43 research outputs found

    Social isolation triggers oxidative status and impairs systemic and hepatic insulin sensitivity in normoglycemic rats

    Get PDF
    Drug-naïve psychotic patients show metabolic and hepatic dysfunctions. The rat social isolation model of psychosis allows to investigate mechanisms leading to these disturbances to which oxidative stress crucially contributes. Here, we investigated isolation-induced central and peripheral dysfunctions in glucose homeostasis and insulin sensitivity, along with redox dysregulation. Social isolation did not affect basal glycemic levels and the response to glucose and insulin loads in the glucose and insulin tolerance tests. However, HOMA-Index value were increased in isolated (ISO) rats. A hypothalamic reduction of AKT phosphorylation and a trend toward an increase in AMPK phosphorylation were observed following social isolation, accompanied by reduced GLUT-4 levels. Social isolation also induced a reduction of phosphorylation of the insulin receptor, of AKT and GLUT-2, and a decreased phosphorylation of AMPK in the liver. Furthermore, a significant reduction in hepatic CPT1 and PPAR-α levels was detected. ISO rats also showed significant elevations in hepatic ROS amount, lipid peroxidation and NOX4 expression, whereas no differences were detected in NOX2 and NOX1 levels. Expression of SOD2 in the mitochondrial fraction and SOD1 in the cytosolic fraction was not altered following social isolation, whereas SOD activity was increased. Furthermore, a decrease of hepatic CAT and GSH amount was observed in ISO rats compared to GRP animals. Our data suggest that the increased oxidant status and antioxidant capacity modifications may trigger hepatic and systemic insulin resistance, by altering signal hormone pathway and sustaining subsequent alteration of glucose homeostasis and metabolic impairment observed in the social isolation model of psychosis

    Polydatin Induces Differentiation and Radiation Sensitivity in Human Osteosarcoma Cells and Parallel Secretion through Lipid Metabolite Secretion

    Get PDF
    Osteosarcoma is a bone cancer characterized by the production of osteoid tissue and immature bone from mesenchymal cells. Osteosarcoma mainly affects long bones (femur is most frequently site) and occur in children and young adults with greater incidence. Here, we investigated the role accomplished by polydatin, a natural antioxidative compound, in promoting osteogenic differentiation alone or after radiation therapy on osteosarcoma cells. In vitro, polydatin significantly induced cell cycle arrest in S-phase and enhanced bone alkaline phosphatase activity. Moreover, the differentiation process was paralleled by the activation of Wnt-β-catenin pathway. In combination with radiotherapy, the pretreatment with polydatin promoted a radiosensitizing effect on osteosarcoma cancer cells as demonstrated by the upregulation of osteogenic markers and reduced clonogenic survival of tumor cells. Additionally, we analyzed, by mass spectrometry, the secretion of sphingolipid, ceramides, and their metabolites in osteosarcoma cells treated with polydatin. Overall, our results demonstrate that polydatin, through the secretion of sphingolipids and ceramide, induced osteogenic differentiation, alone and in the presence of ionizing therapy. Future investigations are needed to validate the use of polydatin in clinical practice as a potentiating agent of radiotherapy-induced anticancer effects

    Oral Microbiota and Salivary Levels of Oral Pathogens in Gastro-Intestinal Diseases: Current Knowledge and Exploratory Study

    Get PDF
    Various bi‐directional associations exist between oral health and gastro‐intestinal diseases. The oral microbiome plays a role in the gastro‐intestinal carcinogenesis and fusobacteria are the most investigated bacteria involved. This paper aims to review the current knowledge and report the preliminary data on salivary levels of Fusobacterium nucleatum, Porphyromonas gingivalis and Candida albicans in subjects with different gastro‐intestinal conditions or pathologies, in order to determine any differences. The null hypothesis was “subjects with different gastro‐intestinal diseases do not show significant differences in the composition of the oral microbiota”. Twenty‐one subjects undergoing esophagastroduodenoscopy or colonscopy were recruited. For each subject, a salivary sample was collected before the endoscopy procedure, immediately stored at ‐20°C and subsequently used for genomic bacterial DNA extraction by real‐time PCR. Low levels of F. nucleatum and P. gingivalis were peculiar in the oral microbiota in subjects affected by Helicobater pylori‐negative chronic gastritis without cancerization and future studies will elucidate this association. The level of C. albicans did not statistically differ among groups. This preliminary study could be used in the future, following further investigation, as a non‐invasive method for the search of gastrointestinal diseases and associated markers

    H9c2 Cardiomyocytes under Hypoxic Stress: Biological Effects Mediated by Sentinel Downstream Targets

