102 research outputs found
Structural Model of the hUbA1-UbcH10 Quaternary Complex: In Silico and Experimental Analysis of the Protein-Protein Interactions between E1, E2 and Ubiquitin
UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2) involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1), two ubiquitin molecules and UbcH10 (E2), leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1–E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders
Structural model of the hUbA1-UbcH10 quaternary complex: In silico and experimental analysis of the protein-protein interactions between E1, E2 and ubiquitin
UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2) involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1), two ubiquitin molecules and UbcH10 (E2), leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1-E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders
Echocardiographically defined haemodynamic categorization predicts prognosis in ambulatory heart failure patients treated with sacubitril/valsartan
Aim: Echo-derived haemodynamic classification, based on forward-flow and left ventricular (LV) filling pressure (LVFP) correlates, has been proposed to phenotype patients with heart failure and reduced ejection fraction (HFrEF). To assess the prognostic relevance of baseline echocardiographically defined haemodynamic profile in ambulatory HFrEF patients before starting sacubitril/valsartan. Methods and results: In our multicentre, open-label study, HFrEF outpatients were classified into 4 groups according to the combination of forward flow (cardiac index; CI:< or ≥2.0 L/min/m2 ) and early transmitral Doppler velocity/early diastolic annular velocity ratio (E/e': ≥ or <15): Profile-A: normal-flow, normal-pressure; Profile-B: low-flow, normal-pressure; Profile-C: normal-flow, high-pressure; Profile-D: low-flow, high-pressure. Patients were started on sacubitril/valsartan and followed-up for 12.3 months (median). Rates of the composite of death/HF-hospitalization were assessed by multivariable Cox proportional-hazards models. Twelve sites enrolled 727 patients (64 ± 12 year old; LVEF: 29.8 ± 6.2%). Profile-D had more comorbidities and worse renal and LV function. Target dose of sacubitril/valsartan (97/103 mg BID) was more likely reached in Profile-A (34%) than other profiles (B: 32%, C: 24%, D: 28%, P < 0.001). Event-rate (per 100 patients per year) progressively increased from Profile-A to Profile-D (12.0%, 16.4%, 22.9%, and 35.2%, respectively, P < 0.0001). By covariate-adjusted Cox model, profiles with low forward-flow (B and D) remained associated with poor outcome (P < 0.01). Adding this categorization to MAGGIC-score and natriuretic peptides, provided significant continuous net reclassification improvement (0.329; P < 0.001). Intermediate and high-dose sacubitril/valsartan reduced the event's risk independently of haemodynamic profile. Conclusions: Echocardiographically-derived haemodynamic classification identifies ambulatory HFrEF patients with different risk profiles. In real-world HFrEF outpatients, sacubitril/valsartan is effective in improving outcome across different haemodynamic profiles
Anti-cancer activity of dose-fractioned mPE +/- bevacizumab regimen is paralleled by immune-modulation in advanced squamous NSLC patients
Background: Results from the BEVA2007 trial, suggest that the metronomic chemotherapy regimen with dose-fractioned cisplatin and oral etoposide (mPE) +/- bevacizumab, a monoclonal antibody to the vascular endothelial growth factor (VEGF), shows anti-angiogenic and immunological effects and is a safe and active treatment for metastatic non-small cell lung cancer (mNSCLC) patients. We carried out a retrospective analysis aimed to evaluate the antitumor effects of this treatment in a subset of patients with squamous histology. Methods: Retrospective analysis was carried out in a subset of 31 patients with squamous histology enrolled in the study between September 2007 and September 2015. All of the patients received chemotherapy with cisplatin (30 mg/sqm, days 1-3q21) and oral etoposide (50 mg, days 1-15q21) (mPE) and 14 of them also received bevacizumab 5 mg/kg on the day 3q21 (mPEBev regimen). Results: This treatment showed a disease control rate of 71% with a mean progression free survival (PFS) and overall