30 research outputs found

    Extending the limits of the Borrobol Tephra to Scandinavia and detection of new early Holocene tephras

    Get PDF
    Abstract Analyses of two infilled lakes in Blekinge, southeast Sweden, indicate the presence of at least three tephra horizons of Termination 1 and early Holocene age. Geochemical analyses confirm the presence of the Borrobol Tephra, the Askja Tephra (10,000 14 C yr B.P.), and one previously unreported tephra of Icelandic origin. Extending the limits of the Borrobol Tephra to Scandinavia illustrates that this ash is far more widespread than previously realized and is therefore, an important marker horizon for determining the rate and timing of the initial warming at the start of Greenland Interstade 1 (GI-1) within Europe. The relatively unknown Askja Tephra and the newly discovered Hässeldalen Tephra are stratigraphically placed at the Younger Dryas/Preboreal transition. This paper demonstrates the suitability and success associated with the extraction techniques for tracing microtephra horizons in areas distal to volcanic sources

    Hekla 1947, 1845, 1510 and 1158 tephra in Finland: challenges of tracing tephra from moderate eruptions

    Get PDF
    Several cryptotephra layers that originate from Icelandic volcanic eruptions with a volcanic explosivity index (VEI) of 3 have previously been identified in Northern Europe, albeit within a restricted geographical area. One of these is the Hekla 1947 tephra that formed a visible fall-out in southern Finland. We searched for the Hekla 1947 tephra from peat archives within the previously inferred fall-out zone but found no evidence of its presence. Instead, we report the first identification of Hekla 1845 and Hekla 1510 cryptotephra layers outside of Iceland, the Faroe Islands, Ireland and the UK. Additionally, Hekla 1158 tephra was found in Finland for the first time. Our results confirm that Icelandic eruptions of moderate size can form cryptotephra deposits that are extensive enough to be used in inter-regional correlations of environmental archives and carry a great potential for refining regional tephrochronological frameworks. Our results also reveal that Icelandic tephra has been dispersed into Finnish airspace at least seven times during the past millennium and in addition to a direct eastward route the ash clouds can travel either via a northerly or a southerly transport pathway

    Towards a Holocene tephrochronology for the Faroe Islands, North Atlantic

    Get PDF
    The Faroe Islands hold a key position in the North Atlantic region for tephra studies due to their relative proximity to Iceland. Several tephras have been described over the last 50 years in peat and lake sediment sequences, including the type sites for the Saksunarvatn and Mjáuvøtn tephras. Here we present a comprehensive overview of Holocene tephras found on the Faroe Island. In total 23 tephra layers are described including visible macrotephras such as the Saksunarvatn and Hekla 4 tephras and several cryptotephras. The importance of tephras originally described from the Faroe Islands is highlighted and previously unpublished results are included. In addition, full datasets for several sites are published here for the first time. The Saksunarvatn Ash, now considered to be the result of several eruptions rather than one major eruption, can be separated into two phases on the Faroe Islands; one early phase with two precursor eruptions with lower MgO concentrations (4.5–5.0 wt%) than the main eruption and a later phase with higher MgO concentrations (5.5–6.0 wt%), including the visible Saksunarvatn Ash. The Tjørnuvík Tephra, previously considered to be a primary deposit, is now interpreted as a reworked tephra with material from at least two middle Holocene eruptions of Hekla. Several of the tephras identified on the Faroe Islands provide useful isochrons for climate events during the Holocene

    Rhyolitic tephra horizons in northwestern Europe and Iceland from the AD 700s-800s: a potential alternative for dating first human impact

    Get PDF
    The distribution and geochemistry of four rhyolitic tephra horizons from Iceland dated to the ad 700s–800s is assessed. These include the rhyolitic phase of the Landnám tephra (ad 870s), the ad 860 layer, a previously unrecorded tephra called the GA4–85 layer (c. ad 700–800) and the Tjïrnuvík tephra (c. ad 800s). The ad 860 and GA4–85 layers were first found in peat bogs in north Ireland. They are here correlated with equivalent horizons on Iceland which were found below the Landnám tephra (c. ad 870s). This time period is considered important in the North Atlantic region, because it coincides with a phase of human settlement in Iceland and the Faroe Islands. The establishment of a detailed tephrochronology may provide a tool for exact dating of sediment successions and sediments associated with archaeological excavations. Caution must be taken especially on Iceland where the Landnám tephra is often used for dating archaeological sites. This investigation show that several rhyolitic tephra horizons occur close in time to the Landnám tephra, and that mistakes can be made if detailed geochemical analyses are not carried out, especially in areas which are distal to the source of the Landnám tephra (the Veidivötn and Torfajökull volcanic systems, southern Iceland)

    Faroe Marine Ash Zone IV: a new MIS 3 ash zone on the Faroe Islands margin

    No full text
    <p>A basaltic tephra layer from MIS 3 has been discovered by analysis of cores from the Faroe Islands margin. The tephra layer appears up to 20 cm thick in some records. After the first main fall-out event the tephra is believed to be mainly deposited and redistributed by bottom currents. Geochemical analyses suggest that the tephra is relatively undisturbed by allochtonous tephra grains and unmixed. The peak occurrences are in the lower part of GIS (Greenland Interstadial) 12 and we suggest naming this new tephra Faroe Marine Ash Zone IV (FMAZ IV), following the nomenclature adopted for previous ash zones found on the Faroe Islands margin. Geochemical analyses of the tephra show affinities with the Grímsvötn volcanic system in the Eastern Volcanic Zone in south Iceland. The average age of FMAZ IV from four independent age models is 46 800±1000 years BP. We suggest that the V5 ash zone, found on the Reykjanes Ridge is a correlative to the FMAZ IV. </p

    Holocene wet shifts in NW European bogs : evidence for the roles of external forcing and internal feedback from a high-resolution study of peat properties, plant macrofossils and testate amoebae

    No full text
    Two conspicuous wet shifts in the peat stratigraphy of Store Mosse in southern Sweden, associated with bog-wide changes in vegetation and degree of peat decomposition, were analysed at high resolution. The bog-surface wetness (BSW) proxy data (organic matter bulk density, C/N ratio, plant macrofossils and testate amoebae) highlight the importance of interactions between vegetation composition, microtopography and degree of peat decomposition, and show that the bog system operated consistently during the two wet shifts (dated to c. 2700 and 1000 cal a bp) despite different internal and external conditions. A sensitive bog-system state, associated with a degraded microtopography and well-decomposed surface peat with low hydrological conductivity developed during sustained dry conditions, probably contributed to the large BSW amplitudes registered. Comparable bog systems are expected to operate in the same way, and regionally high sensitivity that developed in response to atmospheric circulation changes may partly explain synchronous registration of wet shifts. The wet shifts in Store Mosse were attributed to solar and volcanic forcing, respectively, and wet shifts of similar magnitude registered in other NW European bogs are likely to also have been externally forced
    corecore