    Get PDF
    The association between diabetes and cardiovascular diseases is well known. Related diabetes macro- and microangiopathies frequently induce hypoxia and consequently energy failure to satisfy the jeopardized myocardium basal needs. Additionally, it is widely accepted that diabetes impairs endothelial nitric oxide synthase (eNOS) activity, resulting in diminished nitric oxide (NO) bioavailability and consequent endothelial cell dysfunction. In this study, we analyzed the embryonic heart-derived H9c2 cell response to hypoxic stress after administration of a high glucose concentration to reproduce a condition often observed in diabetes. We observed that 24 h hypoxia exposure of H9c2 cells reduced cell viability compared to cells grown in normoxic conditions. Cytotoxicity and early apoptosis were increased after exposure to high glucose administration. In addition, hypoxia induced a RhoA upregulation and a Bcl-2 downregulation and lowered the ERK activation observed in normoxia at both glucose concentrations. Furthermore, a significant cell proliferation rate increases after the 1400W iNOS inhibitor administration was observed. Again, hypoxia increased the expression level of myogenin, a marker of skeletal muscle cell differentiation. The cardiomyocyte gene expression profiles and morphology changes observed in response to pathological stimuli, as hypoxia, could lead to improper ventricular remodeling responsible for heart failure. Therefore, understanding cell signaling events that regulate cardiac response to hypoxia could be useful for the discovery of novel therapeutic approaches able to prevent heart diseases

    Polydatin Incorporated in Polycaprolactone Nanofibers Improves Osteogenic Differentiation

    Get PDF
    Polycaprolactone nanofibers are used as scaffolds in the field of tissue engineering for tissue regeneration or drug delivery. Polycaprolactone (PCL) is a biodegradable hydrophobic polyester used to obtain implantable nanostructures, which are clinically applicable due to their biological safety. Polydatin (PD), a glycosidic precursor of resveratrol, is known for its antioxidant, antitumor, antiosteoporotic, and bone regeneration activities. We aimed to use the osteogenic capacity of polydatin to create a biomimetic innovative and patented scaffold consisting of PCL-PD for bone tissue engineering. Both osteosarcoma cells (Saos-2) and mesenchymal stem cells (MSCs) were used to test the in vitro cytocompatibility of the PD-PCL scaffold. Reverse-phase (RP) HPLC was used to evaluate the timing release of PD from the PCL-PD nanofibers and the MTT assay, scanning electron microscopy, and alkaline phosphatase (ALP) activity were used to evaluate the proliferation, adhesion, and cellular differentiation in both osteosarcoma and human mesenchymal stem cells (MSCs) seeded on PD-PCL nanofibers. The proliferation of osteosarcoma cells (Saos-2) on the PD-PCL scaffold decreased when compared to cells grown on PLC nanofibers, whereas the proliferation of MSCs was comparable in both PCL and PD-PCL nanofibers. Noteworthy, after 14 days, the ALP activity was higher in both Saos-2 cells and MSCs cultivated on PD-PCL than on empty scaffolds. Moreover, the same cells showed a spindle-shaped morphology after 14 days when grown on PD-PCL as shown by SEM. In conclusion, we provide evidence that nanofibers appropriately coated with PD support the adhesion and promote the osteogenic differentiation of both human osteosarcoma cells and MSCs

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Tamoxifen, but not estradiol, modulates the growth of a human melanoma cell line

    No full text
    The effect of 17β-Estradiol (E2) and antiestrogen Tamoxifen (TAM) on cell proliferation, estrogen receptor (ER) and progesterone receptor (PR) content was investigated in a human malignant melanoma cell line (SK Mel 28). TAM induced a slight decrease in cell growth at 10-6 M, while provoked a cytotoxic effect at 10-5 M. In contrast, E2 was ineffective on cell proliferation at all concentrations tested. ER and PR were determined by both biochemical and immunocytochemical assay. Preliminary results indicate that ER are scarcely represented, while PR are almost absent

    Bioassay-guided identification of the antihyperglycaemic constituents of walnut (Juglans regia) leaves

    No full text
    Walnut trees (Juglans regia) are a priceless source of nutrients and beneficial molecules. Besides the nuts, also the leaves have been commonly used to prepare teas and decoctions, with the purpose of curing diabetic symptoms. In vivo trials have ascertained the walnut leaf capability to ameliorate hyperglycaemia in humans. However, conclusive studies aimed at identifying the molecules responsible for the antidiabetic activity of the walnut leaves are still missing. This paper reports on a bio-guided separation of the walnut leaf extract that led to the isolation and NMR-based identification of two compounds belonging to the megastigmane class as the major antidiabetic molecules of the extract. An in-depth evaluation of their potential to affect the glucose uptake in HepG2 and Caco-2 cell lines was also conducted. The presented results are ultimately expected to allow a more rational use of walnut leaf-based beverages in the therapy of diabetes
    corecore