survival (OS) of 13.6 and 17 months respectively. After 4 treatment courses, 6 patients showing a remarkable tumor shrinkage, underwent to radical surgery, attaining a significant advantage in term of survival (P=0.048). Kaplan-Meier and log-rank test identified the longest survival in patients presenting low baseline levels in neutrophil-to-lymphocyte ratio (NLR) (P=0.05), interleukin (IL) 17A (P=0.036), regulatory-T-cells (Tregs) (P=0.020), and activated CD83+ dendritic cells (DCs) (P=0.03). Conclusions: These results suggest that the mPE +/- bevacizumab regimen is feasible and should be tested in comparative trials in advanced squamous-NSCLC (sqNSCLC). Moreover, its immune-biological effects strongly suggest the investigation in sequential combinations with immune check-point inhibitors
COVID-19 Severity in Multiple Sclerosis: Putting Data Into Context
Background and objectives: It is unclear how multiple sclerosis (MS) affects the severity of COVID-19. The aim of this study is to compare COVID-19-related outcomes collected in an Italian cohort of patients with MS with the outcomes expected in the age- and sex-matched Italian population. Methods: Hospitalization, intensive care unit (ICU) admission, and death after COVID-19 diagnosis of 1,362 patients with MS were compared with the age- and sex-matched Italian population in a retrospective observational case-cohort study with population-based control. The observed vs the expected events were compared in the whole MS cohort and in different subgroups (higher risk: Expanded Disability Status Scale [EDSS] score > 3 or at least 1 comorbidity, lower risk: EDSS score ≤ 3 and no comorbidities) by the χ2 test, and the risk excess was quantified by risk ratios (RRs). Results: The risk of severe events was about twice the risk in the age- and sex-matched Italian population: RR = 2.12 for hospitalization (p < 0.001), RR = 2.19 for ICU admission (p < 0.001), and RR = 2.43 for death (p < 0.001). The excess of risk was confined to the higher-risk group (n = 553). In lower-risk patients (n = 809), the rate of events was close to that of the Italian age- and sex-matched population (RR = 1.12 for hospitalization, RR = 1.52 for ICU admission, and RR = 1.19 for death). In the lower-risk group, an increased hospitalization risk was detected in patients on anti-CD20 (RR = 3.03, p = 0.005), whereas a decrease was detected in patients on interferon (0 observed vs 4 expected events, p = 0.04). Discussion: Overall, the MS cohort had a risk of severe events that is twice the risk than the age- and sex-matched Italian population. This excess of risk is mainly explained by the EDSS score and comorbidities, whereas a residual increase of hospitalization risk was observed in patients on anti-CD20 therapies and a decrease in people on interferon
DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France
We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon
Structures of free and inhibited forms of theL,D-transpeptidase LdtMt1 from Mycobacterium tuberculosis
The modelling of peptidoglycan is responsible for key cellular processes in Mycobacterium tuberculosis such as cell growth, division and resuscitation from dormancy. The structure of M. tuberculosis peptidoglycan is atypical since it contains a majority of 3,3 cross-links synthesized by L,D-transpeptidases that replace the 4,3 cross-links formed by the D,D-transpeptidase activity of classical penicillin-binding proteins. Carbapenems inactivate these L,D-transpeptidases and in combination with clavulanic acid are bactericidal against extensively drug-resistant M. tuberculosis. Here, crystal structures of the L,D-transpeptidase Ldt(Mt1) from M. tuberculosis in a ligand-free form and in complex with the carbapenem imipenem are reported. Elucidation of the structural features of Ldt(Mt1) unveils analogies and differences between the two key transpeptidases of M. tuberculosis: Ldt(Mt1) and Ldt(Mt2). In addition, the structure of imipenemin-activated Ldt(Mt1) provides a detailed structural view of the interactions between a carbapenem drug and Ldt(Mt1). By providing the key interactions in the binding of carbapenem to Ldt(Mt1), this work will facilitate structure-guided discovery of L,D-transpeptidase inhibitors as novel antitubercular agents against drug-resistant M. tuberculosis
- …