12 research outputs found

    Improving hox protein classification across the major model organisms

    No full text
    The family of Hox-proteins has been a major focus of research for over 30 years. Hox-proteins are crucial to the correct development of bilateral organisms, however, some uncertainty remains as to which Hox-proteins are functionally equivalent across different species. Initial classification of Hox-proteins was based on phylogenetic analysis of the 60 amino acid homeodomain. This approach was successful in classifying Hox-proteins with differing homeodomains, but the relationships of Hox-proteins with nearly identical homeodomains, yet distinct biological functions, could not be resolved. Correspondingly, these 'problematic' proteins were classified into one large unresolved group. Other classifications used the relative location of the Hox-protein coding genes on the chromosome (synteny) to further resolve this group. Although widely used, this synteny-based classification is inconsistent with experimental evidence from functional equivalence studies. These inconsistencies led us to re-examine and derive a new classification for the Hox-protein family using all Hox-protein sequences available in the GenBank non-redundant protein database (NCBI-nr). We compare the use of the homeodomain, the homeodomain with conserved flanking regions (the YPWM and linker region), and full length Hox-protein sequences as a basis for classification of Hox-proteins. In contrast to previous attempts, our approach is able to resolve the relationships for the 'problematic' as well as ABD-B-like Hox-proteins. We highlight differences to previous classifications and clarify the relationships of Hox-proteins across the five major model organisms, Caenorhabditis elegans, Drosophila melanogaster, Branchiostoma floridae, Mus musculus and Danio rerio. Comparative and functional analysis of Hox-proteins, two fields crucial to understanding the development of bilateral organisms, have been hampered by difficulties in predicting functionally equivalent Hox-proteins across species. Our classification scheme offers a higher-resolution classification that is in accordance with phylogenetic as well as experimental data and, thereby, provides a novel basis for experiments, such as comparative and functional analyses of Hox-proteins.Funding for this work has been provided by the Australian Research Council, Center for Excellence Grant (CEO348212)

    Multifactorial Regulation of a Hox Target Gene

    Get PDF
    Hox proteins play fundamental roles in controlling morphogenetic diversity along the anterior–posterior body axis of animals by regulating distinct sets of target genes. Within their rather broad expression domains, individual Hox proteins control cell diversification and pattern formation and consequently target gene expression in a highly localized manner, sometimes even only in a single cell. To achieve this high-regulatory specificity, it has been postulated that Hox proteins co-operate with other transcription factors to activate or repress their target genes in a highly context-specific manner in vivo. However, only a few of these factors have been identified. Here, we analyze the regulation of the cell death gene reaper (rpr) by the Hox protein Deformed (Dfd) and suggest that local activation of rpr expression in the anterior part of the maxillary segment is achieved through a combinatorial interaction of Dfd with at least eight functionally diverse transcriptional regulators on a minimal enhancer. It follows that context-dependent combinations of Hox proteins and other transcription factors on small, modular Hox response elements (HREs) could be responsible for the proper spatio-temporal expression of Hox targets. Thus, a large number of transcription factors are likely to be directly involved in Hox target gene regulation in vivo

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Solving Classification Problems for Large Sets of Protein Sequences with the Example of Hox and ParaHox Proteins

    No full text
    Phylogenetic methods are key to providing models for how a given protein family evolved. However, these methods run into difficulties when sequence divergence is either too low or too high. Here, we provide a case study of Hox and ParaHox proteins so that additional insights can be gained using a new computational approach to help solve old classification problems. For two (Gsx and Cdx) out of three ParaHox proteins the assignments differ between the currently most established view and four alternative scenarios. We use a non-phylogenetic, pairwise-sequence-similarity-based method to assess which of the previous predictions, if any, are best supported by the sequence-similarity relationships between Hox and ParaHox proteins. The overall sequence-similarities show Gsx to be most similar to Hox2–3, and Cdx to be most similar to Hox4–8. The results indicate that a purely pairwise-sequence-similarity-based approach can provide additional information not only when phylogenetic inference methods have insufficient information to provide reliable classifications (as was shown previously for central Hox proteins), but also when the sequence variation is so high that the resulting phylogenetic reconstructions are likely plagued by long-branch-attraction artifacts.publishe

