection and active tuberculosis. Here, we investigated functional consequences of IL-4 and helminth infection on MINCLE-driven macrophage activation and Th1/Th17 adjuvanticity. IL-4 inhibited MINCLE and cytokine induction after macrophage infection with Mycobacterium bovis bacille Calmette-Guerin (BCG). Infection of mice with BCG upregulated MINCLE on myeloid cells, which was inhibited by IL-4 plasmid injection and by infection with the nematode Nippostrongylus brasiliensis in monocytes. To determine the impact of helminth infection on MINCLE-dependent immune responses, we vaccinated mice with a recombinant protein together with the MINCLE ligand trehalose-6,6-dibehenate (TDB) as adjuvant. Concurrent infection with N. brasiliensis or with Schistosoma mansoni promoted T cell-derived IL-4 production and suppressed Th1/Th17 differentiation in the spleen. In contrast, helminth infection did not reduce Th1/Th17 induction by TDB in draining peripheral lymph nodes, where IL-4 levels were unaltered. Upon use of the TLR4-dependent adjuvant G3D6A, N. brasiliensis infection impaired selectively the induction of splenic antigen-specific Th1 but not of Th17 cells. Inhibition of MINCLE-dependent Th1/Th17 responses in mice infected with N. brasiliensis was dependent on IL-4/IL-13. Thus, helminth infection attenuated the Th17 response to MINCLE-dependent immunization in an organ- and adjuvant-specific manner via the Th2 cytokines IL-4/IL-13. Taken together, our results demonstrate downregulation of MINCLE expression on monocytes and macrophages by IL-4 as a possible mechanism of thwarted Th17 vaccination responses by underlying helminth infection.</jats:p

    Aspf2 From Aspergillus fumigatus Recruits Human Immune Regulators for Immune Evasion and Cell Damage

    Get PDF
    The opportunistic fungal pathogen Aspergillus fumigatus can cause life-threatening infections, particularly in immunocompromised patients. Most pathogenic microbes control host innate immune responses at the earliest time, already before infiltrating host immune cells arrive at the site of infection. Here, we identify Aspf2 as the first A. fumigatus Factor H-binding protein. Aspf2 recruits several human plasma regulators, Factor H, factor-H-like protein 1 (FHL-1), FHR1, and plasminogen. Factor H contacts Aspf2 via two regions located in SCRs6–7 and SCR20. FHL-1 binds via SCRs6–7, and FHR1 via SCRs3–5. Factor H and FHL-1 attached to Aspf2-maintained cofactor activity and assisted in C3b inactivation. A Δaspf2 knockout strain was generated which bound Factor H with 28% and FHL-1 with 42% lower intensity. In agreement with less immune regulator acquisition, when challenged with complement-active normal human serum, Δaspf2 conidia had substantially more C3b (&gt;57%) deposited on their surface. Consequently, Δaspf2 conidia were more efficiently phagocytosed (&gt;20%) and killed (44%) by human neutrophils as wild-type conidia. Furthermore, Aspf2 recruited human plasminogen and, when activated by tissue-type plasminogen activator, newly generated plasmin cleaved the chromogenic substrate S2251 and degraded fibrinogen. Furthermore, plasmin attached to conidia damaged human lung epithelial cells, induced cell retraction, and caused matrix exposure. Thus, Aspf2 is a central immune evasion protein and plasminogen ligand of A. fumigatus. By blocking host innate immune attack and by disrupting human lung epithelial cell layers, Aspf2 assists in early steps of fungal infection and likely allows tissue penetration

    Cooperation of cancer drivers with regulatory germline variants shapes clinical outcomes

    Get PDF
    Pediatric malignancies including Ewing sarcoma (EwS) feature a paucity of somatic alterations except for pathognomonic driver-mutations that cannot explain overt variations in clinical outcome. Here, we demonstrate in EwS how cooperation of dominant oncogenes and regulatory germline variants determine tumor growth, patient survival and drug response. Binding of the oncogenic EWSR1-FLI1 fusion transcription factor to a polymorphic enhancerlike DNA element controls expression of the transcription factor MYBL2 mediating these phenotypes. Whole-genome and RNA sequencing reveals that variability at this locus is inherited via the germline and is associated with variable inter-tumoral MYBL2 expression. High MYBL2 levels sensitize EwS cells for inhibition of its upstream activating kinase CDK2 in vitro and in vivo, suggesting MYBL2 as a putative biomarker for anti-CDK2-therapy. Collectively, we establish cooperation of somatic mutations and regulatory germline variants as a major determinant of tumor progression and highlight the importance of integrating the regulatory genome in precision medicine

    Prevention of cardiac dysfunction in acute coxsackievirus B3 cardiomyopathy by inducible expression of a soluble coxsackievirus-adenovirus receptor

    Get PDF
    Background— Group B coxsackieviruses (CVBs) are the prototypical agents of acute myocarditis and chronic dilated cardiomyopathy, but an effective targeted therapy is still not available. Here, we analyze the therapeutic potential of a soluble (s) virus receptor molecule against CVB3 myocarditis using a gene therapy approach. Methods and Results— We generated an inducible adenoviral vector (AdG12) for strict drug-dependent delivery of sCAR-Fc, a fusion protein composed of the coxsackievirus-adenovirus receptor (CAR) extracellular domains and the carboxyl terminus of human IgG1-Fc. Decoy receptor expression was strictly doxycycline dependent, with no expression in the absence of an inducer. CVB3 infection of HeLa cells was efficiently blocked by supernatant from AdG12-transduced cells, but only in the presence of doxycycline. After liver-specific transfer, AdG12 (plus doxycycline) significantly improved cardiac contractility and diastolic relaxation compared with a control vector in CVB3-infected mice if sCAR-Fc was induced before infection (left ventricular pressure 59±3.8 versus 45.4±2.7 mm Hg, median 59 versus 45.8 mm Hg, P<0.01; dP/dtmax 3645.1±443.6 versus 2057.9±490.2 mm Hg/s, median 3526.6 versus 2072 mm Hg/s, P<0.01; and dP/dtmin −2125.5±330.5 versus −1310.2±330.3 mm Hg/s, median −2083.7 versus −1295.9 mm Hg/s, P<0.01) and improved contractility if induced concomitantly with infection (left ventricular pressure 76.4±19.2 versus 56.8±10.3 mm Hg, median 74.8 versus 54.4 mm Hg, P<0.05; dP/dtmax 5214.2±1786.2 versus 3011.6±918.3 mm Hg/s, median 5182.1 versus 3106.6 mm Hg/s, P<0.05), respectively. Importantly, hemodynamics of animals treated with AdG12 (plus doxycycline) were similar to uninfected controls. Preinfection induction of sCAR-Fc completely blocked and concomitant induction strongly reduced cardiac CVB3 infection, myocardial injury, and inflammation. Conclusion— AdG12-mediated sCAR-Fc delivery prevents cardiac dysfunction in CVB3 myocarditis under prophylactic and therapeutic conditions
    corecore