    Improving Hox Protein Classification across the Major Model Organisms

    Get PDF
    The family of Hox-proteins has been a major focus of research for over 30 years. Hox-proteins are crucial to the correct development of bilateral organisms, however, some uncertainty remains as to which Hox-proteins are functionally equivalent across different species. Initial classification of Hox-proteins was based on phylogenetic analysis of the 60 amino acid homeodomain. This approach was successful in classifying Hox-proteins with differing homeodomains, but the relationships of Hox-proteins with nearly identical homeodomains, yet distinct biological functions, could not be resolved. Correspondingly, these ‘problematic’ proteins were classified into one large unresolved group. Other classifications used the relative location of the Hox-protein coding genes on the chromosome (synteny) to further resolve this group. Although widely used, this synteny-based classification is inconsistent with experimental evidence from functional equivalence studies. These inconsistencies led us to re-examine and derive a new classification for the Hox-protein family using all Hox-protein sequences available in the GenBank non-redundant protein database (NCBI-nr). We compare the use of the homeodomain, the homeodomain with conserved flanking regions (the YPWM and linker region), and full length Hox-protein sequences as a basis for classification of Hox-proteins. In contrast to previous attempts, our approach is able to resolve the relationships for the ‘problematic’ as well as ABD-B-like Hox-proteins. We highlight differences to previous classifications and clarify the relationships of Hox-proteins across the five major model organisms, Caenorhabditis elegans, Drosophila melanogaster, Branchiostoma floridae, Mus musculus and Danio rerio. Comparative and functional analysis of Hox-proteins, two fields crucial to understanding the development of bilateral organisms, have been hampered by difficulties in predicting functionally equivalent Hox-proteins across species. Our classification scheme offers a higher-resolution classification that is in accordance with phylogenetic as well as experimental data and, thereby, provides a novel basis for experiments, such as comparative and functional analyses of Hox-proteins

    Analysis of central Hox protein types across bilaterian clades: On the diversification of central Hox proteins from an Antennapedia/Hox7-like protein

    Get PDF
    AbstractHox proteins are among the most intensively studied transcription factors and represent key factors in establishing morphological differences along the anterior–posterior axis of animals. They are generally regarded as highly conserved in function, a view predominantly based on experiments comparing a few (anterior) Hox proteins. However, the extent to which central or abdominal Hox proteins share conserved functions and sequence signatures remains largely unexplored.To shed light on the functional divergence of the central Hox proteins, we present an easy to use resource aimed at predicting the functional similarities of central Hox proteins using sequence elements known to be relevant to Hox protein functions. We provide this resource both as a stand-alone download, including all information, as well as via a simplified web-interface that facilitates an accurate and fine-tuned annotation of novel Hox sequences. The method used in the manuscript is, so far, the only published sequence-based method capable of differentiating between the functionally distinct central Hox proteins with near-identical homeodomains (such as the Drosophila Antp, Ubx and Abd-A Hox proteins). In this manuscript, a pairwise-sequence-similarity based approach (using the bioinformatics tool CLANS) is used to analyze all available central Hox protein sequences. The results are combined with a large-scale species phylogeny to depict the presence/absence of central Hox sequence-types across the bilaterian lineage. The obtained pattern of distribution of the Hox sequence-types throughout the species tree enables us to infer at which branching point a specific type of central Hox protein was present.Based on the Hox sequences currently available in public databases, seven sequence-similarity groups could be identified for the central Hox proteins, two of which have never been described before (Echi/Hemi7 and Echi/Hemi8). Our work also shows, for the first time, that Antp/Hox7-like sequences are present throughout all bilaterian clades and that all other central Hox protein groups are specific to sub-lineages in the protostome or deuterostome branches only
    corecore